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Serine proteases drive important physiological processes such as coagulation,

fibrinolysis, inflammation and angiogenesis. These proteases are controlled by serine

protease inhibitors (SERPINs) that neutralize their activity. Currently, over 1,500 SERPINs

are known in nature, but only 37 SERPINs are found in humans. Thirty of these

are functional protease inhibitors. The inhibitory potential of SERPINs is in perfect

balance with the proteolytic activities of its targets to enable physiological protease

activity. Hence, SERPIN deficiency (either qualitative or quantitative) can lead to disease.

Several SERPIN resupplementation strategies have been developed to treat SERPIN

deficiencies, including concentrates derived from plasma and recombinant SERPINs.

SERPINs usually inhibit multiple proteases, but only in their active state. Over the past

decades, considerable insights have been acquired in the identification of SERPIN

biological functions, their inhibitory mechanisms and specificity determinants. This paves

the way for the development of therapeutic SERPINs. Through rational design, the

inhibitory properties (selectivity and inhibitory potential) of SERPINs can be reformed and

optimized. This review explores the current state of SERPIN engineering with a focus

on reactive center loop modifications and backbone stabilization. We will discuss the

lessons learned from these recombinant SERPINs and explore novel techniques and

strategies that will be essential for the creation and application of the future generation

of therapeutic SERPINs.
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INTRODUCTION

Approximately one third of all proteases belong to the superfamily of serine proteases, which
can be found throughout all kingdoms of life. In humans, ∼180 serine proteases govern essential
physiological processes such as vascular hemostasis (1), inflammation (2), tissue remodeling (3)
or angiogenesis (4). Many of these processes are regulated by chymotrypsin-like serine proteases,
which are the most abundant class of serine proteases. These have a highly conserved proteolytic
mechanism [reviewed in ((5))] and operate in “sequential activation” cascade mechanisms (e.g.,
coagulation or complement). The activity of serine proteases needs to be controlled, as excessive
activity causes disease. This is where serine protease inhibitors (SERPINs) are of high importance.

SERPINs in Human Physiology
The superfamily of SERPINs consists of ∼1,500 identified members (6). There is evidence for
the existence of 37 human SERPINs at protein level. Thirty of these have proven inhibitory
function, where they act as suicide substrate inhibitors. Loss of SERPIN function can have severe
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pathological consequences. For example, patients with α1-
antitrypsin (α1AT) deficiency develop pulmonary emphysema
due to uncontrolled activity of neutrophil elastase (7). C1-
esterase inhibitor (C1INH) deficiency leads to attacks of
angioedema, due to excessive bradykinin formation by the
plasma contact system (8), whereas patients with low levels of
antithrombin (ATIII) have an increased risk of ischemic stroke,
deep vein thrombosis or pulmonary embolism due to increased
activity of the coagulation system (9). Currently, the majority of
SERPIN therapeutics are meant as supplementation therapy to
overcome these defects.

SERPINs Mode of Action
SERPINS have a generally well-conserved secondary structure
consisting of three β-sheets (A, B and C; highlighted in green
in Figure 1) and nine α-helices (6, 10). Additionally, SERPINs
contain an exposed reactive center loop (RCL; highlighted in
red in Figure 1), which is a flexible loop structure on top of the
SERPIN backbone. The RCL serves as a bait sequence for target
proteases. The tertiary structure of native SERPINs is metastable,
which can shift into a hyperstable conformation. This process
is critical for the SERPIN function. While this shift can occur
spontaneously, it becomes actively triggered when the RCL is
cleaved by a protease (11). When the protease cleaves the RCL
at the P1-P1’scissile bond, the serine (or a cysteine in case of
cysteine proteases) of the catalytic triad of the protease attacks
the carbonyl of the RCL, forming a tetrahedral intermediate (12).
Hereafter, two situations may occur: (I) The SERPIN assumes
its hyperstable state, pulling the protease to the opposite side
of the SERPIN (13). Meanwhile, the N-terminal remainder of
the RCL becomes inserted next to the five strands of β-sheet A,
effectively making it the sixth strand (11, 14). During this process,
the protease active site becomes distorted, and it can no longer
hydrolyze the tetrahedral intermediate (15). When this occurs
in the extracellular space, the SERPIN-protease complex will
be cleared via scavenger receptors. II) The protease hydrolyzes
the tetrahedral intermediate and releases it before active site
disruption. The speed by which the C-terminal loop of the RCL
is inserted into β-sheet A is critical and determines whether the
SERPIN becomes a substrate or an inhibitor. Nonetheless, the
SERPIN still folds into its hyperstable state (because its RCL
has been successfully cleaved, which is irreversible) and will be
rapidly cleared, while the regenerated protease remains active.

The ability of SERPINs to interact with multiple targets
offers a unique opportunity for the therapeutic management of
pathological enzyme systems. This reviewwill explore the current
state of SERPIN engineering, with a special focus on stabilizing
SERPIN function and altering SERPIN specificity.

SUPERCHARGING SERPINS

To supercharge SERPINs, co-factors can be administered to
patients. Glycosaminoglycans canmodulate the activity of several
SERPINs by enhancing SERPIN functionality and therefore
complex formation (16–21). For example, heparin (amongst
others) enhances the efficiency of thrombin inhibition by
endogenous antithrombin (from 7.2∗103 to 1.3∗107 M−1

· s−1

respectively) (22). More recently, polyphosphate was identified
as a novel cofactor in the regulation of the complement system
by enhancing the interaction between C1s and C1INH to an
extent, similar to that of heparin (23). However, with the rise of
recombinant protein technology, the doorway has been opened
to change SERPINS for the treatment of disease states beyond
SERPIN deficiency and can be used to control new therapeutic
target proteases.

Stability
Ideally, therapeutics are stable and in the case of life-long diseases
should have a long half-life time in the human circulation.
SERPINs are dependent upon their ability to shift from a
metastable to a hyperstable conformation for function. This shift
becomes problematic if it occurs spontaneously (i.e., without
cleavage of the RCL by a target protease). This results in an
inert SERPIN with the propensity to polymerize into pathogenic
Z and S variants. Such behavior results in intracellular SERPIN
accumulation and leads to tissue damage in the form of liver
cirrhosis in the case of α1AT deficiency (24). Also for C1INH,
intracellular accumulation has been reported for some mutations
(25). However, there is little evidence to suggest that this is
accompanied by liver cirrhosis. The differences in expression
levels between both SERPINs are a logical explanation for
this unwishful clinical phenotype. In order to avoid SERPIN
polymerization during drug development, efforts are ongoing to
achieve stabilization of the SERPIN backbone without it losing its
inhibitory potential.

Lessons From Antitrypsin
Kwon et al. increased the thermostability of α1AT 13-fold by
using a single mutation (F51C) without harming its inhibitory
activity (26). Similarly, mutation F51L increased thermostability,
but reduced the misfolding and polymerization of the pathogenic
α1AT Z variant (27). Interestingly, the naturally-occurring (non-
pathogenic) mutation F51S leads to α1AT retention in CHO-
cells and reduces its stability (28). All the above mutations
are at the same position: residue 51, demonstrating that subtle
differences have a large impact on backbone stabilization (28).
Further mutagenesis of the α1AT-F51L backbone identified six
additional mutations (T59A, T68A. A70G, M374I, S381A) that
improve α1AT stability without influencing inhibitory activity
(29, 30). Other stabilizing mutations influenced the inhibitory
capacity and are therefore less interesting for the development
of therapeutic SERPINs (31).

Lessons From PAI-1
Not all SERPINs have a similar half-life and stability. Compared
to other SERPINs, plasminogen activator I (PAI-1) has a
short stability half-life of 1–2 h at 37◦C and is considered
relatively unstable (32). The binding of vitronectin to PAI-
1 increases its stability 2–3 fold, but this complex would
be considered unfavorable for therapeutic purposes. A single
mutation (I91L) increases PAI-1 stability by nine-fold (32),
whereas the combination of four mutations (N150H, K154T,
Q319L and M354I) was able to increases the half-life 72-fold to
145 h (33). A set of 10 mutations (T50A, Q56R, A61V, G70D,
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FIGURE 1 | Metastable structure of α1-antitrypsin. β-sheets are highlighted in green and the reactive center loop (RCL) is highlighted in red. When the RCL becomes

cleaved it integrates into β-sheet A, effectively becoming the 6th strand of this sheet.

T94A, N150D, D222G, I223V, G264D, and S331G) increases the
stability even further to 540 h (34). Remarkably, the introduction
of additional disulfide bridge (Cys 197–Cys 355) in the original
PAI-1 backbone increases the stability to 700 h (35).

A Uniform Serpin Backbone
These results from work on α1AT and PAI-1 show the potential
of engineering SERPIN stability, however these results cannot
be directly extrapolated to other SERPIN molecules. To expedite
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the development of therapeutic SERPINs, attempts have been
undertaken to create uniform SERPIN backbones that have
been optimized for stability. Hereto, the group of Porebski
et al. aligned the sequence of various SERPINs to identify their
consensus sequence (36). The resulting molecule “Conserpin,” is
stable up to temperatures of 110◦C and shows resistance against
polymerization. Furthermore, Conserpin is able to reversibly
fold in response to chemical denaturation. Unfortunately, the
inhibitory activity of Conserpin was found to be poor as it
is unable to form stable covalent serpin-protease complexes
(36, 37). While this behavior is improved by replacing nine
amino acids of the Conserpin RCL (P7-P2’) by that of α1AT, it
still underperforms in comparison to wild type α1AT. As such,
further insight in to SERPIN-protease interaction is required to
allow therapeutic SERPINs to be optimized for stability without
it affecting their efficacy. Although the RCL is very important,
there are other motifs present in SERPINs that are important for
target engagement such as exosites.

Circulatory Half-Life
In humans, the circulatory half-life time between extracellular
SERPINs differs quite significantly. For example, plasma-derived
α1AT has a circulatory half-life of 4.5–8.7 days (38, 39). By
comparison, its recombinant counterpart has a six-fold decrease
in circulatory half-life (39, 40), which is thought to be the result
of lacking, wrong or incomplete glycosylation. Although α1AT
has been expressed in almost every host, the lack of proper
glycosylation and circulatory half-life has been a major hurdle
for any recombinant form of α1AT from reaching the market.
Similar to α1AT, plasma-derived C1INH has a circulatory half-
life of 22–56 h, but its recombinant variant (isolated from rabbit
milk) only has a half-life of 2.4–3 h (41, 42). It is remarkable that
prophylactic treatment with this molecule has therapeutic value
(43), suggesting that it has biological properties unlike its natural
counterpart which may facilitate alternative bio-distribution or
cellular uptake which are beneficial to its therapeutic properties.

Enhanced Glycosylation
These obstacles have motivated efforts to optimize recombinant
SERPIN glycosylation. Introduction of an additional N-
glycosylation site (introduced via the Q9N mutation) was able
to further increase the circulatory half-life of α1AT in rats (44).
Recently, a modified CHO cell line was presented that delivered
full humanized N-glycosylation profiles for both α1AT and
the C1INH (45). Here, ten genes were knocked out to prevent
glycosylation errors by the CHO cell line. Furthermore, the
α-2,6-sialyltransferase enzyme (ST6GAL1) was overexpressed to
improve capping of the N-glycans with alpha-2,6-linked sialic
acid. While these recombinant variants of α1AT and C1INH
exactly match their plasma derived counterparts when it comes
to N-glycosylation profiles, their circulatory half-life times
remain to be investigated.

Pegylation
To overcome the short circulation half-life of recombinant
SERPINs, strategies have focused shielding the SERPIN via
PEGylation (46–48). PEGylation of therapeutic proteins

generally increases their biological stability and decreases
their immunogenicity. Furthermore, PEGylation via a cysteine
residue with an exposed thiol group (naturally present on
certain SERPINs, including α1AT) is relatively straightforward
and inexpensive. For recombinant α1AT, PEGylation did not
influence its inhibitory potential in vitro, while pegylated α1AT
variants (with 20 or 40 kDa PEG chains) showed increased
circulation half-life, matching plasma-derived α1AT (48).
Finally, in an in vivo elastase-mediated lung damage model, the
PEGylated recombinant α1AT variants even outperformed its
plasma derived counterpart.

Fusion Proteins
As an alternative approach to increase the circulation half-life,
SERPINs have been fused to the Fc domains from IgG. This
results in a homo-dimeric protein that should increase both
efficacy and extend circulatory half-life (49). Currently, a phase
I trial with α1AT-FC fusion protein (INBRX-101) is ongoing
(https://clinicaltrials.gov/ct2/show/NCT03815396).

In vivo Expression
Trials with recombinant SERPINS are proven to be successful,
patients would require weekly life-long therapy with injectables.
As an attractive alternative, in vivo expression of SERPINs via
gene therapy has been considered. For α1AT, both a phase I and II
trial have been undertaken using a recombinant adeno-associated
virus (AAV) vector which was administered to α1AT-deficient
patients via intramuscular injection (50, 51). Patients tolerated
the treatment and showed long term expression of α1AT. All
subjects developed anti-AAV antibodies, but none developed
antibodies against α1AT. While these studies confirmed the
feasibility, patients only produced 20µg/ml (0.38µM) of α1AT
in plasma serum, where therapeutic levels have to be at least
600µg/ml (11.54µM), where as normal levels are ∼1.5 mg/ml
(28.85µM). While improved delivery of the gene therapy and
improved SERPIN expression might help to overcome this
problem, increasing the inhibitory activity of α1AT through
mutagenesis might help to lower the levels that are required
for therapy.

TAILORING SERPIN EFFICACY AND
SPECIFICITY

The RCL together with exosites are the major regulators of
SERPIN activity. Exosites can directly improve the SERPIN-
protease interaction, whereas the RCL sequence determines the
SERPIN specificity by controlling which proteases active sites
can cleave it. Even a single amino acid mutation in the RCL can
have functional consequences. For example, wild-type α1AT is
a potent inhibitor of neutrophil elastase, trypsin, chymotrypsin,
tissue kallikrein 7 & 14, cathepsin G, neutrophil proteinase
3 and pancreatic elastase (Table 1), but not of coagulation
proteases. Contrastingly, the RCL P1 mutation M358R (α1AT-
Pittsburgh) converts it into a potent inhibitor of thrombin,
activated protein C (APC), plasmin, factor XIa, factor Xa, plasma
kallikrein and factor XIIa (Table 1). As a net result, patients
with α1AT-Pittsburgh suffer from a life-long bleeding disorder
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TABLE 1 | The Pittsburgh (M358R) mutation dramatically alters

α1-antitrypsin specificity.

α1-Antitrypsin inhibition kinetics (k2: M
−1

· s−1)

Wild Type Pittsburgh

Neutrophil Elastase 1.2-7*107 (52, 53)

Trypsin 2.8*105 (53)

Chymotrypsin 5.9*106 (54)

Tissue kallikrein 7 3.9*106 (55)

Tissue Kallikrein 14 2.6*105 (56)

Cathepsin G 4.1*105 (57)

Neutrophil proteinase 3 9.24*105 (58)

Pancreatic elastase 1.0*105 (57)

Thrombin 4.8*101 (57) 2.9-3.6*105 (59, 60)

Activated protein C 1.1*101 (61) 0.49-1.1*105 (59, 61)

Factor Xa 2.26*102 (62) 4.13*104 (59)

Factor XIa 6.6*101 (63) 4-5.1*105 (59, 63)

Plasmin 1.9*102 (57) 2.5*106 (64)

Plasma kallikrein 4.2 (63) 6.9-8.9*104 (63, 65)

Factor XIIa Not Detected (63) 2.5-3.5*104 (63, 65)

K2: second-order rate inhibition constant.

(66, 67). This experiment of nature shows the impact of small
RCL modifications.

Despite its pathological nature, α1AT-Pittsburgh has been
investigated as treatment for coagulopathy and mortality in
sepsis. While α1AT-Pittsburgh treatment decreased mortality
and coagulopathy was reported in a piglet sepsis model (68),
a baboon model was unable to confirm these results and
even showed signs of increased coagulopathy (69). The overall
consensus was that the inhibition of APC and plasmin in this
setting were unfavorable.

Redesigning RCL Specificity
Various groups have attempted to refine the specificity of α1AT-
Pittsburgh. Initial redesign of SERPIN specificity started as an
“exchange program” by grafting RCL sequences onto different
SERPINs backbones. This led to some success (70, 71); but
was limited by the inhibitory behavior of the initial donor
sequences. Although APC inhibition is considered unfavorable
in the treatment of sepsis-related coagulopathy, Polderdijk et al.
recently demonstrated that a refined α1AT variant (357KRK359),
which selectively inhibits APC, has therapeutic value for the
treatment of hemophilia A- and B (59). This molecule is currently
in clinical development (https://www.clinicaltrials.gov/ct2/show/
NCT04073498).

To unlock the true potential of SERPIN engineering for
diverse diseases, further mutagenesis of the RCL is warranted.
Yet, with each position that is mutagenized, the amount of total
possibilities rises exponentially. Indeed, to fully mutagenize a
sequence of eight amino acids (stretching the P4-P4’ region)
and use all 20 naturally occurring amino acids for, leads to
a total of 2.56∗1010 RCL sequences variants. Specific RCL
positions have been thoroughly researched, which provides
valuable information. For example, Schapira et al. showed that a

single mutation helps to refine the inhibitory potential of α1AT-
Pittsburgh (60). By altering the P2 position from a proline to an
alanine (P357A) in α1AT-Pittsburgh, the inhibition of thrombin
was diminished to the extent that it had no effects on the ex
vivo thrombin time in plasma of Wistar rats. Interestingly, this
357AR358 mutation left the inhibition of FXIIa and PKa intact,
protecting the rats in a model of bradykinin induced hypotensia.
In 2002, Sulikowski et al. changed the RCL of α1AT-Pittsburgh
into 356LGR358 or 356PFR358 to create a SERPIN to inhibit FXIIa,
PKa and C1s (72). Where the 356LGR358mutant inhibited its
designated targets, it also potently inhibited APC. By comparison,
356PFR358 showed an increase in specificity toward PKa. More
recently, our group attempted to further improve the inhibition
of the bradykinin producing proteases FXIIa and PKa. Based
upon naturally occurring sequences and data from substrate
peptide libraries, we created 18 α1AT variants. We found that
only two new variants SMRT/V and SLLR/V (/ indicates RCL
cleavage site) with a potent ability to inhibit FXIIa, PKa and
FXIa, while showing negligible inhibition of thrombin, FXa and
APC. These variants were effective in inflammatory models of
carrageenan induced-paw swelling (driven by bradykinin) and
dextran sulfate sodium-induced colitis as well as an injury-driven
model of arterial thrombosis (73).

Peptide Libraries
While data from synthetic substrate peptide libraries (74) can be
used to guide selection of lead RCL sequences, we experienced
that data from these libraries unfortunately poorly translates into
the wanted inhibitory behavior of full-length SERPINS (73). This
probably relates to the non-linear structure of the RCL loop. To
overcome this obstacle, others have performed high throughput
SERPIN screening studies with the T7 phage display system
(75, 76). While this method allowed to find thrombin inhibitors
that are twice more potent that a1AT-Pittsburgh, their specificity
toward other proteases remains to be investigated.

Viral SERPINs
Like humans, viruses also express SERPINs to inhibit targets
in their respective hosts (77). Examples of viruses that express
SERPINs are the Orthopoxviruses, Myxoma viruses, Cowpox
virus, Baculovirus and the Swinepox virus. These “cross-class”
SERPINs enhance infection and suppress host inflammatory
responses. Deletion of these SERPINs dramatically reduces the
lethality rates, showing that these SERPINs act as virulence
factors (78, 79). The Myxovirus expresses the SERPIN Serp-
1, which inhibits urokinase plasminogen activator (uPA), tissue
plasminogen activator, factor Xa, plasmin, and thrombin (in
the presence of heparin). Serp-1 requires the uPA receptor
to function in vivo (80–82). Interestingly, Serp-1 effectively
suppresses arterial inflammation and plaque growth (83–85).
In addition, a peptide mimicking the Serp-1 RCL showed
therapeutic benefits in a MHV68 virus-induced vasculitis
mouse model (86). However, the activity and stability of
this peptide was different from full-length Serp-1. Protein
modeling studies were performed to improve the inhibitory
(and antiplaque) activity of Serp-1-based peptides. The resulting
peptides indeed displayed increased inhibitory activity and
were able to increase the survival rate of the mice in a
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MHV68 infection model of IFNγR KO mice (87). This work
demonstrates the power of protein-modeling and shows its value
for SERPIN design.

DISCUSSION

Over the past years, new molecular insights have been
rapidly acquired that help recombinant SERPINs to fulfill
their therapeutic promise. While the first recombinant SERPIN
variants (the α1AT-FC fusion protein and the APC inhibiting
α1AT variant) are moving into clinical development, the design
of new SERPIN variants is still a very specialized and labor-
intensive exercise. Improvements in molecular cloning strategies
combined with protein modeling approaches will be of great
importance to efficiently unlock the potential of SERPINs as
therapeutic agents.
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