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Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and

mortality worldwide and encompasses chronic bronchitis and emphysema. It has

been shown that vascular wall remodeling and pulmonary hypertension (PH) can

occur not only in patients with COPD but also in smokers with normal lung

function, suggesting a causal role for vascular alterations in the development of

emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation,

endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased

oxidative/nitrosative stress promote development of PH, cor pulmonale, and most

probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates

the activation of key transcription factors and signaling cascades, which propagates

inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial

progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the

smooth muscle cells via aberrant activation of several cytokines, growth factors,

and chemokines. The vascular endothelium influences the balance between vaso-

constriction and -dilation in the heart. Targeting key players affecting the vasculature

might help in the development of new treatment strategies for both PH and COPD.

The present review aims to summarize current knowledge about vascular alterations

and production of reactive oxygen species in COPD. The present review emphasizes

on the importance of the vasculature for the usually parenchyma-focused view of the

pathobiology of COPD.
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CHRONIC OBSTRUCTIVE PULMONARY
DISEASE (COPD)

Respiratory diseases are a major cause of morbidity and
mortality worldwide. COPD is caused by a persistent
obstruction of the airflow in the lungs, which has profound
effects on cardiac function and gas exchange, with systemic
consequences. The condition arises either because of
emphysema, where the pulmonary air sacs are damaged,
or because of chronic bronchitis, which is characterized
by continuous airway inflammation (1). According to the
2017 World Health Organization (WHO) Global Burden
of Disease Study, 3.17 million people died because of
COPD in the year 2015, and 251 million individuals were
reported to have COPD in 2016. Alarmingly, COPD will
be the third-leading cause of mortality worldwide by 2030
(2). COPD is most prevalent in low- and middle-income
countries. In developing countries, exposure to biomass
smoke, especially during cooking, exposure to harmful smokes
during work and underlying diseased conditions (such as
tuberculosis) acts as trigger during COPD infections (3).
Individuals who have high levels of exposure to tobacco, dust,
harmful chemicals, and fumes from burning fuel, as well as
individuals with alpha-1-antitrypsin deficiency, are more prone
to developing COPD (4). In Western countries, long-term
tobacco smoking is the main reason for the development
of COPD.

The systemic consequences of COPD can initiate various
comorbid diseases, such as ischemic heart disease, heart
failure, osteoporosis, normocytic anemia, lung cancer,
depression, and diabetes (3). On a cellular and molecular
level, these changes are initiated by important upstream
events, encompassing the influx of leukocytes, an imbalance of
proteases/antiproteases, and increased production of reactive
oxygen species (ROS) (4–6). COPD is a multifactorial disease;
however, the most studied fundamental mediators are oxidative
stress, inflammation, and a lack of physical activity. An
important COPD-associated pathophysiology is the spillover
of pulmonary inflammation into the systemic circulation
(7, 8). Inflammation gives rise to neutrophil extravasation
(markers include elastase and calprotectin) and production
of inflammatory cytokines, including tumor necrosis factor-α
(TNF-α), interleukin 1β (IL-1β), interferon α/γ (IFN-α/γ),
interleukin 6 (IL-6), interleukin 8 (IL-8), reactive proteins,
and leukotrienes. The constant recruitment of inflammatory
immune cells encourages neutrophil infiltration into the lungs,
thereby activating the release of proteases and free radicals
and resulting in decreased lung elasticity (9). Thus, COPD
in the lungs is accompanied by destruction of the elastic
architecture of the lung parenchyma, leading to the enlargement
of distal airspaces (10). In addition to being an airway and
systemic inflammatory disease, COPD also appears to be a
vascular disease. It is assumed that cigarette smoke (CS) is
vasoactive and directly affects the pulmonary vasculature.
Consequently, dysfunction of the blood vessels promotes
vascular remodeling, pulmonary hypertension (PH), and finally
cor pulmonale (11–13).

In patients with COPDwho smoke, oxidative stress is elevated
due to chronic exposure to CS and other toxic air pollutants
(9). Epidemiological studies that have explored tobacco smoke
exposure in patients with PH showed that ∼49% of these
patients were smokers, of whom 71% were male. In females,
PH was often caused by second-hand (passive) exposure to
tobacco smoke (14). Lungs are a common site for oxidative
stress due to their oxygen-rich microenvironment and frequent
exposure to environmental toxins and pathogens. Chronic
cigarette smoking results in the progression of COPD due to
excessive endogenous ROS production, both from dysfunction of
mitochondrial complexes I and III and persistent activation of
inflammatory cytokines. In addition, ROS-generating enzymes,
such as NADPH oxidases, xanthine oxidases, and heme
peroxidases, promote the infiltration of inflammatory cells
inside the airways (15). Another major pathophysiological
characteristic of COPD is an imbalance in protease/antiprotease
levels. There are three classes of proteases linked with COPD
pathology: serine proteases, matrix-metalloproteinases (MMPs),
and cysteine proteases. Serine proteases are mucus stimulators,
which exacerbate airflow obstruction. MMPs degrade protein
components of the extracellular matrix (ECM), leading to tissue
damage and increased macrophage infiltration, while cysteine
proteases, which include caspases, stimulate apoptosis in alveolar
epithelial cells (16). Thus, the imbalance is due to excessive
neutrophil accumulation, which triggers pulmonary dysfunction.

The pathophysiological interlink between vascular disease
and COPD embraces conditions such as PH, hypoxia, systemic
inflammation, and oxidative stress (17). The severity of disease
in PH-associated COPD significantly increases in individuals
who also have pulmonary fibrosis or emphysema, with the
survival rate decreasing by up to 50% (18, 19). PH in COPD
is characterized by a mean pulmonary artery pressure (mPAP)
between 21 and 24 mmHg in the presence of pulmonary vascular
resistance (PVR≥3 Wood Units) or an elevation of mPAP 25–34
mmHg, with nearly normal cardiac output (20, 21). An increase
in mPAP≥ 35 mmHg or a mPAP≥ 25 mmHg with a low cardiac
index (<2.0 L·min−1·m−2) is considered severe PH in COPD. An
mPAP of more than 40 mmHg is frequently observed in patients
with severe COPD. Since the presence of PH clearly increases
mortality, the occurrence of PH in patients with COPD is of
important prognostic relevance (18, 19, 22). The exact prevalence
of PH in patients with mild or moderate COPD has not been
accurately determined. However, the mortality rate is ∼30% in
cases of heart disease-related COPD (23). Some other published
reports have suggested that the occurrence of PH with mild,
moderate, and severe cases of COPD is 16–44, 43–56, and 59–
84%, respectively (24–26). The incidence of severe PH in patients
with Global Initiative for Chronic Obstructive Lung Disease
(GOLD) stage IV was reported to be 3–5% (mPAP>35 to 40
mmHg) (21).

PH is suggested to be the result of hypoxia associated
with COPD (27). It has been shown repeatedly that vascular
alterations often appear before alveolar destruction is detectable
(28–31). A decrease in alveolar oxygen tension in COPD results
in constriction of the pulmonary arteries, leading to hypoxia in
the body. Elevated alveolar hypoxia is not restricted to smokers
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with COPD, however, there have been few reports demonstrated
that smokers who had not diagnosed COPD also exhibited
conditions of cor pulmonale. A study performed using the
C57BL/6 mouse model showed that tobacco smoke induced
emphysema, promoted remodeling of pulmonary vasculature,
increased airspaces (which included changes in parameters such
as the surface area and volume of the alveolar walls/septa),
and decreased the number of alveoli; this was accompanied
by alterations in lung compliance, tidal volume, and airway
resistance (29). Drugs such as tadalafil (a phosphodiesterase
type 5 inhibitor) and piclamilast (a phosphodiesterase type 4
inhibitor) have been reported to prevent CS-induced emphysema
in a mouse model by improving pulmonary performance, lung
tidal volume, pulmonary vascular remodeling, systolic pressure,
and hypertrophy of the right ventricle (27). The present review
summarizes the state of current knowledge about vascular
alterations that occur in COPD.

CAUSAL ROLE OF PH FOR RIGHT
VENTRICULAR FAILURE IN PATIENTS
WITH COPD

PH in COPD is slowly progressive, and mPAP can often remain
stable over a period of 3–12 years (32–34). It has been shown
that the average change in mPAP can be just+0.5 mmHg/year,
independent of the presence of initial PH (defined by mPAP>20
mmHg) (34). Another study that investigated the pathobiology of
PH in COPD over time (initial mPAP<20 mmHg) demonstrated
that only 33/121 patients developed PH after 6.8 ± 2.9 years
(35). However, ∼30% of patients with severe COPD exhibited
a remarkable worsening of mPAP during follow-up. According
to WHO, COPD patients with PH are categorized as Group
3 PH. Group 3 PH patients have a significantly lower survival
rate in comparison with PH patients without COPD (Group
1), followed by Group 4 (patients with chronic thromboembolic
PH) and Group 5 (patients with hematologic disorders, systemic
disorders, and metabolic disorders) (36). A population-based
study reported that a higher proportion of older males (aged
more than 70 years) are prone to PHwith COPD. This population
also suffered from co-morbidities such as diabetes, hypertension,
coronary artery disease, and atrial fibrillation. In addition,
patients with Group 3 PH showed increased left ventricular mass
and end-diastolic diameter. The prevalence of PH in patients with
COPD depends on the definition of PH, the severity of COPD,
and the mPAP, which ranges from 20 to 91% (37). Most patients
(90%) with PH havemPAP>20mmHg, with themajority varying
between 20 and 35mmHg. These patients were characterized by a
progressive worsening of partial oxygen/carbon dioxide pressure
(PaO2/PaCO2) over time. In addition, there was an association
between alterations in PaO2 and mPAP (33, 34). Pulmonary
anatomic changes can result in respiratory failure, both type
I, where PaCO2<45 mmHg (6 kPa) i.e., normal or low and
the partial pressure of oxygen, PaO2, is low (hypoxemia); and
type II, where PaCO2>45 mmHg (6kPa) and PaO2<60 mmHg
(8kPa) (38, 39). Within 5 years of diagnosis, 7% of patients with
COPD will experience hypoxemia. The pathology of inpatients

with right heart failure (RHF) is commonly preceded by PH.
The severity of PH and the development of RHF are closely
associated. PH increases the workload of the right ventricle,
leading to hypertrophy, dilatation, and ventricular dysfunction.
RHF is frequently accompanied by peripheral edema and can be
observed in patients with advanced COPD (40, 41). Peripheral
edema is considered to reflect RHF, but the possible occurrence
of RHF is sometimes assumed to simply indicate the presence
of secondary hyperaldosteronism induced by functional renal
insufficiency (42).

The effect of pressure overload in the development of RHF
has been intensively discussed, probably due to additional
causes independent of PH. In patients with stable COPD,
right ventricular contractility, measured by the end-systolic
pressure–volume relationship, is not abnormal in COPD patients
suffering from PH. Notably, many patients with advanced COPD
never develop RHF. The level of mPAP is suggested to be a
valuable prognostic indicator for patients with COPD (39, 43).
Accordingly, life expectancy is less in patients suffering with
PH compared with patients that do not have PH (18, 44, 45).
The 5-year survival rate of COPD patients with PH (mPAP>20
mmHg) is about 50%. In PH, there is an increased mean
pulmonary arterial blood pressure (46) that causes an increased
afterload for the right ventricle (RV) of the heart leading to
right heart hypertrophy. This adaptive hypertrophy helps the
heart to deal with the high pulmonary vascular resistance (PVR).
However, this beneficial adaptive hypertrophy can result in
maladaptation, RV dilatation and finally failure. The term “cor
pulmonale” was used to define a right ventricular dilation due
to COPD. However, present studies describing patients with
mild-to-moderate COPD demonstrated reduced RV volumes
compared with healthy controls (47). This discrepancy can be
explained by the fact that majority of the patients with severe
COPD primarily suffer from increased intrathoracic pressures
due to hyperinflation and airway obstruction, but not from right
heart failure. Indeed, increased intrathoracic pressures reduce
deoxygenated blood returning into the thorax, thereby reducing
the cardiac chambers volumes. To support this notion, the
recent CLAIM study by Hohlfeld et al. showed that the reduced
volume can be reversed by means of combined long-acting
bronchodilators, causing deflation of the lung and increased end-
diastolic filling of both the right and left ventricle and a significant
increase in stroke volume (48). Moreover, up to 30% of COPD
patients suffer from systolic or diastolic heart failure thereby
enhancing in both pulmonary arterial wedge pressure and mPAP
due to lung hyperinflation (49). Further, COPD patients do
not show an increased hypertrophy of the left ventricle, but
dysfunction. There is evidence that the systemic inflammation
occurring in these patients might have a causal role in the
pathogenesis of atherosclerosis (50). The high prevalence of left
ventricular systolic dysfunction in individuals with COPD can
be explained by the acceleration of the progression of coronary
atherosclerosis by systemic inflammation, which leads to the
development of ischemic heart disease. The high incidence of
motor disorders of the left ventricle wall observed in patients
with COPD and left ventricular dysfunction could also justify the
relationship between both chronic processes.
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Further, another explanation may be the existence of
predominant COPD subphenotypes. Interestingly, Burrows et al.
found that COPD patients with emphysema were less likely
to demonstrate RV hypertrophy than other COPD patients,
under the same pulmonary vascular resistance (51). Moreover,
patients dying with emphysema did not exhibit RV hypertrophy,
which was more common in COPD patients with chronic
bronchitis (52). Further, Kawut et al. reported that cardiac
complications are linked to more prominent airways disease and
less parenchymal destruction, supporting a stronger link between
the “chronic bronchitis” subphenotype than the “emphysema”
subphenotype (53). The mechanism of reduced RV filling in
emphysematous COPD may relate to several factors. As Watz
et al. suggested that pulmonary hyperinflation reduces right atrial
and RV filling in moderate-severe COPD (54), and lung volume
reduction surgery for very severe COPD (which decreases
hyperinflation) is associated with increased oxygen pulse (55).
Long-term oxygen therapy (LTOT) can significantly improve
the survival of hypoxemic COPD patients who also suffer from
PH. Accordingly, the prognosis for PH will improve with LTOT
therapy. In fact, LTOT is the only recommended therapeutic
intervention to increase the survival rate of COPD patients with
chronic hypoxemia. Approximately 20% of patients with COPD
are prescribed LTOT (56). LTOT (13 h/per day) was prescribed
for patients with COPD during the very early phase of the
condition. This therapy was observed to be successful in patients
with resting hypoxemia, however in nocturnal or exercise-
induced hypoxemia LTOT exhibited no significant relief (56–58).
Cor pulmonale also contributes to the mortality associated with
COPD. Treatment in such cases involves LTOT administration
for more than 16 h per day or the use of vasodilator drugs (59).

VASCULAR REMODELING DURING PH

Vascular alterations have been shown to play an important
role in the development of emphysema in both animal models
and in patients with COPD. In patients with end-stage
COPD, such remodeling is characterized by thickened walls or
vascular occlusion, reducing the vascular lumen resulting in
increased resistance and intravascular pressure. In PH-associated
COPD, pulmonary ventricles and arteries undergo structural
modifications (60). The most prominent feature of the vascular
remodeling of blood vessels is the varying degree of thickening of
the intimal and/or medial layer of muscular vessel layers in distal
pre-capillary arterioles (distal muscularization) (61). Although
smooth muscle cells (SMCs) are not resident intimal cells, studies
in animal models have shown that SMCs can migrate from the
media and proliferate in the intima following endothelial
injury (61). It has become evident that intimal hyperplasia
can be detected during early-stage COPD, resulting from the
proliferation and migration of SMCs and associated with elastic
and collagen fiber deposition (62). Immunohistochemistry
analysis of ECM proteins from lung specimens of patients
with COPD has shown that abundant elastin can be detected
during the early stages of COPD and that the abundance of

collagen is correlated with the degree of intimal thickness,
suggesting that collagen deposition has important consequences
for pulmonary vascular remodeling associated with COPD
(60, 63–65). Sekhon et al. showed that, in rats, CS triggered
proliferation of polymorphonuclear leucocytes (66). The effect
of muscularization is prominent in small arteries (diameter
<500µm) (67–69). Immunohistochemistry, using SMC
markers, of lung specimens from patients with PH-associated
COPD showed positive expression of vimentin (indicating
the expression of mesenchymal cells) and negative staining
for desmin (an intermediate filament protein characteristic of
cells of myogenic origin), indicating that less-differentiated
SMCs contribute to an ongoing process of vascular remodeling
(13, 67). Although the detailed molecular processes have not
been identified, the occurrence of SMCs might be explained by
the infiltration and differentiation of circulating bone marrow-
derived progenitor cells, differentiation from resident precursor
cells, the dedifferentiation of mature SMCs from the media that
migrate to the intima (70), or transdifferentiation of endothelial
cells to SMCs by endothelial-to-mesenchymal-transition. In this
regard, bone marrow-derived progenitor cells are suggested to
contribute on the one hand to vascular repair via differentiation
into endothelial cells and on the other to vessel remodeling
through differentiation into SMCs (71–73). Chronic hypoxia at
high altitudes can also cause PH, but this condition is reversible
upon returning to sea level. Together, these findings provide
evidence of the primary reason for medial hypertrophy. By
contrast, the remodeling of all vessel layers cannot be reversed
by supplemental oxygen, either in cases of acute (74) or chronic
COPD (75).

MECHANISMS OF VASCULAR
REMODELING DURING PH

The muscularization of vessels in the pulmonary region is a
response to oxidative stress and endothelial cell (EC) injury.
The integrity of ECs is lost due to apoptosis, following the
accumulation of fluids and immune cells in the perivascular
region. As a result of the immune response, bone marrow-
derived precursor cells are recruited to the site, leading to the
transition from ECs to mesenchymal cells (76, 77). Internal
hypoxia has been proposed to be the primary mechanism
underlying PH-associated COPD. Hypoxemia promotes vascular
constriction via recruitment of immune cells and results in
muscularization of arterioles. This remodeling affects the intima,
media, and adventitia of vessels in the lung. Various studies
have shown that pulmonary vascular remodeling and endothelial
dysfunction occurs in animal models of lung emphysema (78),
in patients with mild COPD not suffering from hypoxemia, and
in smokers with normal lung function (72, 79). Presumably,
oxygen therapy is unable to reverse PH in many patients
with COPD. Nevertheless, many studies have shown that
hypoxia plays a role in COPD, at least in severe forms of
the disease.
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MECHANISMS LEADING TO VASCULAR
REMODELING DURING HYPOXIA

PH occurs because of increased pulmonary vascular resistance
(PVR) during chronic respiratory diseases. Multiple factors
contribute to the increase in PVR (41, 80), but hypoxia
during COPD is thought to be the major cause (41, 81, 82).
Acute hypoxia causes pulmonary vasoconstriction, while chronic
hypoxia induces structural vascular changes (remodeling) over
time. During acute hypoxia, increases in PVR and mPAP
are features of hypoxic pulmonary vasoconstriction. Chronic
alveolar hypoxia causes morphological changes in the pulmonary
vascular bed (remodeling) that are comparable to those seen
in COPD patients with PH (including muscularization of
pulmonary arterioles and thickening of the intima in muscular
pulmonary arteries and arterioles).

Generalized hypoxia due to partial pressure of oxygen has
both systemic and organ-specific effects (83–85). This type
of hypoxia induces pulmonary vasoconstriction, peripheral
vasodilation, and activation of a sympathetic-adrenergic stress
response to increase cardiac output (86), while erythropoietin-
stimulated red cell production is activated in the bone marrow.
Hypoxic pulmonary vasoconstriction here represents an adaptive
response in local blood perfusion to the alveolar ventilation
situation, to prevent hypoxemia.

Hypoxia-dependent vasoconstriction is mediated by hypoxia-
inducible transcription factor 1 alpha (HIF-1α), which promotes
the activation of innate immune responses and inflammation
in arterioles. Other transcription factors, such as forkhead box
O (FoxO), CBF1/RBP-Jκ (recombination signal-binding protein
for immunoglobulin kappa J region), peroxisome proliferator-
activated receptor gamma (PPAR-γ), Krüppel-like factor 4
(KLF4), transcriptional coactivator pyruvate kinase isozyme
PKM2, the corepressor CtBP1 [a member of the C-terminal
binding protein (CtBP) family], and the Twist family bHLH
transcription factor 1 (TWIST1) (87), were found to play a crucial
role in PH and dysfunction of the right ventricle. However, of
these transcription factors, HIF is most strongly implicated in
PH pathogenesis, as it was observed that conditional deletions
of HIF isoforms in mice improved vascular remodeling and
augmented pulmonary arterial pressure post-chronic hypoxia
(88). In alveolar macrophages, hypoxemia induces the expression
of FIZZ1, also known as hypoxia-induced mitogenic factor
(HIMF), thereby promoting smooth muscle contraction in
pulmonary arterioles via interleukin-linked kinase 4 signaling
mechanisms (76, 89). Patients with COPD who were regular
smokers exhibited higher expression of HIF-1α, VEGF (a potent
regulator of vascular permeability), and VEGF receptors (90).
This in turn can activate the proinflammatory transcription
factor nuclear factor-kappaB (NF-κB) (91, 92).

NF-κB modulates the expression of cytokine expression and
thereby manipulates proliferative homeostasis in immune cells.
Mechanistic insights into the hypoxia-induced expression of
HIF and NF-κB suggest that both factors are activated in an
IKK–transforming growth factor β-activated kinase 1 (TAK1)-
dependent manner (93, 94). The hypoxic microenvironment
inside the lungs also releases chemotactic factors, such as

leukotriene B4 (LTB4), VEGF, and FIZZ1, which tend to increase
hypoxia in the bone marrow as there is active mobilization of
bone marrow-derived cells (such as mast cells, mesenchymal
precursor cells megakaryocytes, and dendritic cells) to the
lungs. Hypoxia-dependent transcription of NF-κB leads to
transcription of phospholipase A2 (PLA2). Transcriptional
activation of PLA2 results in activation of 5-lipoxygenase and
chemotactic factor LTB4, eventually leading to the deposition of
bone marrow-derived precursor cells (85).

IL-6 has received considerable interest as a mediator of
COPD progression. IL-6 levels in serum from patients with
COPD were found to be significantly elevated in comparison
with healthy individuals (95). During hypoxia, IL-6-deficient
mice showed less inflammation and a marginal reduction
in pulmonary hypertension (96). IL-6 contributes to the
increased migration of pulmonary artery smooth muscle cells
(PASMCs) in chronic hypoxia-exposed vessels of the lung
that are non-muscularized (96). IL-6 is upregulated following
chronic hypoxia in mouse lungs, but it does not seem to
be essential for the development of chronic hypoxia-induced
PH. Chronic hypoxia with excessive IL-6 seems to change
the mode of vascular remodeling toward angioproliferation
(85). It has been reported that overexpression of IL-6 results
in a significant decrease in the expression of lung protective
protein bone morphogenetic protein receptor type 2 (BMRP2),
through a signal transducer and activator of transcription 3
(STAT3)-microRNA cluster 17/92 pathway. The decrease in
BMRP2 is driven by the modulation of the STAT3 pathway.
BMPR2 is a member of the transforming growth factor-
β (TGF-β) superfamily of growth factor receptors, which
is involved in signaling pathways including protein kinase
B/phosphatidylinosital 3-kinase (Akt/PI3K), phosphorylation of
extracellular-signal regulated kinase (pERK), phosphorylation
of c-Jun N-terminal kinase (JNK), phosphorylation of Smad1,
and phosphorylation of phospho-mitogen activated protein
kinase (p-p38MAPK) (97–99). Conversely, the effects of IL-
6 overexpression have been found to be insufficient to cause
pulmonary occlusions and aid the mobilization of bone marrow
cells to vessels in the lung (85). It has been shown that mutations
in the BMPR2 gene are linked to the development of PH
(100) and that BMPR2 expression is reduced in the pulmonary
vasculature in patients with PH (101). On the other hand,
it is assumed that IL-6 affects the balance between apoptosis
and proliferation of PASMCs and pulmonary artery endothelial
cells (PAECs), leading to vascular remodeling (102). Therefore,
overexpression of IL-6 induces the angioproliferative growth
factor VEGF and intracellular ERK, resulting in increased
proliferation. In parallel, IL-6 expression is followed by a
downregulation of TGF-β and proapoptotic MAP kinases (JNK1,
p38MAPK) (103) and upregulation of B-cell lymphoma 2 (Bcl2),
an inhibitor of apoptosis. Accordingly, IL-6 can trigger vascular
remodeling by inducing signaling pathways that lead to increased
proliferation and decreased apoptosis of PASMCs and PAECs
(Figure 1). There are some reports about the role played by
BMPR1αin pulmonary arterial hypertension (PAH). In a mouse
model, deletion of BMPR1α did not significantly modify the
dynamics of blood flow in the distal vasculature of the lung as
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FIGURE 1 | Selection of possible hypoxia-dependent mechanisms contributing to pulmonary vascular remodeling in COPD-PH. Cigarette smoke-induced airway

obstruction and emphysema can result in hypoxia. Hypoxia, amongst others, activates HIF-1α which can trigger pathways associated with inflammation, the

recruitment of bone marrow-derived cells, and alterations in proliferation/apoptosis balance of vascular endothelial and smooth muscle cells (SMC). Increased

proliferation of SMCs causes narrowing of the vessels resulting in pulmonary hypertension. All important acronyms of the molecules are explained in the text.

a response to hypoxia, however the hemodynamics of proximal
pulmonary arteries were changed; a deficiency in BMPR1α
further decreased excessive dilation, as a result of collagen
accumulation (104). Arterial stiffness in turn altered the function
of the right ventricle.

In addition to the modulation of signaling cascades, IL-
6 also modulates the homeostasis between pro- and anti-
apoptotic proteins, thereby encouraging vascular remodeling. IL-
6 overexpression upregulates Bcl2 and survivin, inhibitors of
apoptosis, leading to the inhibition of apoptosis. IL-6 promotes
cell proliferation via activation of the VEGF andMAPK pathways
(85). This cytokine also participates in cell differentiation and
proliferation of the ECM, thereby causing hyperplasia in airway
goblet cells and squamous metaplasia in small airway cells.
The proliferation of ECM activates the ERK and p38 signaling
pathways by increasing the expression of type I/III collagens,
laminin, and fibronectin and decreasing the expression of
proteoglycans and elastin (94).

Hypoxemia indirectly modulates the expression of
angiotensin II, serotonin, platelet-derived growth factor,
and metalloproteinases present on the walls of arteries in the
lungs, leading to alterations in vascular cross-sectional areas
and pulmonary hypertension. The pathways may be interrelated
with intracellular ion concentrations. It has been previously
reported that potassium channels play a crucial role in inducing
excitation in smooth muscle. Inhibition or activation of vascular
SMCs can therefore cause changes in their membrane potential,
leading to augmentation of calcium ion concentrations inside
the cells and propagating vasoconstriction (Figure 2). It has been
shown that, under chronic hypoxic conditions, voltage-gated K+

channel (Kv) currents are decreased (105–107), which is most
likely mediated by ROS derived from mitochondria (108–112)
and/or NADPH oxidases, such as NOX4 (113). Furthermore,
influx of calcium ions via transient receptor potential ion
channels (TRP) has also been associated SMC proliferation and
hypoxia induced vasoconstrictions in the lungs (114). Under
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FIGURE 2 | Hypoxia-induced ion channel-mediated increase in proliferation, contraction, and decrease of apoptosis of SMCs contributing to pulmonary vascular

remodeling. Kv and TASK-1 channels are downregulated and less active after chronic hypoxia leading to accumulation of K+ within the cell (mediating

apoptosis-resistance) and membrane potential depolarization of the SMCs. This depolarization causes opening of voltage-operated Ca2+ channels (VOCC), especially

L-type channels, which mediate Ca2+ entry. Hypoxia-dependent ROS regulation derived from NADPH oxidases and/or mitochondria is suggested to inhibit the K+

channels, although it is unclear whether an increase or decrease of ROS occurs in hypoxia. Transient receptor potential channels (TRPC)-mediated Ca2+ or Na+ influx

(speculatively by gating K+ channels) was also shown to be essential for the intracellular Ca2+ increase in at least acute hypoxia. Ca2+ release from mitochondria and

sarcoplasmic reticulum (SR) was shown to additionally increase Ca2+ within the cell. Thus, mediated contraction and proliferation of the SMCs can contribute to

vascular remodeling. Colored arrows depict either activation (green) or inhibition (red).

hypoxia, the membrane potential is depolarized by between
15 and 20mV and arteries are constricted to about 300µM
diameter. The generation of ROS in mitochondria via NADPH
oxidase has a considerable effect on potassium ion conductance
and membrane potential (115, 116). The voltage-independent,
two-pore domain K+ channel, TWIK-related acid-sensitive
K+channel, (TASK)-1, was shown to be inhibited by hypoxia,
leading to membrane depolarization and calcium ion entry
through L-type channels. Mutations in the potassium channel

subfamily K member 3 (KCNK3) gene, which encodes for
TASK-1, have been reported in patients with PH. To date, six
different mutations in KCNK3 have been studied in patients
diagnosed with PH (117–119). Another protein, the 30-kDa four
and a half LIM domain protein 1 (FHL1), has been shown to
participate in the induction of hypoxia-induced migration as well
as in proliferation of PASMCs thus indicating its importance in
vascular remodeling during PH-associated COPD and in patients
with idiopathic PAH. The increase in FHL-1 causes migration
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of PASMCs and their elevated proliferation, contributing to
vascular remodeling (120). However, the precise molecular
mechanisms underlying this remain unclear (120–122).

MECHANISMS INDEPENDENT OF
HYPOXIA THAT CAUSE COPD AND PH

It has long been suggested that hypoxia is the primary
driving force behind the development of PH in COPD. This
was supported by studies that showed a close relationship
between mPAP and/or pulmonary resistance and alveolar
hypoxia (123, 124). However, there is also evidence for other
causal factors, independent of hypoxia. First, it has been
demonstrated that oxygen therapy is unable to completely
reverse PH in COPD (75, 125). Second, analysis of pulmonary
vessels from COPD patients with PH demonstrated prominent
intimal thickening, medial hypertrophy, and muscularization
of small arterioles (126). In contrast, hypoxia-induced vascular
remodeling has been shown to be restricted to the media. In
addition, these pulmonary vascular alterations occurred in non-
hypoxic patients with mild airflow obstruction and smokers
without any parenchymal disorder, suggesting that vascular
remodeling may be driven by mechanisms independent of
hypoxia/hypoxemia (79). Consistent with these findings in
humans, studies of mice exposed to tobacco smoke demonstrated
that pulmonary vascular remodeling and PH preceded the
development of emphysema and was independent of hypoxia
(27, 29). Furthermore, these studies showed that gene expression
patterns linked with pathways associated with PH and COPD,
such as apoptosis, proliferation, oxidative stress, ECM, and
inflammation, were completely different compared with gene
expression patterns during chronic hypoxia-induced vascular
remodeling. Interestingly, the combination of CS and hypoxia act
synergistically to affect the vasculature. Experiments with guinea
pigs exposed to CS and to hypoxia showed increased mPAP and
more pronounced remodeling in small vessels compared with
guinea pigs exposed to a single stimulus (28).

Animal studies have shown that CS has a direct effect on
the parenchyma and the vasculature. CS has also been shown to
increase the expression of genes that encode vasoactive mediators
in pulmonary arteries (127, 128). Guinea pigs exposed to chronic
CS developed emphysema that was associated with reduced lung
capillary density (129). Additionally, cigarette smoke extract
(CSE) can induce endothelin-1 (ET-1) in PAECs (130) and
reduce prostacyclin synthase expression (131). Furthermore,
CSE induces the production of superoxide in ECs, promoting
peroxynitrite formation (132). This strong oxidant radical has
been shown to suppress VEGFR2 expression, followed by a
reduction in EC maintenance and growth. It has been suggested
that the cGMP pathway is downregulated following exposure to
CS. Congruently, CSE-induced EC apoptosis via p53 (133) can be
prevented by the PDE5 inhibitor sildenafil (134), followed by an
increase in cGMP levels.

The inability of LTOT to completely reverse the
vasoconstriction and remodeling seen in patients with PH-
associated COPD indicates that hypoxia-independent factors

are also involved in the development of PH in COPD patients.
This is supported by finding that pulmonary vascular alterations
were also observed in non-hypoxic patients with mild airflow
obstruction and smokers with no parenchymal disorders. CS-
exposed C57BL/6 mice developed emphysema. In addition, the
incursion of large numbers of neutrophils and macrophages and
activation of NF-κB and inflammatory cytokines were observed.
Further studies have reported that smoke-induced PH and
emphysema in mice can be reduced by inhibiting the expression
of inducible nitric oxide synthase (iNOS) and activating the
expression of soluble guanylate cyclase (sGC) (29). Furthermore,
these authors showed that the inhibition of iNOS regulates genes
that support lung regeneration through the formation of new
alveoli (neoalveolarization) (29, 135). Studies with L-NIL (N6-
(1-iminoethyl)-L-lysine dihydrochloride), an iNOS inhibitor,
showed repression of matrix metallopeptidase 9 (MMP9) via
amplified transcription of expression of metalloproteinase
inhibitor 3, TIMP3, resulting in decreased parenchymal
destruction. It was also reported that L-NIL treatment supported
the formation of elastic fibers in the lungs, thereby inducing
active pulmonary repair. In addition, the repression of pro-
proliferative (Fgf10 and Ccna1) and apoptosis-inducing factors
and reduced proliferation of granulocytes, macrophages, and
activated T cells post iNOS inhibition was found to have a
positive effect on vessels and neoalveolarization, in support of
vascular regeneration (29). CS increases EC permeability via the
activation of Ras homolog family member A (RhoA) and myosin
light chain (MLC) kinase. Further, CS promotes the release of
vasoconstrictors and pro-mitogenic markers, such as ET-1 and
thromboxane A2, which eventually results in the remodeling
of vessels and pulmonary cell dysfunction (27, 130, 134, 136).
Prostacyclin, a well-known vasodilator present in ECs and
SMCs, is known to be inhibited in smoke-induced PH. A loss of
prostacyclin in the lungs was found to result in increased platelet
adhesion and endothelial dysfunction in PH-associated COPD
patients (137).

ENDOTHELIAL DYSFUNCTION (ED) IN THE
PATHOGENESIS OF PH IN COPD

The pathogenesis of PH in COPD is thought to be driven by an
endothelium-derived vasoconstrictor/dilator imbalance caused
by ED. Thus, ED in the walls of arteries in the lungs contributes to
the development of PH in patients with COPD. This dysfunction
has been measured by analyzing the nitric oxide-dependent
relaxation of arterial rings in the lungs in response to dose-
dependent increases in exogenous acetylcholine and adenosine
diphosphate (ADP) (78, 138, 139). In emphysematous lungs,
the expression of VEGF and VEGFR was significantly reduced.
The extent of pulmonary injury was further increased following
exposure of the lungs to CS. The growth and proliferation
of inadequately differentiated SMCs and deposition of ECM
proteins in arterial walls in the lungs contributed to the
dysfunction and progression of the disease. The process of ED
is also associated with decreased expression or uncoupling of
endothelial nitric oxide synthase (eNOS), whichmight contribute
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FIGURE 3 | Endothelial dysfunction as causing factor for development of vascular remodeling. Cigarette smoke and inflammatory mediators can cause endothelial

dysfunction which is triggered by a disbalance of vasodilative and vasoconstrictive molecules towards an excess of vasoconstrictors and damage/dysregulation of EC

signaling. Additionally, vascular progenitor cells (VPCs) are attracted to the damaged endothelium. Such VPCs can either contribute to repair by differentiation into ECs

or to remodeling by differentiation into SMCs. Furthermore, an endothelial-to-mesenchymal-transition (EMT) may occur resulting in an SMC phenotype.

Vasoconstriction and altered endothelial cell signaling are stimuli for SMCs to proliferate resulting in vascular remodeling, increased pulmonary artery pressure, and

finally in pulmonary hypertension.

to the development of PH (Figure 3). In contrast, the expression
of VEGF and serotonin transporters seems to be increased
(140, 141). ECs are known to be important for the regulation
of vascular homeostasis. They control the vascular tone and
affect pulmonary vessel adaptations to changes in blood flow
and in response to hypoxia (142–145). Dysfunction of the
endothelium has been reported in patients with end-stage COPD
after lung transplantation (140), as well as in patients with
mild-to-moderate COPD (146). In general, endothelial function

is affected by the expression of various vasoreactive substances
that control vasoconstriction (and are also pro-proliferative
for SMCs) or vasodilation (and are also anti-proliferative for
SMCs). In patients with primary or secondary PH and COPD,
the protein ET-1 was shown to increase (147). Vasodilative
mediators, such as eNOS (147, 148) and prostacyclin synthase
(PGI2-S), were downregulated in pulmonary arteries (131). CSE
can decrease the expression of PGI2-S in human PAECs (131),
suggesting that its downregulation is a direct effect from the
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ingredients in CSE. After exposure to CS for 8 months, the
downregulation of eNOS in lungs and vessels was observed,
concomitant with the development of emphysema and PH (29).
In addition, eNOS-deficient mice developed emphysema and PH
following exposure to CS, whereas iNOS-deficient mice did not
(29). Other changes in the presence of CS include increased
injuries to ECs, increased infiltration of neutrophils, increased
lipid peroxidation, excessive oxidative stress, and imbalances
between the expression of vasoconstrictors and modulators
(78) (Figure 3).

ALTERED PROFILES OF INFLAMMATORY
CELLS

Acute exacerbation due to increased inflammation in the lungs
is the most important characteristic identified and studied in
patients with COPD. During progression of the disease, excessive
mucus, containing inflammatory cells, accumulates in the blood
vessels thereby increasing the tissue volume in the bronchial wall.
The increase in tissue volume can be measured by the infiltration
of both innate and adaptive inflammatory markers, such as
neutrophils, macrophages, and CD4 and CD8 lymphocytes.
Neutrophils contribute significantly to the production of ROS,
cytokines, and chemokines during lung inflammation. The
inflammation is triggered via the activation of Toll-like receptors,
followed by transcriptional activation of NF-κB and activation
of STAT pathways. During pulmonary inflammation, patients
with COPD exhibit higher expression of inflammatory cytokines,
such as IFN-γ and TNF-α, along with IL-1, IL-6, and IL-
8. Reports have also indicated that IL-17 plays a role in
COPD progression and inflammation (149–152). In patients
with COPD, an increased number of inflammatory cells invade
the adventitia of pulmonary muscular arteries. These cells are
predominantly activated CD8+ T-cells (140, 153). Numbers of
these lymphocytes are also increased in the arterial adventitia of
smokers with normal lung function. The ratio of CD4+/CD8+T-
cells is reduced compared with the ratio in non-smokers and is
comparable to the situation in patients with mild-to-moderate
COPD (153). In addition, an association between IL-6 expression
and elevations in mPAP supports a role for inflammation in
the pathogenesis of PH (in COPD) (154). This is particularly
relevant, because the vascular adventitia has been shown to
harbor inflammatory cell progenitors, e.g., CD45+ macrophage
progenitors, independent from bone marrow-derived monocytes
(155–157). Upon activation, these progenitors deliver F4/80+

macrophages that serve as a local source for high levels of VEGF
production (157). The potential contribution pulmonary vessel
adventitia-derived inflammatory cells, e.g., macrophages, make
to PH and the proliferation of vascular adventitia-resident SMC
progenitors has yet to be studied.

THE EFFECT OF OXIDATIVE AND
NITROSATIVE STRESS ON VASCULAR
PHYSIOLOGY

Increased production of ROS in the endothelium is an important
characteristic of pulmonary endothelium dysfunction in PH.

During oxidative stress in patients with PH, the transcription
factor nuclear factor erythroid 2-related factor 2 (Nrf2) fails
to activate the expression of antioxidant enzymes, such as
superoxide dismutase (SOD) and catalase, thereby increasing
the level of ROS in the body. Also, increased production
of superoxide radicals reduces the availability of NO, as
superoxide ions merge with NO to form peroxynitrite, which
in turn increases the expression of inflammatory markers
and leukocyte infiltration via the expression of adhesion
molecules in the endothelium. The formation of peroxynitrite
further contributes in depolarizing potassium ion channels and
increasing calcium ion concentration inside cells, eventually
leading to tissue injury due to increased vascular permeability.
Superoxide ions can generate downstream toxic products,
including hydrogen peroxide (H2O2), which in turn activates
the phosphorylation of NF-kB and leads to the activation of
inflammatory responses. Activation of inflammasomes due to
oxidative stress further perpetuates inflammation in the body
(151, 158). The elevated production of superoxide and H2O2,
together with reduced NO bioavailability, make a fundamental
contribution to vascular remodeling and the development
of emphysema. Elevated concentrations of H2O2 and 8-
isoprostane, both of which are oxidative stress markers, are
found in the exhaled breath condensate of smokers and ex-
smokers, as well as during exacerbations (159, 160). ROS have
been shown to negatively affect the function of antiproteases,
such as α1-antitrypsin and secretory leukocyte proteinase
inhibitor (SLPI) (16, 161). Consequently, a protease/anti-
protease imbalance accelerates the degradation of elastin in the
lung parenchyma, resulting in emphysema. Angiotensin II is
involved in NADPH oxidase-generated superoxide production,
mediated by angiotensin type I receptor, which is converted
to H2O2, with SOD acting as a second messenger. This
pathway induces hypertrophy or hyperplasia in vascular SMCs
(162, 163). This angiotensin II-induced process has been
shown to be inhibited by the flavoprotein inhibitor DPI
(162), catalase, and knockdown of p22phox, which supports
the involvement of NADPH oxidases in the vasculature
(164–166).

ROS promote vascular remodeling by increasing the
deposition of ECM proteins. In particular, collagen and elastic
fibers are degraded by proteinases, specifically MMPs. MMPs are
secreted, in an inactive form, by macrophages and vascular SMCs
(167). ROS, such as peroxynitrite, have been shown to activate
MMP-2 and -9 in human SMCs, followed by degradation of
the basement membrane and elastin (168, 169). A hypertension
model involving aldosterone-induced systemic oxidative stress
revealed that endothelin-1-associated processes are the main
contributors to vascular remodeling (170, 171). Similarly,
redox-sensitive inflammatory processes are known to induce
vascular remodeling. In particular, increased expression of
the inflammation-related intracellular adhesion molecule-1
(ICAM-1) has been shown in the aorta of aldosterone-treated
rats (170, 171). Furthermore, angiotensin II-induced oxidative
stress results in tissue hypertrophy associated with an increase in
ICAM-1 expression. Macroscopic and microscopic examinations
of COPD emphysematous lungs using hematoxylin and eosin
staining showed that the alveolar septa were extremely thin
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and avascular (172). This indicates that pulmonary endothelial
dysfunction might be the key element in COPD pathogenesis.

ENDOTHELIAL DYSFUNCTION IN COPD IN
CARDIOVASCULAR DISEASES (CVDs)

The endothelium forms a continuous monolayer and thereby
a regulated barrier that separates the intravascular blood
compartment from surrounding tissues (173, 174). ED is
classically defined as impaired NO-mediated vascular relaxation
(Figure 4). In a broader sense, ED encompasses a state
in which ECs are activated, additionally characterized by
endothelial barrier impairment and reduced anti-adhesive and
antithrombotic properties (175).

Recent studies have shown that the microvascular barrier is
impaired in patients with COPD and that the level of impairment
is correlated with the severity of airway obstruction (176, 177).
This could be attributed to the disruption of endothelial tight
junctions observed in patients with COPD, even in the absence of
CS (178, 179). Immune cells, especially neutrophils, are critically
involved in the pathogenesis of COPD. This has been reviewed
in details elsewhere (180, 181). Neutrophil accumulation was
observed in the lungs of patients with COPD, in clinical
settings, using radiolabeled neutrophils and single-photon
emission computerized tomography (SPECT/CT) imaging (182).
Neutrophil accumulation within the pulmonary tissue requires
extravasation through the endothelial barrier, which is an active
process involving adherence to ECs andmigration either between
(paracellular diapedesis) or through (transcellular diapedesis)
ECs. Neutrophil MAC-1 (αmβ2, CD11b/CD18, and complement
receptor type 3) interactions with endothelial ICAM-1 promote
endothelial transmigration of neutrophils. Neutrophil adhesion
and migration across the endothelium were shown to be
upregulated in patients with COPD, presumably via upregulation
of MAC-1 expression in neutrophils (183). Accordingly, levels of
ICAM-1 were shown to be elevated in patients with COPD (184).
Furthermore, ICAM-1, as well as P-selectin, another endothelial
adhesion molecule involved in neutrophil transmigration,
was inversely associated with first forced expiratory volume
(FEV1). Furthermore, enhanced soluble ICAM-1 levels are
independently associated with emphysema progression in the
general population (185).

In addition to the presence of ED in animal studies of COPD,
clinical studies suggest a dysfunction of the endothelium even
prior to the onset of COPD. This has been ascribed to excessive
tobacco consumption, since normal lungs of smokers showed
intimal thickening of small pulmonary arteries, similar to that
seen in the lungs of COPD patients, when compared with lung
tissues of non-smokers (146).

Flow-mediated dilation of the brachial artery analyzed by
ultrasound, the reference method used to determine ED in
humans, is reduced in early COPD and associated with FEV1
reduction and a higher percentage of emphysema in CT scans
of former smokers (186–188). In addition to ED, direct injury of
ECs seems to play a critical role in COPD, as pulmonary septa
appear almost avascular (172) and CT scans of patients with

COPD show vascular pruning of small arteries that can predict
the clinical severity of disease and mortality (189, 190). This has
been linked to impaired VEGF signaling, as VEGF and VEGFR2
expression are reduced in areas of the lungs with emphysema
in patients with COPD (191), and VEGFR inhibition resulted
in an emphysema phenotype in animal studies (192–194). In
contrast, enhanced expression of HIF-1α, VEGF, and VEGFRwas
observed in human patients with COPD and reflected disease
severity. This led to the assumption that VEGF signaling is
increased in non-emphysema tissue in COPD patients, while it
is decreased in emphysematous COPD parenchyma (90). It is
important to mention that current knowledge on the vascular
involvement in COPD/emphysema is based upon the pioneering
work of Averill A. Liebow (172).

Patients with COPD have an increased risk of suffering with
CVDs (50). This is of particular relevance, as ED is a common
feature in both COPD and the development of atherosclerosis,
which in turn can cause CVDs such as myocardial infarction
and stroke (50, 175, 195). Interestingly, ED in patients with
COPD exhibits an intermediate state between healthy patients
and patients suffering from coronary artery disease (196). In a
murine model of atherosclerosis (Apo.E−/−), increased oxidative
stress was suggested to link ED with COPD pathogenesis,
especially with regard to the development of emphysema (197).
Several studies have shown increased vascular oxidative stress
levels in COPD patients, which is associated with a reduction
in FEV1 (198–200). The receptor for advanced glycation
end products (RAGE) seems to play a major role in this
process (Figure 4). Genetic deletion or pharmacologic inhibition
of RAGE protects against the development of CS-induced
emphysema (201). Furthermore, genome-wide studies of single
nucleotide polymorphisms linked RAGE to the development of
emphysema in COPD (202, 203). Therefore, targeting vascular
oxidative stress-mediated ED seems to be a promising treatment
for COPD. However, studies investigating anti-inflammatory
therapy in patients with COPD were mainly conducted without
determining the effect on vascular dysfunction (204–208). So far,
only animal studies have provided evidence that anti-oxidative
treatment of ED shows a beneficial effect on COPD, i.e., by
the activation of the transcription factor Nrf2 (94, 207, 209).
Therefore, investigating the targeting of ED in COPD, e.g., with
anti-oxidative pharmaceuticals, with a concomitant analysis of
effects on flow-mediated dilation, remains a task for the future.

ROLE OF THE NO–sGC–cGMP AXIS IN THE
ASSOCIATION BETWEEN COPD AND
VASCULAR REMODELING/PH

Nitric oxide has been suggested to play an important role
in CS-induced emphysema and PH in mice (29). It has
been shown that CS induces upregulation of iNOS; this
was predominantly observed in small pulmonary vessels and
associated with increased NO generation. Interestingly, iNOS
was downregulated during the early phase of disease, in both
mice and human patients with COPD. The vasodialative effect
of NO was most likely abolished because of the abundance
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FIGURE 4 | Endothelial dysfunction in COPD. (A) Appropriate endothelial function under physiological conditions. The endothelium shows adequate flow mediated

dilation (FMD) via relaxation of smooth muscle cells within the vascular media. Paracellular permeability is limited by intact tight junctions. Low adhesion molecule

expression limits neutrophil extravasation in pulmonary tissue. (B) Development of COPD is accompanied by enhanced oxidative stress and a pro-inflammatory state

resulting in a dysfunctional endothelium. Dysfunction is characterized by reduced FMD, impaired endothelial barrier function due to disruption of tight junctions and

enhanced expression of adhesion molecules facilitating neutrophil extravasation. These processes promote COPD development via increased inflammation. Clinical

studies are required in order to test the beneficial effects of therapies targeting ED in COPD patients.

of ROS from both external (CS) and internal sources. It was
also suggested that the formation of peroxynitrite had pro-
apoptotic and anti-proliferative effects on alveolar epithelial
cells type II (AECII) and ECs, resulting in the development
of emphysema, vessel loss, vascular remodeling, and an

increase in the level of nitrotyrosine. It is assumed that the
decrease in eNOS level was associated with the uncoupling
of this enzyme, followed by a switch from NO to superoxide
production. Interestingly, in iNOS-deficient but not eNOS-
deficient mice, vascular remodeling, PH, and emphysema did
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FIGURE 5 | Identification of inducible NO synthase (iNOS) as an essential factor for the development of cigarette smoke-induced emphysema and pulmonary

hypertension in mice. Cigarette smoke-mediated upregulation of iNOS leads to excessive NO production. The formation of peroxynitrite, resulting from the reaction of

NO with superoxide, was suggested to mediate emphysema and PH development. Superoxide can derive from cigarette smoke itself and/or from uncoupled eNOS,

NADPH oxidases, xanthine oxidases, cyclo- and lipooxidases, and mitochondria. Of interest, iNOS generated by non-bone marrow-derived cells (N-BMDC), possibly

vascular cells, leading to lung destruction resulting in emphysema whereas elevated iNOS expression in bone marrow-derived cells (BMDC) causes vascular

remodeling. Treatment with specific iNOS inhibitor L-NIL prevents or even reverses pathological alterations.

not occur. Additionally, treatment with an iNOS inhibitor (L-
NIL) prevented the development of disease and promoted lung
regeneration in mice exposed to CS.

It has been demonstrated that iNOS-carrying bone marrow-
derived cells mediate the development of PH, while emphysema
is dependent on iNOS in non-bone marrow-derived cells (29)
(Figure 5). These results clearly show that the pathophysiology
of PH and emphysema is partly independent. Furthermore, this
might also be a reason why not all patients with COPD suffer

from PH. In animal studies, it was further demonstrated that
the stimulation of sGC, an enzyme that uses (i) NOS-generated
NO to produce cGMP from guanosine triphosphate (GTP),
prevented the CS-induced development of vascular remodeling
but also emphysema (210). cGMP acts as a second messenger
mediating vasodilation. In addition to the vasodilatory effect,
cGMP was shown to effect on proliferation, platelet aggregation
and recruitment of inflammatory cells (211). These authors
further showed that, riociguat (approved for PAH and chronic
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thromboembolic PH treatment) which promotes the NO-
cGMP pathway, not only prevented tobacco smoke-driven PH
development but also prevented airspace enlargement in smoke-
exposed mice (210, 211). Similarly, in another recent study from
Pichl et al. showed the riociguat treatment in the mouse model
of smoke-induced PH and emphysema reversed fully established
emphysema, muscularization of small pulmonary vessels, and
RH hypertrophy and had beneficial effects on small cohort of
COPD patients (212).Moreover, the same group also investigated
another drug BAY 41-2272 which also stimulates sGC in tobacco
smoke- exposed guinea pigs reduced vascular remodeling and
prevented emphysema development (210). In, another study by
Paul et al. also demonstrated by treating this drug BAY 41-
2272 to guinea pigs that were chronically exposed to smoke
exhibited similar effects with decreased extent of emphysema, RV
hypertrophy, and improved pulmonary haemodynamics (213).
These studies demonstrate the importance of sGC playing crucial
role in the pathology of COPD. Therefore, other downstream
molecules of this pathway were focused in preclinical studies.
Namely, blocking of cGMP degradation by PDE5 inhibitors such
as sildenafil (214) or tadalafil (27), prevented the development
of PH in smoke-exposed guinea pigs and mice, respectively.
Moreover, treatment with the PDE4 inhibitor demonstrated a
significant protective effect on emphysema and PH development,
suggesting that cAMP plays an important role in the pathology
of COPD. These findings implicate an important role for the
NO–sGC–cGMP axis in the physiology and pathophysiology
of the pulmonary vasculature (29). The dysregulation of this
system has previously been suggested to contribute to pulmonary
diseases and PH (215–217). In line with previous findings
(29), impairment in vascular remodeling was associated with
the prevention of emphysema, although causality was not
investigated in these studies.

ROLE OF ROS IN VASCULAR
REMODELING

While it is known that CS leads to ROS-mediated oxidative
stress, other sources of ROS that affect vascular remodeling
have yet to be fully resolved. Various sources of ROS,
such as mitochondria, NADPH oxidases, xanthine oxidase,
cyclooxygenases, lipooxygenases, and uncoupled eNOS, must be
considered (215, 218–221). Furthermore, especially in the lung,
mitochondria have been implicated in vascular remodeling, and
imbalances in mitochondrial ROS production seem to play an
important a role in this process (222–226). Moreover, recent
evidence suggests that mitochondrial ROS are causatively linked
to the development of PH (227). However, the mechanisms
of mitochondrial ROS production have not yet been fully
elucidated. The vasculature in non-hypoxic PAH models has
suggested a decrease in mitochondrial ROS, whereas a chronic
hypoxia model of PH demonstrated increased mitochondrial
ROS (222, 228, 229). According to some researchers, mechanistic
discrepancies in mitochondrial ROS production might be
based on “different experimental conditions, species differences,
and perhaps complexities of how pure hypoxic stress may

interface with other triggers of PH” (227). In addition to this
phenomenon, significant alterations in mitochondrial metabolic
pathways may drive a metabolic shift (“cancer theory of PH”)
in PASMCs, triggering vascular remodeling and PH (227,
230, 231). In terms of COPD, recent data provide some
evidence that mitochondrial ROS might play a role in lung
remodeling/emphysema development. The overproduction of
the alternative oxidase (AOX), which bypasses the cytochrome
segment of the respiratory chain, attenuated CS-induced lung
tissue destruction and loss of function in mice chronically
exposed to CS for 9 months. This implicates mitochondrial
respiratory inhibition as a key pathogenic mechanism of CS
toxicity in the lung (232).

Regarding vascular remodeling, ROS are known to affect
various intracellular signaling cascades, such as activation of
ERK, MAPKs, protein tyrosine phosphatases, transcription
factors such as NF-kB and AP-1, and receptor and non-receptor
tyrosine kinases, which have been shown to be involved in
cardiovascular remodeling and vascular damage. In addition,
monocytes and lymphocytes are able to infiltrate cardiovascular
tissues and pulmonary vessels, while inflammatory processes are
often related to immune defense or CS. Previous studies have also
shown that macrophages contribute to COPD development and
that NADPH oxidase plays a crucial role in this regard (233, 234).

DOWNREGULATION OF NEPRILYS IN
AFFECTS PULMONARY VASCULAR
REMODELING

Neprilys in (neutral endopeptidase, NEP) may be an important
factor for the regulation of susceptibility to pulmonary vascular
remodeling in response to smoke inhalation and hypoxia (235)
(Figure 6). NEP is a transmembrane zinc peptidase that is widely
expressed in PASMCs, ECs, and fibroblasts (236). NEP expression
and activity is decreased by CS (237), hypoxia (238, 239), and
oxidative stress (240). The depletion of NEP in mice resulted in
increased severity of PH, associated with greater proliferation of
PASMCs. Therefore, it has been suggested NEP plays a protective
role against PH, partly by suppressing the proliferation and
migration of PASMCs (239).

Wick et al. found that NEP expression decreased in
the lungs of COPD with PH as well as in non-COPD
PH patients (235). NEP is involved in many peptidase-
dependent (e.g., degradation of vasoactive neuropeptides) and
-independent (e.g., interaction of signaling molecules with
the intracellular cytosolic domain of NEP) signaling pathways
(241, 242), but its role affecting vascular remodeling remains
to be elucidated. In this regard, Wick et al. suggested
that the proliferation/migration of dedifferentiated SMCs or
myofibroblasts promotes pulmonary vascular remodeling and
PH if NEP is less active or downregulated. It is assumed
that this process is mediated by platelet-derived growth factor
(PDGF), the expression of which is inversely correlated with
NEP. Karoor et al. supported this assumption by showing that
PDGF receptor (PDGFR) signaling was constitutively active in
NEP−/− cells and in lungs, an effect that is attenuated by the
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FIGURE 6 | Scheme of proposed Neprilysin (NEP)-dependent mechanisms leading to vascular remodeling. Extracellular stimuli, such as hypoxia and cigarette smoke

activate pathways in vascular cells causing downregulation of NEP expression and/or activity which was seen in patients with COPD associated with PH. Stimuli can

have direct negative effects on NEP, but also indirectly by (1) increasing ROS, PDGF and (2) activation of other pathways, in part receptor-mediated. NEP

downregulation leads to elevated proliferation, migration, inflammation, Angiogenesis, and vasoconstriction mediated amongst others by depicted molecules causing

vascular remodeling. The ROS effect on NEP can be inhibited by the superoxide dismutase (SOD) mimetic tiron. Colored boxes indicate involvement in the respective

pathway; red arrows, inhibition/downregulation; green arrows, activation/upregulation; PDGF, platelet-derived growth factor; ET-1, endothelin-1; FGF-2, fibroblast

growth factor; AT-II, angiotensin-II; PASMC, pulmonary artery smooth muscle cells; EC, endothelial cells; FB, fibroblasts.

endothelin A (ETA) receptor antagonist ambrisentan (243). The
decrease in NEP following CS and hypoxia may also enhance
the angiogenic effect of fibroblast growth factor-2 (FGF-2) (242)
and the pro-proliferative and vasoconstrictive responses of ET-1
(244) and bombesin-like peptides (245), which are substrates
of NEP.

In PASMCs, both FGF-2 and ET-1 were shown to synergize
with PDGF in increasing the phosphorylation of Src kinase
and PDGFR (243). The phosphatase PTEN (phosphatase and
tensin homolog) was also shown to play an important role in
vascular biology, because a loss of PTEN results in PH (246).
PTEN is inactivated by phosphorylation (mediated by Src and
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PDGFR) and downregulated in NEP-deficient PASMCs. This
downregulation can be rescued by NEP overexpression in NEP
null cells or by a reduction in Src or PDGFR by small interfering
RNA (siRNA). Accordingly, it has been suggested that NEP-
dependent mechanisms may protect against the inactivation of
PTEN (243). In addition, NEP can be inactivated by ROS, as
shown by its decreased activity in the presence of H2O2 and
improved activity when an antioxidant, the SOD mimetic Tiron,
was added (235).

Early studies suggested that the inhibition of NEP exerted
beneficial effects in the treatment of PH (247, 248). This idea
resulted from the fact that NEP can inactivate atrial/brain
natriuretic peptides (ANP/BNP) that promote vasodilation by
increasing cGMP, mediated by natriuretic peptide receptor-A
(NPR-A) (248). cGMP-dependent protein kinase (PKG), cGMP
binding phosphodiesterases (PDEs), and cyclic nucleotide-gated
ion channels bind cGMP, with PKG seeming to be the main
mediator of cGMP signals (249, 250). Binding of ANP/BNP-
induced cGMP activates PKG, followed by the catalytic transfer
of phosphate from ATP to target proteins. The phosphorylated
proteins then translate the extracellular stimuli into specific
biological outputs (251), such as vasodilation.

NEP antagonists alone and in combination with ACE
(angiotensin converting enzyme) and ECE (endothelin
converting enzyme) inhibitors were able to improve cardiac
function, limit cardiac hypertrophy, and decrease systemic
blood pressure (252–255). Nevertheless, side effects were
observed if single NEP inhibitors or dual inhibitors (NEP/ACE
or NEP/ECE) were used. Triple vasopeptidase inhibitors
(NEP/ACE/ECE) showed promising preliminary results, with
fewer side effects. In particular, an increase in ET-1 can be
antagonized by simultaneous application of an ECE inhibitor
(255). Combination therapies such as these, and the different
mechanisms of NEP, ACE, and ECE inhibition, were reviewed by
Daull et al. (255).

The existing literature supports the notion that NEP protects
against PH (235, 239, 256). The discrepancy between beneficial
and harmful pulmonary effects with NEP inhibition might be
because pulmonary and systemic circulation usually respond
to hypoxia (a major stimulus for PH) by divergent pathways:
while pulmonary vessels contract to redirect blood flow to better
oxygenated areas of the lung, systemic vessels dilate to increase
the flow of oxygenated blood to areas of tissue hypoxia or
ischemia (239). In conclusion, in terms of the lung, it is suggested
that NEP be increased to treat PH, whereas cardiac NEP
inhibition could be used for the treatment of hypertrophy and
improvement of cardiac function. These studies provide insights
into distinct regulation of NEP in cardiovascular disease and
PH. Additional investigation are required whether therapeutic
activation of NEP selectively in lung ameliorates PH.

STEM CELLS AND VASCULAR
REGENERATION IN COPD/EMPHYSEMA

The regeneration or replacement of structurally impaired lung
tissue would represent a breakthrough in the treatment of
pulmonary diseases, including COPD. Therefore, stem and

progenitor cells may be a promising therapeutic approach for
COPD. Various types of stem cells, including mesenchymal stem
cells (MSCs), induced pluripotent stem cells (iPSCs), embryonic
stem cells (ESCs), and stem cells derived from lung tissue, were
tested in animal models and in a limited number of clinical
studies as COPD treatment options (257–259).

For the efficient treatment of COPD, regeneration of alveolar
epithelium as well as capillary formation is required. Multiple
stem cells have been shown to differentiate into ECs capable of
capillary formation, both in vitro and in vivo (257, 260–263).
Transplantation of pre-differentiated ESCs and iPSCs reduced
lung injury in a bleomycinmousemodel, presumably by reducing
inflammation (257, 264). MSC transplantation was shown to
protect against EC apoptosis in animal emphysema models
and promoted restoration of both alveolar and endothelial
structures (265–267). Furthermore, MSC-conditioned medium
restored endothelial barrier impairment caused by CS (268). Li
et al. reported that MSCs derived from iPCSs were superior to
bone marrow-derived MSCs regarding CS-induced pulmonary
airspace enlargement (258). This indicates that stem cells of
different origin vary in their pulmonary regenerative potential.
In contrast with these beneficial effects, the engraftment of
transplanted cells has been found to be quite low (<2%)
in murine models of lung emphysema (269–271). This is in
accordance with a study by Huh et al., who reported that not
only bone marrow cells or MSCs (which largely disappeared
in pulmonary tissue over time post-transplantation) but also
cell-free conditioned media obtained from MSCs alleviated CS-
induced emphysema (272). This indicates a paracrine effect
rather than a direct effect of stem cell engraftment and could
explain the positive effects observed in studies with low stem cell
engraftment rates (Figure 7). Therefore, it remains questionable
how long stem cells engrafted after transplantation remain viable
in patients. Moreover, this raises the question whether efficient
effects in patients might require recurring cell transplantations.

At present, identifying the beneficial underlying paracrine
mechanisms of stem cell effects in pre-clinical COPD models
might reveal new treatment options without the need for
cellular transplantation (Figure 7). Based on current studies,
the beneficial paracrine effects of stem cells in COPD appear
to be mediated by reduced inflammation and oxidative
stress (269, 273, 274). Using these paracrine effects for cell-
free therapy is clinically relevant, since ESCs and iPSCs
can induce teratoma formation post-transplantation (275–
277). This currently limits the utility of these cells in
clinical studies. Furthermore, recent studies indicate that
dissemination of cells or pre-differentiation of iPSCs in
lung progenitor cells might overcome this problem (278,
279). However, this must be confirmed prior to the first
clinical implementation.

Low engraftment rates and survival of transplanted stem
cells might be one of the reasons for the failure of the
first studies of clinical stem cell transplantation in COPD.
Cell transplantation had no significant impact on pulmonary
functions or exacerbations. However, circulating c-reactive
protein was reduced in some studies, although for a limited
time (280, 281). In other clinical studies, the number of patients
included were either too low for sufficient interpretation (282)
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FIGURE 7 | Stem cells in COPD treatment. Stem cell regenerative potential critically depends on cellular origin and can be impaired by different processes, e.g., due

to aging or COPD itself. These impairments might be overcome by selection of distinct stem cell sub-populations or cellular reprogramming prior to transplantation.

Regenerative potential of stem cells in COPD is rather mediated by paracrine effects reducing oxidative stress and pro-inflammatory stimuli than direct cellular effects,

since cell engraftment and survival rates observed in vivo are low. Studies of COPD treatment have to focus not only on the functional regeneration of alveolar

epithelium, but also on vascular aspects as both are required for effective therapy.

or the improvements in FEV1 were attributable to lung volume
reduction surgery (283). Nevertheless, these studies provide
substantial evidence for the safety of MSC transplantation in
humans and thereby the basis for future studies.

It has been suggested that patients with advanced stages
of COPD who are included in clinical studies might display
pulmonary damage too severe to be reversed or repaired by
transplanted cells (280). Therefore, patient inclusion criteria

will be important for successful study protocols in the future.
In addition, aging bone marrow-derived stem cells from
animals and humans show impaired proliferation, decreased
differentiation potential, and secretion of paracrine factors
(284, 285). However, these age-dependent changes seem not to
affect the entire stem cell population, as some subpopulations
retain a more “youthful” phenotype (286). Therefore, pre-
selection and perhaps reprogramming of suitable cells also
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needs to be considered in future studies. In this context,
reprogramming of epigenetic modifications in COPD lung
fibroblasts in vitro through an iPSC intermediate state was
shown to result in fibroblasts similar to fibroblasts from non-
COPD patients, indicating a possible treatment option without
cellular transfer (287). Furthermore, the vitamin retinoic acid
is important for pulmonary development, e.g., for progenitor
cell differentiation, and was shown to be beneficial in animal
emphysema models (288–293). Although clinical evidence is
lacking (294), the reprogramming or activation of intrinsic
stem and progenitor cells suggests an additional therapeutic
treatment option.

Recent studies provide evidence that EPCs play a critical role
in COPD. Circulating endothelial progenitor cell reduction in
COPD is correlated with disease severity and inversely correlated
with the extent of emphysema, whereas hematopoietic progenitor
cells are unaltered (295–297). Intratracheal application of
bone marrow-derived EPCs attenuated the development of
pulmonary emphysema in mice exposed to CS in a long term
murine study, via the alleviation of inflammatory infiltration,
decreased proteolytic enzyme activity, and improved antioxidant
activity (298). In contrast, enhanced progenitor cell numbers
in pulmonary arteries obtained from patients with COPD were
associated with decreased endothelium-dependent dilation and
inversely correlated with arterial lumen area (299). However, the
characterization of these cells by progenitor marker expression
was limited in this study. As the level of circulating EPCs
is decreased but their migratory potential and adhesion is
increased in COPD, it was suggested that circulating ECs are
recruited to pulmonary tissue in COPD (296, 299, 300). This
might not be beneficial in COPD patients, since circulating
progenitor cells in these patients show impaired angiogenic
ability, increased apoptosis, and impaired NO production
compared with these features of EPCs obtained from healthy,
non-smoking controls (301, 302). The beneficial effects of
endothelial progenitor cell transplantation obtained by Shi et al.
(298) might at least partially be attributed to the non-COPD
origin of stem cells in this study. Therefore, modulation of
EPCs in COPD in vivo or pre-transplantation to re-achieve
physiological cell functions might be a promising approach in the
treatment of COPD.

CONCLUSION

Taking the above evidence together, the mechanisms
underlying COPD and PH are still not fully understood.
However, experimental studies and clinical observations

have mechanistically linked vascular dysfunction with the
development of COPD. Vascular remodeling and PH can
occur in cases of COPD, not only in severe cases but also in
mild-to-moderate forms of the disease and even in smokers
with no airflow limitations. COPD associated with PH and
pulmonary vascular remodeling is a multifactorial disease which
involves hypoxia-related, hypoxia-unrelated, inflammatory,
and endothelial dysfunction-associated mechanisms. Recent
investigations have changed the view of the pathophysiology
of COPD. In the past, vascular remodeling was suggested to
be a secondary event occurring following the destruction of
the parenchyma, with the predominant causes being hypoxia
and hypoxemia. This perception has changed, with recent
observations demonstrating that vascular abnormalities can be
early events in COPD, which precede airflow limitations and
emphysema independent of hypoxia. PH and lung emphysema
can occur independently, suggesting that vascular molecular
alterations can be a trigger for the development of lung
emphysema. In this regard, the NO–sGC–cGMP axis might
play an important role in both pathology and regenerative
potential. However, further investigations of the contribution
of pulmonary vascular changes to the development of COPD
are needed to identify new therapeutic targets for this disease.
The endothelium is known to regulate homeostasis between
vasoconstriction and vasodilation, providing adequate perfusion
pressure. However, exposure to toxic radicals can lead to ED
via leukocyte infiltration and adhesion, resulting in tissue
injury. Thus, ED changes the permeability of tissues and leads
to structural damage of arterial walls via the proliferation of
SMCs, resulting in CVD (303, 304). Cigarette smoke-induced
CVD reduces the regenerative capability of the cardiovascular
system; however, EPCs modulate vasculogenesis. EPCs modify
cardiovascularity via the release of cytokines, vascular growth
factors, and chemokines, thereby promoting transdifferentiation
of cardiac SMCs and reducing the risk of CVD (305–307).
Stem cell-based therapeutic strategies should therefore be
investigated for the treatment of ED in PH and CVD-associated
COPD patients.
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