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The evolution of the current dogma surrounding Brugada syndrome (BrS) has led to a

significant debate about the real usefulness of genetic testing in this syndrome. Since

BrS is defined by a particular electrocardiogram (ECG) pattern, after ruling out certain

possible causes, this disease has come to be defined more for what it is not than for

what it is. Extensive research is required to understand the effects of specific individual

variants, including modifiers, rather than necessarily grouping together, for example, “all

SCN5A variants” when trying to determine genotype-phenotype relationships, because

not all variants within a particular gene act similarly. Genetic testing, including whole

exome or whole genome testing, and family segregation analysis should always be

performed when possible, as this is necessary to advance our understanding of the

genetics of this condition. All considered, BrS should no longer be considered a pure

autosomal dominant disorder, but an oligogenic condition. Less common patterns of

inheritance, such as recessive, X–linked, or mitochondrial may exist. Genetic testing, in

our opinion, should not be used for diagnostic purposes. However, variants in SCN5A

can have a prognostic value. Patients should be diagnosed and treated per the current

guidelines, after an arrhythmologic examination, based on the presence of the specific

BrS ECG pattern. The genotype characterization should come in a second stage,

particularly in order to guide the familial diagnostic work-up. In families in which anSCN5A

pathogenic variant is found, genetic testing could possibly contribute to the prognostic

risk stratification.

Keywords: Brugada syndrome, sudden cardiac death, genetic testing, mutation, variant, SCN5A, sodium channel,

arrhythmia

INTRODUCTION

The first description of Brugada syndrome (BrS) included eight unrelated patients with recurrent
aborted sudden cardiac death due to ventricular fibrillation (VF) (1), in whom basal ECG showed
persistent ST-segment elevation in precordial leads V1 to V2-V3. However, the genetic background
was not discussed. Thus, no genotype-phenotype relationship was established. Meanwhile, Gellens
and coworkers characterized SCN5A for the first time (2). Later, SCN5A was described in two
unrelated families with long QT syndrome (LQTS) type-3 (LQT3) (3) (timeline, Figure 1).

BrS was first considered a form of idiopathic VF, resulting from abnormal electrophysiologic
activity in right ventricular epicardium (4). It was described to lie on the same spectrum of cardiac
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FIGURE 1 | Timeline of Brugada syndrome discoveries.

electrophysiologic pathology as LQT3, caused by the same
variant in SCN5A (5). Today, BrS is considered a Mendelian
disorder inherited in an autosomal dominant fashion, even
if alternative mechanisms of inheritance have been recently
proposed (6). In BrS patients, variants in SCN5A are found more
commonly than in any other gene (7) but confirm the clinical
diagnosis in only a minority of cases (8). Many other genes have
been proposed to cause BrS, but their roles are hotly debated
(9, 10), with some groups suggesting that only SCN5A should be
used in BrS genetic testing (9). However, variants in SCN5A have
long been known to not necessarily segregate with BrS (4, 11).
Recently, patients harboring SCN5A variants were demonstrated
to have a worse prognosis (12).

These challenges have resulted in two important
consequences: an overestimation of SCN5A diagnostic value and
a contemporary underestimation of the clinical significance of
genes different from SCN5A. All considered, the goals herein are
to reevaluate the clinical significance of genetic data found in
patients with BrS and to provide new insights about the complex
genetics of BrS.

Clinical Definition of BrS
The difficulty in understanding BrS genetics may lie in the
definition of BrS, based on the electrocardiogram (ECG),
specifically the type-1 BrS pattern, an ST-segment elevation
with coved morphology, ≥2mm, often associated with a sharp
transition from elevated ST-segment to negative T-wave, among
right precordial leads V1-V2, positioned in the 2nd, 3rd, or 4th
intercostal space (13). This type-1 BrS pattern can occur either
spontaneously or be unmasked with intravenous administration
of Class 1c antiarrhythmic drugs, such as ajmaline or flecainide
(13). Recently, it was hypothesized that BrS might actually be
a heterogeneous disease with a common ECG phenotype (14).
While this phenotype has been commonly attributed to loss-of-
function of the NaV1.5 cardiac sodium channel, such phenotype
could result from a number of molecular origins, not only SCN5A
variants, but also alterations in proteins that modify the channel,
or even environmental influences. Regarding the environmental

influences, “true BrS” is diagnosed by ruling out such causes
as electrolyte disturbances or myocardial ischemia. BrS patterns
in these cases are said to be “BrS phenocopies” (15, 16). We
disagree with the definition of “phenocopy,” because it is based
upon what BrS is not rather than providing a clear picture of
what BrS is. This is especially concerning since environmental
influences can have a pivotal role in BrS (17). Perhaps a better
view would be to consider the “BrS pattern” as a warning of
risk for sudden cardiac death, regardless of the underlying cause
(18). We are aware that this concept challenges the autosomal
dominant model of BrS, largely based on the accepted etiologic
role of SCN5A.

BrS has also been attributed to an increase in potassium
current (19, 20). Furthermore, several studies have suggested
BrS may be similar to a cardiomyopathy (21–26). Thus, it is
likely that the ECG pattern used to define “BrS” is actually
a common clinical manifestation, resulting from a multitude
of different molecular causes. Further development of this
concept may lead to a new paradigm for BrS, which may
be considered not only as a Mendelian disorder, but as a
complex condition, which might be caused by a huge variety
of genetic variants, interacting with environmental factors (14,
27). In any case, since our current understanding of BrS
genetics is still elementary, today BrS should be diagnosed
by the type-1 ECG pattern (see Figure 2), not by genetic
findings, especially additional findings during screening for
other diseases.

Genotype-Phenotype Relationships
Genotype-phenotype relationships are difficult to establish in BrS
patients, because the clinical manifestations can be very subtle,
and because the differential diagnosis can be extremely complex
(28). Additionally, SCN5A variants have since been associated
with a variety of pathologies (29, 30). Other works (31, 32)
demonstrated both rare mutations and common variants in
SCN5A can be considered phenotype modulators in myocardial
infarction (33), arrhythmic storm (34), epilepsy (35), and even
colon (36) and breast cancer (37). Thus, although SCN5A is
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FIGURE 2 | Flowchart for the diagnosis of BrS and genetic testing.

the only undisputed gene in which mutations are thought to
cause BrS, genetic testing alone is insufficient to diagnose BrS,
as mutations in this gene could result in a number of different
phenotypes. Instead, BrS must be diagnosed only in the presence
of a diagnostic type 1 BrS ECG pattern (spontaneous or drug-
induced), not due to secondary causes, such as electrolyte
disturbances or myocardial ischemia.

Other Candidate Genes
A recent study (9) concluded that only the SCN5A gene should
be analyzed in BrS patients. We agree that mutations in SCN5A
could be the cause of BrS in some patients. However, the study
did not address what should be done in the majority of BrS
patients, who test negative for any SCN5Amutations, nor provide
clarity of the disease mechanism in those patients negative
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for SCN5A mutations, especially regarding the role of copy
number variations and mitochondrial DNA. London expressed
his disagreement, arguing that eliminating other genes from
testing panels could stifle scientific advancement (10). Wilde
and Gollob (38), however, countered by arguing that undue
harm from incorrect interpretation could result in a life-changing
diagnosis, require intervention, create life-long anxiety, and
impact asymptomatic family members.We believe that suspected
candidate genes should be tested and studied so that we can better
understand their effects. However, all suspected cases should be
confirmed by the presence of the BrS pattern, including patients
found to have mutations in SCN5A, as single mutations in this
gene are responsible for a variety of phenotypes, not only BrS
(39, 40), and may not even cause BrS on their own (41).

Many other genes such as SCN10A (42, 43), SCN4A
(44), SCN1B (45), KCNH2(46), RANGRF (47), PKP2(48),
TPM1(49), and several calcium channels genes (50–53) have
been described in patients clinically affected by BrS. Whole
exome sequencing with a high coverage was performed in
a family with both hypertrophic cardiomyopathy and type-
1 BrS, apparently caused by the same heterozygous TPM1
mutation (49). Thus, several candidate genes exist and should be
further studied. Physiologic studies should follow the discovery
of candidate mutations in the clinic, as abnormal effects
in the physiology laboratory can provide useful insights to
understanding particular new mutations.

Modes of Inheritance
In spite of recent developments in the field of genetics, BrS
is often still considered a monogenic Mendelian disease (54)
inherited in an autosomal dominant fashion with incomplete
penetrance (55–58). This is mainly due to the description of
BrS in a family in which the genetics were consistent with this
kind of transmission (59), making SCN5A the only accepted
BrS gene (9). Another reason why SCN5A is so “popular” is
because the segregation of variants in this gene show incomplete
penetrance and marked variability in a significant percentage of
patients (60). However, increasing evidence suggests that BrS in
some patients might be actually caused by a digenic inheritance
(61) or a combined effect of multiple variants (62), including
polymorphisms (63). In this subset of patients, it is difficult to
identify the real molecular cause of BrS, making it difficult to
understand, using only genetic testing, which family members
have inherited the syndrome and which have not. Additionally,
since BrS may be due to a combined effect of multiple variants,
the severity can often be different between family members (40).
Furthermore, there might be other cases in which some family
members have the syndrome but others do not, despite sharing
certain variants, because of differences in modifier genes.

Although autosomal dominant inheritance with incomplete
penetrance is the most commonly acceptedmode of transmission
of BrS, other forms of transmission have been suggested, such
as recessive (64) and X-linked (19, 20). It is also possible that
yet-undiscovered somatic mutations could have an effect on
the heart. Furthermore, an autosomal dominant inheritance
pattern could imply that the disease is Mendelian in nature,
caused by a single mutation in a single gene. However, several
studies have demonstrated an oligogenic mode of inheritance (7).

Therefore, likely, in some families, a particular variant causes
BrS in a Mendelian fashion, while in other families, the pattern
of inheritance is more complicated to understand, because the
disease is caused by a combination of factors, resulting in
different phenotypes even between family members (65). Tadros
et al. calculating polygenic risk scores (PRSs) for PR interval, QRS
duration, and BrS, reported that 44 common variants associated
with PR, and 26 common variants associated with QRS, in the
general population, were associated with ajmaline-induced PR
and QRS prolongation, respectively. Also, a 3-single-nucleotide-
polymorphism PRS derived from a case-control BrS GWAS was
independently associated with ajmaline-induced type-1 BrS ECG
(66). This demonstrates the importance of polymorphisms that
might predispose to arrhythmias and create a pathological effect,
especially in the presence of other variants in the same patient.

Overlap Syndromes
Since variants in SCN5A can be found in several cardiogenetic
disorders, it is not surprising to observe an overlap between BrS
and other pathologies. For example, BrS can be diagnosed in
the proband while LQTS, epilepsy, febrile seizures, or complete
bundle branch block can be present in the family members (67–
70).

Overlap between arrhythmogenic right ventricular (RV)
dysplasia/cardiomyopathy (ARVD/C) and BrS has been
described by many groups (71), the mechanism of which
may involve cell-cell junctions (24). Both ARVC and BrS can
originate from mutations in the connexome, and the phenotype
that emerges depends on the type of connexome mutation
(72, 73). PKP2 may be an important gene in this regard, as
mutations in PKP2 can result in loss of desmosomal integrity,
cause sodium current deficit, and be found in patients with
BrS (74, 75). The presence of ARVC in BrS patients has been
associated with higher arrhythmic risk (76). The genetics of
families with overlap syndromes should be carefully considered,
as these genetic causes may be different than other families in
which BrS is the only phenotype observed. This is yet another
example of the need for personalized medicine and to consider
the genetics of BrS on a family-by-family basis.

Mitochondrial Considerations
Many recent studies have related cardiac arrhythmias, and
particularly BrS, to mitochondrial function, or the effect
of mitochondrial products on the sodium channel. Heart
arrhythmias can originate from pathophysiology of the
mitochondria, which produce adenosine triphosphate, a
compound required for normal ion channel function (77). Aiba
et al. described a family with BrS and the SCN5A mutation
R526H, which is a PKA consensus phosphorylation site and
associated with reduced basal INa due to the inability of
PKA to act on the sodium channel to increase the sodium
current (78). A mutation in the GPD1-L protein reduces INa
by raising intracellular NADH levels and inducing reactive
oxygen species (ROS) (79). This process of ROS production,
its release from mitochondria, and thus its detrimental effect
on the sodium current can be reversed in several ways, namely
by NAD+, inhibition of mitochondrial electron transport, a
mitochondrial targeted antioxidant, and an inner membrane
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anion channel modulator (80). A specific mitochondrial DNA
(mtDNA) allelic combination and a high number of mtDNA
single nucleotide polymorphisms (SNPs) have been reported
in association with more severe cases of BrS, suggesting that
these are important cofactors in the expression of the clinical
phenotype (81, 82). Tafti et al. suggested that BrS may be
caused by mutations in mitochondrial transfer RNA (tRNA)
genes, leading to deficiencies in the translational process of
critical proteins of the respiratory chain (83). Reports have
demonstrated that tRNAMet, tRNAIle, tRNATrp and tRNAGln
genes are hot spots for cardiovascular diseases (83, 84). Thus,
mitochondrial function, or malfunction, contributes to sodium
channel function and to cardiac rhythm.

Risk Stratification
Risk stratification in BrS has previously relied on clinical scores
(85), including familial history of sudden cardiac death, personal
history of syncope, aborted cardiac arrest, spontaneous type-
1 BrS pattern, or male gender. It was also reported that
proband status, inducibility toward ventricular arrhythmias (86),
arrhythmogenic substrate area, and late potentials (87) were
predictors of higher risk. Our group recently proposed the
SCN5A genetic status as a prognostic factor for BrS patients
(12, 88). In particular, SCN5A mutation carriers exhibited
more pronounced epicardial electrical abnormalities and a
more aggressive clinical presentation. In at least a subgroup of
patients, the mutated SCN5A gene acts more like a phenotype
modulator than a real Mendelian dominant cause of the
displayed phenotype, possibly calling into question the autosomal
dominant inheritance of BrS. This is true also for variants of
“unknown significance” (VUS), which are generally treated as
“benign.” However, in our experience, several of these VUS are
later reclassified as pathogenic. We believe that, in time, many
other VUS, especially in the SCN5A gene, will be determined to
be pathogenic, considering also that the oligogenic model is likely
to be accepted in the near future.

DISCUSSION

The genetics of BrS have likely remained elusive because
of how the disease has been considered only an autosomal
dominant Mendelian disorder. However, when BrS is considered
an oligogenic disorder, it may be possible to use genetics to
predict the BrS phenotype. Besides direct modifications in the
NaV1.5 protein, its function can be altered by many regulatory
proteins like Hey2, Mog1, Gpd1-L, and others. According to us,
studying the genes encoding those proteins is very important
for the clinical management of BrS patients. Additionally,
environmental factors might influence channel function through
post-translational modifications. Even in families where SCN5A
variants have been found, segregation analysis is not always
consistent with autosomal dominant inheritance, demanding
caution be used when interpreting genetic test results. Currently,
it is necessary that all suspected cases of BrS are confirmed
with ECG, using, when necessary, drug challenge to elicit the
type-1 pattern. In other words, genetic testing alone should not
be used for diagnostic purposes at this time, but rather, the

patients should each fulfill the diagnostic criteria for BrS at an
arrhythmologic examination, as per the current guidelines (89).
However, in families in which a SCN5A pathogenic variant is
found, genetic testing could possibly contribute to the prognostic
risk stratification.

Ideally, whole exome or whole genome testing should be
performed to both confirm candidate genes and identify new
ones. Collecting family segregation is mandatory to understand
whether a particular variant might be clinically relevant. Ideally,
such data should then be deposited into international databases.
The specific effects of distinct variants should be studied,
rather than necessarily grouping together, for example, “all
SCN5A variants” when trying to determine genotype-phenotype
relationships, because not all variants within a particular gene
act similarly.

Identifying variants involved in oligogenic cases of BrS is
extremely complicated. For this, the effect of polymorphisms,
which, on their own, are considered benign, should be
considered, as they may act as modifiers in the presence of other
variants. For example, two variants in a particular gene may
exist, which, individually, result in a benign phenotype, as neither
variant, on their own, significantly modifies the ultimate function
of the resulting protein. However, if those two (or three, or
more) variants occur together in the same person, together they
could ultimately impair the function of the protein, altering the
clinical picture. This “mutational load” is an important concept
in BrS, explaining why the genetics of this disease have been
so difficult to elucidate. However, to understand the effect of
mutational load, or compound heterozygosity (i.e., two or more
heterogeneous recessive alleles at a particular locus), extensive
research studies should be performed, also identifying other
genes responsible for BrS, besides SCN5A. Only then it will be
possible to study these concepts of oligogenic inheritance in the
majority of patients. Probably, whole genome or whole exome
studies would be useful in determining the genes involved, along
with family segregation analysis.

Finally, non-genomic DNA considerations should be
mentioned, as post-translational modifications of the sodium
channel could affect its function without any variants in the
SCN5A gene. Studies should be expanded to better understand
any possible role for mitochondrial involvement, including
the analysis of mitochondrial genes, their products, and their
functional effects on the cells. Environmental factors should
also be studied, including anything to which families may be
exposed, resulting in post-translational effects, especially when
probands test negative for variants in all BrS candidate genes.
Environmental factors could be mistaken as a genetic condition
when several family members living in the same environment
are affected.
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