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The balance between proteases and protease inhibitors plays a critical role in tissue

remodeling during cardiovascular diseases. Different serine protease inhibitors termed

serpins, which are expressed in the cardiovascular system, can exert a fine-tuned

regulation of protease activities. Among them, protease nexin-1 (PN-1, encoded by

SERPINE2) is a very powerful thrombin inhibitor and can also inactivate plasminogen

activators and plasmin. Studies have shown that this serpin is expressed by all cell

subpopulations in the vascular wall and by circulating cells but is barely detectable in

plasma in the free form. PN-1 present in platelet granules and released upon activation

has been shown to present strong antithrombotic and antifibrinolytic properties. PN-1 has

a broad spectrum of action related to both hemostatic and blood vessel wall protease

activities. Different studies showed that PN-1 is not only an important protector of

vascular cells against protease activities but also a significant actor in the clearance

of the complexes it forms with its targets. In this context, PN-1 overexpression has

been observed in the pathophysiology of thoracic aortic aneurysms (TAA) and during

the development of atherosclerosis in humans. Similarly, in the heart, PN-1 has been

shown to be overexpressed in a mouse model of heart failure and to be involved in

cardiac fibrosis. Overall, PN-1 appears to serve as a “hand brake” for protease activities

during cardiovascular remodeling. This review will thus highlight the role of PN-1 in

the cardiovascular system and deliver a comprehensive assessment of its position

among serpins.
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INTRODUCTION

Protease Nexin-1 (PN-1) is a 50-kDa glycoprotein encoded by the SERPINE2 gene on human
chromosome 2 (1). Phylogenetically, it is the closest relative to plasminogen activator inhibitor
type-1 (PAI-1 or serpinE1) (2). The serpins comprise a superfamily of proteins that share a
conserved tertiary structure. Serpins include inhibitors of serine and papain-like cysteine proteases
and non-inhibitory members with other biological functions. PN-1 is a cellular serpin found within
diverse organs, such as brain, male and female reproductive systems, kidneys and lungs. PN-1 is also
largely expressed in the vessels and the heart (3). This review thus aims to focus on its role in the
pathophysiological responses of the cardiovascular system.
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BIOCHEMICAL PROPERTIES OF PN-1

PN-1 inhibits a broad range of serine proteases explaining its
physiological role in various processes ranging from coagulation
and fibrinolysis to tissue remodeling and inflammation. In vitro
kinetic assays showed that PN-1 reacts rapidly with trypsin and
thrombin, with an association rate constant (Ka) of ∼2.106

M−1.s−1 (4). The Ka values for the other target proteases
including urokinase plasminogen activator (uPA) (4, 5), plasmin
and factor XIa (6) are at least 10-fold lower, and 400-fold lower
for tissue plasminogen activator (tPA) (4, 5) and activated protein
C (7). PN-1 has also been shown to inhibit Factor VII-activating
protease (FSAP) (8). As for many other serpins, PN-1 has a
high affinity for heparin or heparan sulfate proteoglycans, which
targets it to the pericellular space and strongly increases its
ability to inhibit thrombin (9–11), thereby making this latter its
preferred target. Indeed, unfractionated heparin is responsible
for up to a 1,000-fold increase of the Ka value for thrombin,
but only a ∼10-fold increase for most other proteases and has
no impact on the Ka value for plasmin. The crystal structure of
the complex between thrombin, PN-1 and heparin demonstrated
that heparin acts as a bridge between the serpin and the protease,
leading to a ternary complex and enhancing the rate of complex
formation (12). The protease-binding site (named the reactive
center loop) of PN-1 is situated at the carboxy-terminal end of

protein. The reactive site (P1–P
′

1) represented by the Arg346–
Ser347 bond is cleaved by the target serine protease, which results
in the formation of a covalent SDS- and heat-stable enzyme–
PN-1 complex where both the protease and PN-1 become
inactivated (10).

PN-1 IN THE VASCULAR SYSTEM

PN-1 does not circulate in plasma, but is present in blood cells,
including platelets (13, 14) and monocytes (14). Active PN-
1 is released from platelet α-granules during their activation.
Platelet PN-1 displays anti-thrombotic properties via its ability to
block thrombin generation and activity (15). This was illustrated
by in vivo studies showing an important acceleration of the
induction of thrombus formation after vascular injury in PN-1-
deficient mice compared to wild-type mice (15). Platelet PN-1
also displays anti-fibrinolytic properties thanks to its ability to
block plasmin generation and activity (16), as illustrated in vivo
with PN-1-deficient mice that display accelerated and enhanced
thrombolysis following treatment with tPA (16). Thus, both PAI-
1 and PN-1 may play complementary roles in maintaining the
fibrin clot, and therefore largely participate in the resistance of
platelet-rich clots to thrombolysis.

The first report of the presence of PN-1 in the vasculature
consisted of immunohistochemical studies demonstrating an
abundance of PN-1 around cerebral blood vessels (17). Later,
PN-1 expression was evidenced in the vascular wall where
it is expressed by endothelial cells (18, 19), vascular smooth
muscle cells (vSMCs) (20) and fibroblasts (21, 22). Importantly,
it is retained at the cell surface of vascular cells and within
the extracellular matrix (ECM) of the vessel wall due to its
high affinity for heparin sulfate proteoglycans (22) and its

ability to bind to the low-density lipoprotein receptor-related
protein 1 (LRP1) of the scavenger receptor family (23, 24).
PN-1 is expressed by endothelial cells and interacts with
thrombomodulin, a high affinity thrombin ligand expressed on
the endothelial cell membrane that plays an important role in
the regulation of coagulation via the activation of the natural
anticoagulant protein C. PN-1-thrombomodulin interaction
favors the inhibition of fibrin formation and limits the generation
of activated protein C and thrombin activatable fibrinolysis
inhibitor (18). Endothelial PN-1 was also shown to protect
the endothelial protein C receptor from endogenous shedding,
thereby favoring the cytoprotective effects of activated protein C
(25). Deficiency of PN-1 in mice does not generate a spontaneous
vascular phenotype compromising their survival. However,
endothelial PN-1 plays a role in physiological angiogenesis.
Indeed, the retina from PN-1-deficient mice displayed increased
vascularization with elevated capillary thickness and density, as
well as an increased number of veins and arteries, compared to
their wild-type littermates (26). Moreover, neovessel formation
in Matrigel plug assays in PN-1-deficient mice, as well as the
microvascular network sprouting from PN-1-deficient aortic
rings, were both largely enhanced compared with their respective
controls (27). These data clearly illustrate the important anti-
angiogenic potential of vascular PN-1.

PN-1 IN VASCULAR DISEASES

PN-1 and Atherosclerosis
Atherosclerosis is a disease characterized by the thickening
of the blood vessel wall due to the formation of plaques in
the subendothelial intimal space. It involves endothelial cell
dysfunction resulting in an alteration of endothelial permeability,
allowing the penetration and accumulation of low-density
lipoprotein (LDL) particles in the vessel wall where they are
susceptible to oxidation. Monocytes are also implicated and
transmigrate into the intima where they differentiate into
macrophages, becoming foam cells after ingestion of oxidized
LDL. VSMC proliferation and migration from the media to the
intimal layer, as well as their phenotypic shift into foam cells, are
also important features of atherosclerosis development. vSMCs
present in the intimal layer form a fibrous cap that contains
the plaque. The rupture of the fibrous cap leads to thrombus
formation causing blockage of the blood flow (28).

An unbalanced ratio between proteases and their inhibitors
is involved throughout the pathophysiology of atherosclerosis.
Excessive thrombin, uPA/tPA or plasmin activities are indeed
involved in the chronic evolution of the plaque. An important
question thus concerns the regulation of these proteases in
the vessel wall. In this context, serpins increasingly appear to
be critical in regulating protease activity in arterial lesions.
Among them, PN-1 has emerged as a key regulator in vascular
biology even though its precise mechanism of action remains to
be deciphered.

Immunohistochemical studies demonstrated the presence
of PN-1 in the healthy vascular wall and particularly in
vSMCs (20). PN-1 has also been shown to be associated with
vSMCs in advanced carotid atherosclerotic lesions, but also
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with macrophages and platelets (14, 29). Accumulation of PN-
1 was detectable in very early lesions and was increased in
complicated plaques: globally, PN-1 was present in the cap, in
the necrotic core and in the mural thrombus (14, 30). In fact,
the biological activity of PN-1 appears to be involved in the
different stages of atherosclerotic plaque progression. During the
early stage, PN-1 may be involved in endothelial dysfunction.
Indeed, at the endothelial level, PN-1 has been shown to
interact with thrombomodulin, a glycoprotein that transforms
thrombin from a pro- to an anticoagulant protein (18).
Thrombomodulin interaction with PN-1 accentuates the ability
of the latter to inhibit thrombin. In advanced atherosclerotic
plaques, PN-1 is largely expressed by platelets and inflammatory
cells including monocytes/macrophages. In agreement with
this observation, PN-1 has been shown to be up-regulated
in lipopolysaccharide-activated monocytes and degraded in
macrophages (14). Because monocytes/macrophages are exposed
to an inflammatory environment in atherothrombotic lesions,
PN-1 overexpression may represent a cell defense reaction
against proteases present in the atherosclerotic plaque. Indeed,
vSMCs synthesize and secrete tPA that is able to drive the
conversion of plasminogen into plasmin at the cell surface,
leading to matrix degradation, cell detachment, and death
(31). However, PN-1 is also overexpressed by vSMCs in
the advanced plaque where it is able to form covalent
complexes with plasmin (30). Both endocytic LRP-1 and PN-
1 are highly expressed in human atheroma, making PN-
1 a crucial actor in plasmin internalization by vSMCs, via
LRP-1 (30). PN-1 has also been shown to form covalent
complexes with FSAP (8), a circulating protease found in
human atherosclerotic plaques and supposed to play a regulatory
role in their progression and vulnerability (32). The fibrous
cap plays a crucial role in the development of atherosclerosis
because its thickness is tightly related to the vulnerability of
atherosclerotic plaques. PN-1 may also influence the thickness
of the fibrous cap, by acting on the migration of vSMCs.
Indeed, overexpression of PN-1 by vSMCs has been shown to
significantly reduce their adhesion, spreading and migration
on vitronectin, an adhesive protein found in atherosclerotic
plaques (33). This effect is related to the high affinity of
PN-1 to vitronectin, shown by direct-binding in vitro assays
(11). Moreover, PN-1 can limit thrombin-induced vSMC
proliferation (20) and (i) prevents the pro-apoptotic effect of
high thrombin concentrations (34), (ii) inhibits plasminogen
activation in the peri-cellular environment, and (iii) prevents
plasmin-induced cell detachment (34). Taken together, these
data raise the possibility that PN-1 overexpression during
atherosclerosis could significantly influence the stability of
the plaque. At the most complicated stage of atherosclerosis,
rupture of the plaque can trigger localized, often occlusive,
thrombus formation. PN-1 can thus also accumulate within
thrombi generated during atherothrombosis since platelets are
a reservoir of this serpin. Via its ability to inhibit plasmin
generation and activity within the thrombus, platelet PN-1 is
assumed to contribute to thrombus stabilization and is therefore
also a non-negligible contributor to thrombus resistance to
lysis (16).

Given its ubiquitous expression in the atheromatous lesions
and its inhibitory activity against numerous deleterious proteases
present in the atheroma, PN-1 can undoubtedly regulate the
characteristics of the atherosclerotic plaque at different stages
of development.

PN-1 and Aneurysms
Aortic aneurysms are also diseases characterized by intense
remodeling due to an imbalance in favor of proteolytic
degradation of the vascular wall ECM, leading to progressive
dilation and eventually to rupture. Despite various possible
etiologies, all thoracic aneurysms of the ascending aorta (TAA)
share common pathophysiological features leading to structural
deterioration of the aortic wall. VSMCs apoptosis and the
degradation of collagen and elastic fibers are the two principal
modifications occurring within the medial layer characterizing
TAA. The relevance of the antiprotease activity of PN-1 expressed
by vSMCs has been emphasized by its ability to regulate in
vitro pericellular plasminogen activation (35) and therefore
cell resistance to proteolytic aggression, as observed during
atherosclerosis. In human biopsies, PN-1 expression was found
to be increased in the medial layer of TAA compared with
the aortic medial layer from healthy donors and the protein
colocalized with vSMCs. Interestingly, cultured vSMCs from
TAA continued to display an increased level of PN-1 mRNA
expression compared with control vSMCs (36). This was found
to be due to the permanent epigenetic activation of the smad2
pathway in vivo in the arterial wall of TAA, an activation which
persisted in cultures of vSMCs of TAA origin. Hence, human
cultured vSMCs from TAA had a limited capacity to convert
plasminogen into plasmin, and were therefore protected against
apoptosis-induced detachment after plasminogen or plasmin
treatment (36). Indeed, PN-1 overexpression was shown to be
associated with aneurysmal dilatation, whereas the absence of
PN-1 overexpression was associated with aortic dissections (36).
Together, these data show that overproduction of PN-1 by vSMCs
in vivo during TAA development may participate in the increased
ability of the cells to resist the proteolytic environment.

The clearance of PN-1/plasmin complexes has also been
addressed specifically in the TAA context. PN-1, LRP-1 and
plasmin were shown to colocalize in the media of human
TAA where PN-1 amounts correlated with plasmin activity
(37). The uptake of PN-1/plasmin complexes was shown to
be partly mediated by LRP-1 in vSMCs. These results strongly
suggest that PN-1 might play a protective role in vivo during
TAA development, as discussed for atherosclerosis, but further
experimental animal models are required to fully understand its
impact on TAA pathophysiology.

In contrast to TAA, the role of PN-1 in abdominal aortic
aneurysms (AAA) has not yet been addressed. Previous reports
have shown that the enzymes of the fibrinolytic system are also
involved in AAA progression (38, 39) and local overexpression
of PAI-1 in the mouse was accordingly reported to prevent the
development of the disease (40). The role of the plasminergic
system remains nevertheless incompletely understood (41) and
the study of PN-1 in this context could provide new insights into
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the understanding of how proteases and their counter-regulators
participate in the evolution of AAA.

PN-1 IN CARDIAC FIBROSIS

Myocardial fibrosis is an important pathophysiological process
defined as an excessive accumulation of matrix proteins and is a
well-established morbi-mortality marker. It increases myocardial
stiffness, alters systolic function and contributes to malignant
arrhythmias (42).

PN-1 in the heart has received less attention although it has
been reported to be present in mouse heart (43). Moreover,

in rats a high overexpression of PN-1 was described in in
vivo heart failure models (44). Li et al. were the first to assess

the role of PN-1 in cardiac fibrosis (45). They showed that
both cardiomyocytes and myocardial fibroblasts express PN-1,
even though the level of PN-1 expression in the former was
only half that in the latter. They also found, in an in vivo
mouse model of cardiac fibrosis induced by transverse aortic
constriction (TAC), that collagen deposition was increased after
4 weeks, associated with a slight increase in PN-1 expression in
the heart (45). Moreover, they showed that pro-fibrotic mediators
like angiotensin II and transforming growth factor-β (TGF-β)
could induce, in myocardial fibroblasts, an increased expression

TABLE 1 | Expected effect of PN-1 in cardiovascular diseases depending on its targets or partners.

Pathology PN-1 targets or partners Expected effect References

Thoracic and abdominal aortic aneurysms Plasmin and LRP-1 Protective (36, 37)

Atherosclerosis Plasmin and LRP-1 Protective (30)

Cardiac fibrosis Thrombin Protective

uPA, MMP, plasmin Deleterious (45)

FIGURE 1 | PN-1 in cardiovascular disease. PN-1 is overexpressed in Atherosclerosis, Cardiac Fibrosis and Thoracic Aortic Aneurysm (TAA). Previous studies have

shown PN-1 to be an important protective actor in atherosclerosis and TAA by reducing the impact of the proteolytic environment on the vascular cells. PN-1 is also

involved in cardiac fibrosis but can be either anti-fibrotic and protective or pro-fibrotic and deleterious depending on its targets (see Table 1).
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of collagen associated with PN-1 overexpression, at both the
messenger and protein levels. Such an up-regulation of PN-1
induced by TGF-β has also been observed in vitro in human
pulmonary fibroblasts (46). Reciprocally, the knockdown of PN-
1 appears to partially attenuate cardiac fibrosis (45). However,
cardiac expression of PN-1 is only partially impaired and these
data do not allow us to draw clear conclusions as to the role of
PN-1 in cardiac injury.

PN-1 appears to be importantly involved in fibrotic processes.
Interestingly, depending on the affected tissue, PN-1 displays
either anti-fibrotic properties as described in pulmonary
fibrosis (47) or in contrast, pro-fibrotic properties as described
here in cardiac fibrosis or as reported in scleroderma, a
disease also characterized by ECM accumulation in skin and
visceral tissue (48). The link between PN-1 and cardiac
fibrosis can also be mediated, at least in part, by its
antiprotease inhibitor activity, in particular by its ability to
inhibit thrombin and uPA. Indeed, the direct inhibition of
thrombin with dabigatran was shown to attenuate cardiac
fibrosis and improve global cardiac function in a TAC murine
model (49). The importance of the uPA/plasmin/matrix-
metalloproteinase (MMP) system in collagen degradation has
been well-characterized (50). PAI-1, a serpin close to PN-1,
has also been shown to exert pro-or anti-fibrotic effects in
different organs. The inhibition by PAI-1 of uPA- and tPA-
mediated conversion of plasminogen to plasmin was shown to
decrease plasmin-mediated MMP activation, and consequently
to increase matrix accumulation and fibrosis in different tissues
including lung, liver and kidney (51). In contrast, in the
heart, PAI-1 protects mice from hypertension-induced cardiac
fibrosis (52). Indeed, although PAI-1 is upregulated by TGF-
β in numerous cell types (53), in the myocardium, PAI-
1 was shown to inhibit TGF-β production specifically in
cardiomyocytes (51).

More detailed studies are required to decipher the role of PN-
1 in cardiac fibrosis. Indeed, in pathological conditions, such as
pressure overloadmodels ormyocardial infarction, inflammation
plays an important role in adaptative and inadaptive responses,
where monocytes and macrophages are key components of the
inflammatory pathophysiology (54). Because PN-1 is expressed
by inflammatory cells and has been shown to be closely related to
the inflammatory reaction in lung fibrosis, we can hypothesize
that PN-1 can also participate in cardiac inflammation and
consequently, in cardiac fibrosis.

CONCLUSIONS

The close relationships between PN-1 and proteases of the
coagulation and fibrinolytic systems, as well as between PN-
1 and the endocytic receptor LRP1, explain the impact of
this serpin in the cardiovascular system (Table 1). Essentially,
PN-1 participates in maintaining the homeostatic function
of the arterial wall and the cardiac tissue, as illustrated by
its overexpression in the different cardiovascular pathologies
mentioned in this review (Figure 1).
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