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Plasminogen activator inhibitor 1 (PAI-1) is a member of the serine protease inhibitor

(serpin) superfamily. PAI-1 is the principal inhibitor of the plasminogen activators, tissue

plasminogen activator (tPA), and urokinase-type plasminogen activator (uPA). Turbulence

in the levels of PAI-1 tilts the balance of the hemostatic system resulting in bleeding

or thrombotic complications. Not surprisingly, there is strong evidence that documents

the role of PAI-1 in cardiovascular disease. The more recent uncovering of the coalition

between the hemostatic and inflammatory pathways has exposed a distinct role for

PAI-1. The storm of proinflammatory cytokines liberated during inflammation, including

IL-6 and TNF-α, directly influence PAI-1 synthesis and increase circulating levels of this

serpin. Consequently, elevated levels of PAI-1 are commonplace during infection and

are frequently associated with a hypofibrinolytic state and thrombotic complications.

Elevated PAI-1 levels are also a feature of metabolic syndrome, which is defined by a

cluster of abnormalities including obesity, type 2 diabetes, hypertension, and elevated

triglyceride. Metabolic syndrome is in itself defined as a proinflammatory state associated

with elevated levels of cytokines. In addition, insulin has a direct impact on PAI-1

synthesis bridging these pathways. This review describes the key physiological functions

of PAI-1 and how these become perturbed during disease processes. We focus on the

direct relationship between PAI-1 and inflammation and the repercussion in terms of

an ensuing hypofibrinolytic state and thromboembolic complications. Collectively, these

observations strengthen the utility of PAI-1 as a viable drug target for the treatment of

various diseases.
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INTRODUCTION

Plasminogen activator inhibitor-1 (PAI-1) is a fast-acting serpin that regulates the fibrinolytic
system through inhibition of tissue plasminogen activator (tPA) and urokinase-type plasminogen
activator (uPA). PAI-1 quenches the enzymatic activity of these proteases to constrain
fibrin degradation and stabilize the hemostatic plug. Like other serpins, PAI-1 forms a 1:1
enzyme-inhibitor complex with its target proteases, rendering them enzymatically inactive and
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resulting in rapid clearance from the circulation via the hepatic
system. However, PAI-1 is an unusual serpin in that it can lose
activity by spontaneous insertion of the reactive center loop
into the body of the molecule, forming “latent” PAI-1 (1). The
active form of PAI-1 is very unstable and has a short half-life
of 1 h (2), whereas conversion to its thermodynamically stable
latent form allows a prolonged half-life of 2–4 h (3). In healthy
individuals’ plasma, PAI-1 circulates in excess over its target
protease tPA but at relatively low concentrations compared with
other serpins, and is highly variable in normal individuals (1–
40 ng/ml). PAI-1 is relatively unstable with a half-life of around
1–2 h in the circulation (4), however, binding to the extracellular
matrix protein, vitronectin, stabilizes the active form of PAI-1 (5),
and augments its half-life (6).

Circulating PAI-1 levels are under genetic control that is
directly related to an insertion/deletion (5G/4G) polymorphism
at position −675 of the promoter (7). The 4G allele gives rise
to elevated plasma PAI-1 levels (8–11). PAI-1 displays circadian
rhythm with a peak in early morning that coincides with the
time of onset of myocardial infarction (MI) (12). The 4G/5G
polymorphism differs according to ethnic group which has a
direct impact on PAI-1 circulating levels (13). Interestingly, the
levels of PAI-1 vary according to gender and show a positive
correlation with increasing age (14).

Platelets contain the major pool of circulating PAI-1, which
when activated following vessel injury, release this cargo thereby
protecting the developing thrombus from premature fibrinolysis.
Not surprisingly, the platelet precursor cell, megakaryocytes, are
a major site of PAI-1 synthesis (15) and platelets themselves are
now known to retain some PAI-1 mRNA which can produce
functional protein (16). However, PAI-1 is also synthesized
by other cells including endothelial (17), adipocytes (18–
20), hepatocytes (21), and cardiomyocytes (22) (Figure 1A).
Given the crucial role of PAI-1 in hemostasis, a deficiency
in this serpin gives rise to a moderate bleeding diathesis
(23). Conversely, increased levels of PAI-1 are associated with
thrombotic complications. In addition to its hemostatic role,
PAI-1 functions in several physiological processes such as
inflammation, wound healing, and tumor progression. A strong
relationship between PAI-1 and obesity, diabetes, and metabolic
syndrome (MetS) was recognized many years ago with this
serpin now being considered central to these pathophysiological
processes (24). This review will focus on the impact and
relationship of this unusual serpin in dictating and orchestrating
the development of thromboinflammation and cardiovascular
complications as a result of its participation in the pathogenesis
of associated diseases.

PAI-1 AND THROMBOSIS

The fate of a forming thrombus is determined by platelet
deposition and the balance of coagulation and fibrinolytic factors.
An increase in circulating levels of PAI-1 or augmented local
release of this inhibitor due to platelet activation shifts the
balance to a hypofibrinolytic state. PAI-1 has been recognized as a
pivotal protein in the progression of vascular events and is linked

to MI (25–27), stroke (28), deep vein thrombosis (DVT) (29),
and microvascular thrombosis (30). Elevated levels of plasma
PAI-1 precede the occurrence of MI (26), and survivors exhibit
consistently high levels (25). Acute increases in plasma PAI-1
levels within 24 h in patients with acute ST-elevated myocardial
infarction are associated with heart failure and death and are a
strong independent predictor of mortality at 30 days (31). The
renin-angiotensin II system (RAS) is strongly activated following
acute MI, and angiotensin II triggers PAI-1 synthesis (32)
(Figure 1B). The RAS has been linked to the circadian variation
in PAI-1, suggesting that the use of angiotensin-converting
enzyme (ACE) inhibitors to inhibit the RAS system may blunt
PAI-1 levels thereby reducing the risk of “early morning”MI (33).

Elevated levels of PAI-1 have been detected in atherosclerotic
plaques in humans (34–36), which are significantly inflated in
type 2 diabetes mellitus (T2DM) subjects (37). Dysregulation
of the fibrinolytic system appears to play a significant role in
atherosclerotic plaque development by perturbing the wound-
healing response and neointimal formation (38). This can in
part be attributed to reduced vascular smooth muscle cell
migration via inhibition of binding of vitronectin to integrin
αvβ3 (39). Moreover, PAI-1 stabilizes the fibrin matrix within the
developing plaque by attenuating plasmin formation. Increased
serum levels of PAI-1 have been noted in patients with
atherosclerotic disease, including coronary artery disease (40)
and stroke (41). A recent large meta-analysis has indicated
that PAI-1 is implicated in the pathogenesis of atherosclerotic
disease (42). The two-pronged approach of PAI-1 inducing a
hypofibrinolytic state in atherosclerotic diseases and impacting
on lesion formation and progression indicates the perilous
complications of this serpin in the pathogenesis of these diseases.
Animal models of ablation (43, 44) of the PAI-1 gene and
pharmacological inhibition of PAI-1 (45) in murine models
have proved insightful in our understanding of these processes.
Nevertheless, it is challenging to extrapolate all of these findings
to humans, which combined with the lack of a licensed inhibitor,
leaves a gap in our knowledge and understanding of this serpin
in the intricate mechanisms of this complex disease.

Perioperative DVT has been linked to elevated levels of
circulating PAI-1 (29). A higher incidence of DVT (46) and
venous thrombosis (47) has been noted in Asian Indian patients
harboring the 4G polymorphism, leading to a suggestion that it
be included in all laboratory testing panels for thrombophilia.
Similar studies in white Caucasian populations have described
association of the 4G polymorphism with idiopathic DVT
and inherited thrombophilia (48). More recently, preoperative
plasma PAI-1 has been revealed as an independent risk
factor for the onset of DVT in patients undergoing total
hip arthroplasty (49). Elevated levels of plasma PAI-1 largely
account for delayed clot lysis times in healthy individuals
and are associated with first incidence of venous thrombosis
(50). These lines of evidence highlight the importance of
this serpin in predisposing individuals to a hypofibrinolytic
state, which is directly linked to an increased frequency of
venous thrombosis. Yet, the exact mechanisms underpinning this
pathophysiological process and cellular source of PAI-1 remain to
be elucidated.
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FIGURE 1 | Cellular sources of PAI-1 of modulators of synthesis: (A) PAI-1 is produced by a variety of cell types including the following: endothelial cells, adipocytes,

hepatocytes, leukocytes (monocytes and macrophages), megakaryocytes, and platelets. Dotted arrows demonstrated cell differentiation and solid arrows indicate

PAI-1 synthesis. (B) A number of factors induce PAI-1 synthesis and secretion. Proinflammatory cytokines, namely interleukin-6 (IL-6), tissue necrosis factor alpha

(TNF-α), and transforming growth factor beta (TGF-β) significantly augment PAI-1 synthesis. Thrombin, insulin, glucose, angiotensin II, and C-reactive protein (CRP)

can also stimulate PAI-1 expression. Drugs that target insulin and the angiotensin converting enzyme (ACE), such as metformin and captopril, are known to decrease

plasma PAI-1 concentration. Dotted arrows represent the reaction of an enzyme or protein synthesis, and solid arrows indicate PAI-1 synthesis.

INFECTION AND INFLAMMATION

PAI-1 is a positive acute phase protein that is dramatically
elevated in the proinflammatory state, such as acute tissue
injury, sepsis, and inflammation. The role of PAI-1 in this
context is primarily considered a protective mechanism to
limit dissemination of pathogens and promote tissue repair.
Augmented levels of PAI-1 in non-typeable Haemophilus
influenzae infection are associated with bacterial clearance
and shortening of the disease duration (51). Pharmacological
inhibition of PAI-1 in a Pseudomonas aeruginosa pneumonia
mouse model attenuates neutrophil migration, thereby
dampening the innate immune response (52). PAI-1 modulation
of neutrophil migration has also been demonstrated in
Escherichia coli infection (53). However, aberrant activation of
this defense mechanism produces a hypofibrinolytic state which
promotes thrombotic complications.

Sepsis occurs due to overreaction of the host defense
mechanism, most commonly in response to bacterial infection,
but can also be caused by viral and fungal pathogens. Sepsis leads
to enhanced exposure of the coagulation protein, tissue factor,
inciting fibrin deposition and microthrombi throughout the
vasculature (54). Multiorgan failure is a frequent complication
in sepsis patients, and the development of disseminated
intravascular coagulation (DIC) is a major contributor (54) and
is associated with aberrant thrombin generation. Endothelial
dysfunction induces release of proinflammatory cytokines (55,
56) which combined with augmented levels of thrombin provoke
PAI-1 synthesis (Figure 1B). Endothelial cells produce enhanced
levels of PAI-1 in response to C-reactive protein (CRP) (57, 58)
(Figure 1B), which is a proinflammatory marker in critically ill
patients such as sepsis patients (59–61). A recent meta-analysis

has reported PAI-1 as a predictor of disease severity in sepsis and
overall mortality (62), but the prognostic value of this biomarker
in disease progression requires further attention.

A hypofibrinolytic state has been observed in multiple viral
infections and is associated with elevated PAI-1 levels (63–
67). Most recently, elevated PAI-1 and tPA antigen levels
have been described in patients infected with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV2) which causes
coronavirus-19 disease (COVID-19) (64, 68). However, the net
effect of the increased PAI-1 and tPA levels may differ between
patients, with variations in this axis being attributed to both a
hypo- (64) and hyperfibrinolytic (68) phenotype. In the severe
acute respiratory syndrome coronavirus (SARS-CoV) epidemic
in 2002 and 2003, the hypofibrinolytic state was attributed to
overexpression of PAI-1 which inhibited plasminogen activator
activity causing persistence of fibrin deposition (63, 69).

Several proinflammatory cytokines significantly augment
PAI-1 synthesis (70–72). Interleukin-6 (IL-6) is an acute-phase
inflammatory protein that has been reported to significantly
increase PAI-1 and tPA antigen (73). Cytokine release syndrome
(CRS) is an acute systemic inflammatory response that can be
triggered by various infections and can be observed in sepsis
and acute respiratory distress syndrome (ARDS). Endothelial
IL-6 trans-signaling promotes IL-6, IL-8, and monocyte
chemoattractant protein-1 (MCP-1) and PAI-1 synthesis (55).
Inhibition of this trans-signaling circuit by the IL-6R antagonist,
tocilizumab, has recently been shown to reduce PAI-1 expression
in a small study of COVID-19 patients (55), and is now a
recommended treatment for ICU patients after improved
outcomes in patients on the Remap-Cap trial (74).

Tumor necrosis factor-alpha (TNF-α), acting via NFκB,
is a strong stimulator of PAI-1 expression (56) (Figure 1B).
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TNF-α is an important regulator of PAI-1 expression in
adipose tissue, and neutralizing TNF-α significantly reduces
both plasma and adipose tissue levels (75, 76). Several studies
support the hypothesis that TNF-α may be responsible for
expression of TGF-β (75, 77), another major stimulant of
PAI-1 biosynthesis (77–80). Elevated levels of PAI-1 in turn
block conversion of latent transforming growth factor beta
(TGF-β) contributing to a self-regulation mechanism (80). The
affiliation between proinflammatory cytokines and heightened
PAI-1 synthesis provides a definitive link between this serpin and
the inflammatory response.

METABOLIC SYNDROME

Metabolic syndrome (MetS) is a multifaceted disorder that
encompasses several conditions that considerably elevate the risk
of CVD and T2DM. Definitions vary, but in general, diagnosis of
MetS requires individuals to meet at least three of the following
criteria (81, 82);

• Abdominal obesity
• Dyslipidemia—elevated triglycerides and apolipoprotein B

and low levels of high-density lipoprotein (HDL)
• Hypertension
• Hyperglycemia
• Insulin resistance

Whether the clustering of these conditions elevates an
individual’s risk over that of a single disorder is a matter of
ongoing debate (83, 84). Nonetheless, given the prevalence of
MetS worldwide and the fact that this cluster of risk factors
predicts CVD in multiple settings, it is clear that we require
a stronger understanding of the pathophysiology to develop
predictive tools and improve therapeutic options.

Abdominal obesity is an essential criterion in the development
of MetS (85, 86). Adipose tissue is an endocrine organ composed
of multiple cell types, that secrete adipokines of diverse biological
function, such as adiponectin (87–90), leptin (91), and various
cytokines, including IL-6 and TNF-α. PAI-1 is a known adipokine
(8, 92–94). Adipokine secretion is dependent on the location of
the fat store in the body and the composition of cells comprised
within the adipose tissue. A correlation between MetS and PAI-
1 levels was established in the late 1980s (95). Elevated levels
of PAI-1 in individuals with MetS has been demonstrated using
criteria defined by both the World Health Organization (WHO)
(96) and the National Cholesterol Education Program Expert
Panel on Detection, Evaluation and Treatment of High Blood
Cholesterol in Adults (NCEP-ATPIII) (97). Elevated levels of
PAI-1 in humans predict incidence of MetS in two prospective
studies (98, 99). It is well-established that PAI-1 can predict the
risk of future CVD (100) and onset of T2DM (101). Together,
these data have led to the interpretation that PAI-1 is a true
component of MetS (102) and could be an important clinical
criterion for development of future CVD (103).

Obesity
Obesity is a global epidemic (104) that is inextricably linked
with increased risk of CVD, including arterial, venous, and

microvascular thrombosis (105, 106); DVT (107, 108), coronary
thrombosis (105, 106), pulmonary embolism (PE) (108, 109) and
stroke (110). Obesity-related thrombosis is linked to decreased
fibrinolytic activity (111–119) which can be largely attributed
to escalating levels of plasma PAI-1 antigen and activity (112,
120). Increased PAI-1 synthesis by adipocytes in response
to protractedly elevated levels of TNF-α, insulin, and TGF-
β is primarily responsible (112, 114, 120–122) (Figure 1B).
Intriguingly, elevated tPA levels have been reported in studies
on MetS (96, 97) and obesity (114, 123), which could be the
result of impairment of the endothelium; however, the dominant
phenotype is hypofibrinolysis.

Plasma PAI-1 significantly correlates with a variety of
adiposity measures, including body mass index (BMI), waist-to-
hip ratio, total fat mass, and visceral and subcutaneous adipose
tissue (124–126). The insulin resistance atherosclerosis study
(IRAS) was the first to report that PAI-1 antigen and activity
positively correlate with BMI (r = 0.314/0.425, respectively)
(127). Adipocytes from obese humans harbor twice as much
PAI-1 mRNA resulting in a ≥six-fold increase in secretion of
PAI-1 and plasma PAI-1 activity compared with lean individuals
(8). Weight loss in obese subjects reduces plasma PAI-1 (122,
125, 128), indicative that circulating levels are directly related to
the degree of adipose tissue. In line with this, pharmacological
inhibition of plasma PAI-1 in animal models results in weight
loss, as well as a reduction in adipose tissue and adipocyte
volume (19, 129–131). The number and size of lipid-containing
vesicles in adipocytes are also decreased, as well as plasma glucose
and triglyceride levels and insulin resistance (129, 132, 133).
These data indicate that adipocyte-derived PAI-1 functions in an
autocrine role, with one study indicating that PAI-1 inhibition
limits differentiation of preadipocytes into mature adipocytes
(129, 134).

Interestingly, PAI-1 synthesis is not uniform, with adipocytes
from visceral fat depots harboring significantly more PAI-1
mRNA than subcutaneous or femoral fat depots (92, 135).
Indeed, visceral fat has been suggested as a determinant of PAI-1
activity in overweight and obese women (136). To fully exploit
PAI-1 as a biomarker of MetS, and future CVD, it may be
necessary to correlate this serpin with additional factors such
as visceral fat levels, rather than more general measurements
of BMI.

Type 2 Diabetes
T2DM is intrinsically linked to obesity (92, 137–139), and
elevated levels of PAI-1 are strongly correlated with insulin
resistance (137, 140), impaired glucose tolerance (137, 140),
and T2DM (141, 142). Many studies have reported strong
associations between PAI-1 and development of T2DM (143–
150). Furthermore, lifestyle and pharmacological interventions to
manage diabetes have been shown to decrease circulating plasma
PAI-1 levels (151–153). Indeed, PAI-1 activity is significantly
reduced upon treatment with the antidiabetic drug, metformin,
with a corresponding improvement in glycemic control and
reduction in insulin resistance (152).

The IRAS study revealed that PAI-1 was a reliable predictor
for developing T2DM, despite adjustments for adiposity, body
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fat distribution, and insulin sensitivity in patients (p = 0.002)
(101). Interestingly, this study also found that PAI-1 activity
was increased, but not correlated with insulin concentration,
in plasma from non-obese children with T2DM parents (101).
Various murine models have determined that PAI-1 plays
a pivotal role in development of insulin resistance (132,
133). A mouse model of diet-induced obesity was used to
study the relationship between PAI-1, obesity, and insulin in
PAI-1 deficient PAI-1−/− and wild type (WT) mice (132).
Obesity and insulin resistance that developed in WT mice in
response to a high-fat diet was prevented in PAI-1−/− mice
(132). Furthermore, PAI-1−/− mice showed increased resting
metabolic rates and total energy expenditure, compared with
WT. Treatment of WT mice with an angiotensin type I receptor
antagonist reduced PAI-1 levels, attenuated diet-induced obesity,
hyperglycemia, and hyperinsulinemia (132). Genetically obese
(ob/ob) mice deficient in PAI-1 weigh significantly less than
those with normal PAI-1 levels; as a result, these mice
demonstrate a significant improvement in hyperglycemia and
hyperinsulinemia (133). Intraperitoneal glucose administration
markedly augments serum insulin levels in WT ob/ob mice;
however, the increase in PAI-1−/− mice was dramatically
reduced (133). In situ hybridization studies revealed that TNF-
α expression was significantly reduced in PAI-1−/− ob/ob mice
compared with WT ob/ob mice (133). Together with the well-
documented role of TNF-α in stimulating PAI-1 expression (75),
this study exposes a complex reciprocal relationship between
PAI-1 and TNF-α which merits further study.

Insulin directly stimulates PAI-1 synthesis and secretion from
adipocytes (154) (Figure 1), a process which is upregulated in
hyperinsulinemia and hyperglycemia (154, 155). Glucose also
upregulates PAI-1 expression in vascular smooth muscle cells,
endothelial cells, and adipose tissue (156–159). Clinical studies
consistently demonstrate a strong correlation between plasma
PAI-1 and insulin resistance (154, 160); however, cause or
consequence is less clear, that is whether elevated PAI-1 is a result
of insulin resistance or if it occurs independently. The role of
TNF-α and TGF-β in stimulating PAI-1 expression in adipose
tissue (76, 154) suggests that the increase in plasma PAI-1 and
insulin resistance may be bi-directional.

There is evidence to support that chronic inflammation and
insulin resistance are linked (101, 143). It is hypothesized that
this may be due to increased expression of proinflammatory
cytokines, namely IL-6 and TNF-α, from adipose tissue (161, 162)
which in turn can stimulate acute phase proteins, including
PAI-1 (13, 163). Furthermore, several studies (143, 164, 165)
have reported that tPA antigen and activity are associated
with developing T2DM, and tPA and PAI-1 antigens are
strongly correlated in plasma (166). Despite the concordant
increase in tPA and PAI-1, a hypofibrinolytic state prevails in
T2DM individuals.

Hypertension
There is accumulating evidence implicating PAI-1 in the
development of hypertension (167), and plasma PAI-1
is associated with several risk factors for hypertension,
including obesity (168, 169), insulin resistance (140, 169),

and inflammation (70) as discussed above. Genetic ablation of
PAI-1 protects against hypertension and perivascular fibrosis
induced by nitric oxide synthase (NOS) inhibition (170, 171).
NOS plays a key role in regulating vascular tone and remodeling
of the vessel wall (172–174), and inhibition of NOS induces
progressive hypertension and vascular fibrosis (175–177).
Furthermore, inhibition of PAI-1 with a novel small molecule
inhibitor (PAI-039) protects a mouse model against angiotensin
II-induced aortic remodeling and cardiac fibrosis (178).

Human studies indicate a direct correlation between plasma
PAI-1 and hypertension and its associated conditions (179–
185), such as arterial stiffness (186) and atherosclerosis (187).
Interestingly, the 4G allele for PAI-1 is associated with increased
systolic, diastolic, and mean arterial blood pressure (188),
indicative of a direct link between plasma PAI-1 and blood
pressure. A study examining two longitudinal cohorts of
American Indians revealed that baseline PAI-1 is predictive of
hypertension independent of other variables (189). Participants
with the highest concentration of PAI-1 (>58 ng/ml) had a
63% increased risk of hypertension compared with those in
the lowest group (<33 ng/ml) (189). A similar prospective
study, the Framingham Offspring Study, confirmed that a
higher concentration of plasma PAI-1 was associated with an
increased risk of hypertension (odds ratio = 1.28) (190). Despite
plasma PAI-1 correctly predicting the risk of hypertension
in human studies, it did not provide a significant advantage
over conventional risk factors, such as fasting glucose, alcohol
consumption, BMI, cigarette smoking, or C-reactive protein
(189). Given the close relationship of PAI-1 with the RAS
system and the documented increase in the levels of PAI-1 in
hypertension, the mechanisms underpinning this relationship
warrant further investigation.

POTENTIAL THERAPEUTIC OPTIONS
AND DISCUSSION

The driving force of PAI-1 in thrombosis, inflammation, and
metabolic syndrome is evident (Figure 2). In addition, this serpin
functions in a variety of pathophysiological processes, outwith
the subject matter of this review, including wound healing (191),
cardiac fibrosis (192), cancer (193), and senescence (194). These
numerous roles underscore the potential of PAI-1 as an attractive
therapeutic target; nevertheless, to date, no PAI-1 inhibitors have
been approved for clinical use.

Small molecules, peptides, monoclonal antibodies, and
antibody fragments have all been used to modulate PAI-1 activity
by interfering at different stages of the PAI-1/plasminogen
activator interaction [(195–199), reviewed in detail by (200)]. A
number of clinically approved drugs indirectly reduce plasma
PAI-1; these include insulin sensitizing agents for management
of T2DM, such as metformin, and ACE inhibitors (used to treat
hypertension) (201). However, these drugs have been studied
in experimental models (202–205), and as yet, there is limited
information available from human studies.

Drugs targeting PAI-1 in the experimental phase have
produced promising results (206–208). A potent neutralizing
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FIGURE 2 | PAI-1 modulates thrombosis and inflammation via multiple pathophysiological mechanisms. Metabolic syndrome is characterized by increased insulin

resistance, obesity, and hypertension, which contribute to elevated risk of cardiovascular disease (CVD). Increased levels of PAI-1 antigen and activity are positively

associated with hypertension, obesity, type 2 diabetes (T2DM), and CVD. Briefly, elevated levels of PAI-1 antigen and activity occur in obesity, which is a known risk

factor for CVD and T2DM. Strong correlations between increased PAI-1 and development of T2DM have been identified, including increased insulin resistance and

impaired glucose tolerance. Conversely, insulin and glucose can stimulate PAI-1 secretion from adipose tissue. Elevated levels of PAI-1 attenuate plasmin formation

and downregulate fibrin degradation. This hypofibrinolytic state provokes thromboembolic complications, including stroke, atherosclerosis, myocardial infarction, and

venous and arterial thrombosis. Hypofibrinolysis and elevated PAI-1 levels have been associated with bacterial and viral infections, including sepsis and COVID-19.

Sepsis is characterized by the development of disseminated intravascular coagulation (DIC), a major contributor to resulting organ failure. In COVID-19 patients,

disruption between coagulation and fibrinolysis leads to fibrin deposits in the lung parenchyma and thrombosis. Solid arrows represent (patho)physiological processes

that arise as a result of increased PAI-1 levels, and dotted arrows illustrate the links between each of these individual pathologies.

diabody to PAI-1 and activated thrombin activatable fibrinolysis
inhibitor (TAFIa) rapidly enhances clot breakdown (207).
Simultaneous inhibition of PAI-1 and TAFIa may improve
current thrombolytic therapy; e.g., co-administration with tPA
thereby permitting a lower dose and thus enhancing its safety
profile (207, 209). Tiplaxtinin, a PAI-1 antagonist, prevents
venous thrombosis, angiotensin II-induced atherosclerosis, and
obesity in a ferric chloride-induced vascular injury model in rats
(206). More recently, a nanobody to PAI-1 has been developed
that selectively stabilizes the active form of PAI-1, which may be
used as a diagnostic or analytical tool (195, 208).

Other drugs that elicit pharmacological inhibition of PAI-1
have reached phases 1 and 2 clinical trials. A small molecule
inhibitor, TM5614, is currently being trialed in a single-center,

randomized controlled trial for high-risk patients hospitalized
with severe COVID-19 and requiring oxygen (210). Another
PAI-1 inhibitor, ACT001, is currently in phase 1 clinical trials
for treatment of glioblastoma, the most aggressive primary
malignant brain tumor in adults (211, 212).

This review predominantly focuses on the role of PAI-1
in the thrombosis-inflammation axes and associated diseases
(Figure 2). It is evident that a proinflammatory state, whether
it arises from infection, vascular thrombotic complications, a
condition such as MetS, or its associated cluster of diseases
spark a dramatic elevation in plasma PAI-1. The underlying
motive for this can be attributed to the many cytokines and
proteins that can elicit PAI-1 synthesis, thereby inextricably
bridging these conditions with this complex serpin. The cellular
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source of PAI-1 may vary according to the disease processes,
e.g., of platelet or endothelial origin during infection or
venous thrombosis but of adipose tissue origin in obesity.
Many of the conditions described herein predominantly
affect the aging population, and it is noted that there is
also a clear link between circulating PAI-1 levels and age
(213). These observations further confound the relationship
between elevated PAI-1 and thromboinflammation, leading to
cardiovascular complications. This review serves as an aide-
mémoire on the consequences of PAI-1 elevation and highlights
the utility of this serpin as a potential therapeutic target in
the treatment of various pathological conditions which are
associated with a hypofibrinolytic state and development of
thromboembolic diseases.
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