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The understanding of the electrophysiological mechanisms that underlie

mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the

heart, has been evolving over the past century. The heart is constantly exposed to

a dynamic mechanical environment; as such, the SAN has numerous canonical and

emerging mechanosensitive ion channels and signaling pathways that govern its

ability to respond to both fast (within second or on beat-to-beat manner) and slow

(minutes) timescales. This review summarizes the effects of mechanical loading on

the SAN activity and reviews putative candidates, including fast mechanoactivated

channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including

volume-regulated chloride channels and transient receptor potential (TRP)], as well as

the components of mechanochemical signal transduction, which may contribute to

SAN mechanosensitivity. Furthermore, we examine the structural foundation for both

mechano-electrical and mechanochemical signal transduction and discuss the role

of specialized membrane nanodomains, namely, caveolae, in mechanical regulation

of both membrane and calcium clock components of the so-called coupled-clock

pacemaker system responsible for SAN automaticity. Finally, we emphasize how these

mechanically activated changes contribute to the pathophysiology of SAN dysfunction

and discuss controversial areas necessitating future investigations. Though the exact

mechanisms of SAN mechanosensitivity are currently unknown, identification of such

components, their impact into SAN pacemaking, and pathological remodeling may

provide new therapeutic targets for the treatment of SAN dysfunction and associated

rhythm abnormalities.

Keywords: automaticity, ion channel, cardiac, stretch activated, calcium, heart rate

INTRODUCTION

The heart is continuously experiencing a dynamic mechanical environment, both on a beat-to-beat
basis (e.g., fluctuating blood pressure and exercise) and chronically (e.g., elevated venous return and
high blood pressure). Alterations in intra-cardiac pressure and/or volume preload/afterload may
influence cardiac performance to coordinate cardiac output with venous return and arterial blood
supply, in a cardiac autonomous fashion. This process involves activation of complex mechano-
electrical [i.e., mechanically induced changes in cardiac action potential (AP) morphology,
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frequency, and propagation] and mechanochemical (i.e.,
changes in various second messenger signaling that are
ultimately translated into regulation of calcium handling)
signal transduction feedback mechanisms that autoregulate
the frequency and the force of cardiac muscle contraction
(Figure 1). An important component of such autoregulation
includes changes in heart rate controlled by the heart’s primary
pacemaker, the sinoatrial node (SAN). SAN response to altered
hemodynamic load is described via the Bainbridge response:
an increase in heart rate upon right atrial pressure/volume
increase, which may help in matching cardiac output to venous
return (1). SAN mechanosensitivity and associated changes in
pacemaker activity have been demonstrated at multiple levels,
including isolated heart (2, 3) as well as in isolated SAN cells (4),
and have been linked to mechanosensitive mechanisms (5, 6)
intrinsic to pacemaker cells (7). In this review, we summarize the
emerging understanding of cellular and molecular mechanisms
that could be involved in SAN mechanosensing and pacemaker
rate attenuation. Though the exact components of mechano-
electro-chemical signal transduction, specifically involved in
SAN mechanosensitivity, are not currently identified, here,
we overview possible candidates that might be responsible
for both fast (i.e., within seconds or on beat-to-beat manner)
and slow (minutes) changes in SAN automaticity in response
to mechanical stress. Specifically, we focus on canonical
mechanoactivated channels (Piezo, TREK, and BK), slow
mechanoresponsive ion channels (including volume-regulated
chloride channels (ClC), and transient receptor potential (TRP)
channels), and the components of mechanochemical signal
transduction, including reactive oxygen species (ROS), cyclic
adenosine monophosphate (cAMP), and inositol trisphosphate
(IP3). Mechanosensitivity of these pathways has been described
in either non-pacemaker cardiomyocytes (atrial or ventricular)
or non-cardiac cells. Here, we show the expression profile of
mechanosensitive ion channels in murine SAN (Figure 2) and
discuss how these ion channels, as well as various mechano-
chemical signaling pathways, could potentially modulate
membrane and calcium clock components of the so-called
coupled-clock pacemaker system (8), contributing to SAN
mechanosensitivity and changing in heart rate upon alterations
in intra-cardiac mechanics.

SINOATRIAL NODE ANATOMY

The SAN is a small body of specialized cardiac tissues located
within the wall of the right atrium of the heart, laterally to
the entrance of the superior vena cava, anatomically described
by Silverman and Hollman (9). The SAN has a crescent-
shaped structure positioned along the crista terminalis and
running between the superior and inferior venae cavae, usually
being arranged around a prominent nodal artery. The SAN is
functionally insulated from the surrounding atrial myocardium,
except for several critical conduction pathways (10–13). Indeed,
the SAN requires anatomical (fibroblasts, adipose tissue, and
blood vessels) and/or functional barriers (paucity of connexins)
(13–16) to protect it from the hyperpolarizing influence of the

surrounding atrium in order to function as a leading pacemaker.
The presence of conduction barriers and pathways may explain
how a small cluster of pacemaker cells in the SAN pacemaker
complex manages to depolarize separate, widely distributed areas
of the right atrium as evidenced functionally by exit points
and breakthroughs (17–21). The autonomic nervous system and
humoral factors can further regulate conduction through these
pathways, contributing to pacemaker automaticity and ultimately
determining heart rate (22–24).

MECHANOSENSITIVITY OF THE
SINOATRIAL NODE

The SAN is well-positioned anatomically to sense both coronary
and atrial blood pressure changes, providing a structural
basis for hemodynamic regulation of heart rate via SAN
mechanosensitivity. Changes in venous blood flow to the heart
not only affect the volume available for atrial contraction
and subsequent ventricular filling but also has an impact on
the diastolic atrial dimension. Increased right atrial filling
distends the atrial wall, including the SAN myocytes, which
may consequently influence the pacemaker function and heart
rate. This mechano-modulation of pacemaker activity was first
described in 1915, when Bainbridge observed an increase in heart
rate associated with right atrial distension from intravenous fluid
injection in anesthetized dogs (1). While Bainbridge originally
attributed this phenomenon to altering autonomic inputs, a
study performed in dogs by Brooks et al. (25) determined that
this positive chronotropic response was insensitive to adrenergic
and cholinergic receptor blockade, and also to denervation,
suggesting SAN intrinsic regulation of SAN automaticity.
Conversely, in 1963, James and Nadeau demonstrated a
bradycardic SAN response in dogs upon injection of fluid into the
right atrium, while controlling for temperature, pH, osmolarity,
oxygen, and ionic content (3). It was not until 1978, when
Donald and Shepherd (2) performed controlled observations
of human atrial and SAN mechanosensitivity by developing
an experimental method that did not increase arterial blood
pressure in humans (baroreceptor “depressor reflex”), that SAN
mechanosensitivity was observed in humans. By placing subjects
into a “supine” position, these researchers were able to observe
an increase in heart rate concurrent with an increase in venous
return to the heart. Lastly, Cooper et al. (4) determined that direct
moderate stretch on isolated SAN cells, a possible consequence
of increased venous pressure in vivo, induced elevated beating
rate, confirming “for the first time, that the positive chronotropic
response of the heart to stretch is, at least in part, encoded on the
level of individual sinoatrial node pacemaker cells.” Please refer
to the review by Quinn and Kohl for a deeper examination on the
history of SAN mechanosensitivity and canonical mediators (6).

While these cornerstone studies demonstrate the immediate
or “fast” response of stretch on SAN automaticity, there is
also growing evidence of “slow” activating channels (>1min),
ClC-2, for example (26), which can be activated by long-
term pressure increases normally associated with the slow force
response in the working myocardium (27). Prior to its naming,
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FIGURE 1 | Proposed mechanisms of mechano-electrical and mechano-chemical feedback contributions to sinoatrial node mechanosensitivity. Mechanical stress (1)

triggers mechano-electrical signal transduction pathways via both slow mechano-responsive and fast mechano-activated ion channels directly changing the

membrane (Vm) clock component of the coupled-clock pacemaker system; and (2) activates mechano-chemical feedback via various signaling factors which alters

the function of the calcium (Ca2+) clock component of the coupled-clock pacemaker system. ROS, reactive oxygen species; NOS, nitric oxide synthase; ANP, atrial

natriuretic peptide; cAMP, cyclic adenoside monophosphate; IP3, inositol triphosphate; RyR, ryanodine receptor; SERCA, sarcoplasmic reticulum Ca2+-ATPase;

LCRs, local calcium releases.

the slow force response was observed in feline and canine
models. Gertrude et al. observed in isolated cat nodal tissue
that sustained stretch accelerated beating rate and even induced
spontaneous beating from quiescent nodal cells (28). From a
similar group of researchers, Brooks et al. observed a similar
response in anesthetized dogs (25). Using in situ SAN stretch,
they observed a biphasic response to SAN stretch with an
immediate acceleration of beating rate followed by a decrease
to a rate still above pre-stretch levels (25). These gradual (over
the course of minutes) and reversible changes in beating rate and
cardiac contractility inherent of the slow force response may play
a role in more delayed changes in SAN automaticity via slowly
activating mechanosensitive channels (26, 29, 30) and various
mechano-chemical signaling pathways (31–35).

ELECTROPHYSIOLOGICAL MECHANISMS
OF SINOATRIAL NODE
MECHANOSENSITIVITY

Overview of Sinoatrial Node Pacemaker
Activity
Spontaneous beating of SAN myocytes is initiated, sustained,
and regulated by a complex coupled system of cellular “clocks”
that integrates ion channels and transporters on the cell
membrane surface or “voltage clock,” with subcellular Ca2+

handling machinery, also referred to as an intracellular “Ca2+

clock” (8, 36, 37) (Figure 3). The firing of SAN cells is
due to diastolic depolarization, a slow depolarizing phase of
the membrane potential (Vm), mediated by the concomitant
action of both membrane and Ca2+ clocks. Since SAN cells
lack IK1 current expression (41), following the minimum, or
most hyperpolarized diastolic potential, potassium IK current
(IKs, and IKr) conductance decreases, allowing the inward
hyperpolarization-activated current (If) (42, 43) and a low-
threshold, voltage-gated T-type Ca2+ current (ICa,T), which
contribute to the early fraction of diastolic depolarization
(Figure 3) (44). In addition, L-type Cav1.3 Ca2+ channels
open during diastolic depolarization to generate an inward
Ca2+ current (45, 46) and enabling the sustained inward
Na+ current Ist (47). Local Ca2+ release (LCR) from the
sarcoplasmic reticulum (SR) via subsarcolemmal ryanodine
receptors (RyRs) generates small increments in intracellular
Ca2+ concentration. These LCRs activate Na+/Ca2+ exchange
(NCX) to pump Ca2+ out of the cell in exchange for Na+

ions at a ratio of 1 Ca2+:3 Na+, to generate an inward
NCX current (INCX), and this contributes to both early and
late phases of diastolic depolarization (48) and subsequent
depolarization of the Vm to the threshold of the next beat
(Figure 3). The exact molecular mechanisms responsible for SR
Ca2+ release during late diastole are not completely understood.
While some studies show that such local Ca2+ release events
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FIGURE 2 | RNAseq of mouse sinoatrial node. The graph shows the absolute values (in pseudo-counts) for mRNA expression level. Horizontal dotted line indicates

HCN4 level. LRRC8, leucine-rich repeat containing 8 family chloride channels; ClC, chloride channel; TRPC/M/V, transient receptor potential cation/melastatin/vanilloid

subtype ion channels; BK, Ca2+-activated “big” potassium ion channels; K2P, two-pore domain potassium ion channels; CA, calcium-activated chloride ion channels;

HCN4, hyperpolarization activated cyclic nucleotide gated cation channel 4.

are spontaneous, independent of transmembrane potential, and
likely include stochastic opening of hyperphosphorylated RyRs
(49–51), other evidence suggest that these events might be
triggered by Ca2+ entry via low-voltage activated T-type Ca2+

channels (52) or Cav1.3 L-type Ca
2+ channels (46). Particularly,

recent studies indicate that Cav1.3 channel activity contributes

to generation and synchronization of diastolic LCRs (46) and
that Cav1.3 is necessary for the Ca2+ clock function during

SAN firing (53). Overall, the sum of If, ICa,T, INCX and Cav1.3-
mediated L-type Ca2+ current (ICa,L) contributes to diastolic

depolarization required to ultimately trigger activation of cardiac

Cav1.2-mediated ICa,L that initiates the AP, and global Ca2+-

induced Ca2+ release. In nature, neither clock functions in the

absence of the other. Abundant evidence indicates that functional
interactions between the two clock components are critical for
normal SAN automaticity (8, 36, 37, 46).

There has been significant interest in determining the
underlying cellular and molecular mechanisms responsible for
intrinsic SAN mechanosensitivity. Mechanical modulation of
SAN pacemaking adds another level of complexity to SAN
automaticity that has been proposed by Quinn and Kohl as the
additional “mechanics-clock” (6, 7) or, more accurately, as a third
coupled oscillator. The authors specifically highlighted that in

case of fast, beat-to-beat changes in heart rate, the voltage and
Ca2+ clocks do not inherently account for the rapid response
of the SAN to changes in hemodynamic load and that another
set of mechanisms must contribute to spontaneous diastolic
depolarization of the SAN. The importance of “mechanics-
clock” could be further supported by the fact that stretching
of quiescent tissue frequently induces spontaneous activity. In
particular, arrhythmic isolated hearts of Prosobranch gastropod
become rhythmic when the pacemaker tissue is stretched by
with internal perfusion and improve in form as pressure is
increased (25). It may be more accurate to describe mechanical
modulation of SAN pacemaking as an additional coupled
oscillator since it could be applied to both fast and slow changes
in heart rate through coupling with fast and slow mechanical
oscillators, respectively.

Since ion channels are both central for the regulation of
SAN automaticity and can sense mechanical stimuli via various
mechanisms, they provide plausible molecular candidates for

SAN mechanosensitivity. Ion channels may be grouped into

two categories with respect to mechanosensitivity: (1) directly

mechanoactivated (fast) and (2) indirectly mechanoresponsive
(slow) (Figure 1). Although both categories of channels
can change their open probability and other biophysical
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FIGURE 3 | Proposed molecular composition of the mechano-electrical signal transduction in the sinoatrial node (SAN) cell. (Left) Typical SAN membrane action

potential (black trace) and the timing of membrane (Vm) clock and calcium (Ca2+) clock components of the coupled-clock pacemaker system are shown. The phases

of the action potentials are labeled including phase 4, in which diastolic depolarization (DD) that is key to automatic pacemaker activity takes place. APD, action

potential duration; MDP, maximum diastolic potential; DD, diastolic depolarization; ICa,T and ICa,L, T- and L-type voltage-dependent Ca2+ currents; INCX,

sodium-calcium exchange current; IK, rapid (IKr) and slow (IKs) delayed rectifier potassium currents; If, HCN4 “funny” current; SERCA, sarco-endoplasmic reticulum

ATPase; LCRs, local Ca2+ releases. Below “classical” ion channels defined as mechano-modulated as indicated by various authors (38–40) which can have their

normal activity altered by mechanical stress, proposed slow mechano-responsive, and fast mechano-activated ion channels are shown. ClC, chloride channels;

SWELL1, swelling-activated leucine-rich repeat containing 8 (LRRC8) family chloride channels; TRP, transient receptor potential ion channels. (Right) Proposed

changes in SAN action potential morphology (solod red trace on top of the black dotted trace for baseline condition) under mechanical stress. Below, proposed

contribution of slow mechano-responsive and fast mechano-activated ion channels is shown for each ion channel.

characteristics in response to mechanical stimulation, they
differ in how mechanical forces transduce these effects. Fast
directly mechanoactivated ion channels (Piezo1-2, TREK-
1, TRAAK, and BK channels) are intrinsically sensitive to

mechanical forces applied to the protein or to the lipid bilayer

in which the channel resides and do not require any other

associated proteins or protein complexes to confer mechano-

responsiveness (54, 55). Slow indirectly mechanoresponsive
ion channels are polymodal ion channels (TRP channels,

SWELL1/LRRC8, and ClC) that respond to mechanical forces
in cell-type specific contexts but may not themselves be

intrinsically mechanosensitive, for example, when reconstituted

in a minimal lipid membrane, devoid of other cellular proteins,
with some channels displaying faster activation kinetics and

some slower.

RNA SEQUENCING IDENTIFIES HIGHLY
EXPRESSED AND ENRICHED
MECHANOSENSITIVE ION CHANNELS IN
MOUSE SINOATRIAL NODE

There are a multitude of mechanosensitive and
mechanoresponsive ion channels expressed in mammalian
cells. However, without knowledge of the expression level of
these channels in SAN, their relevance to SAN physiology is
entirely speculative. To guide our discussion of the molecular
mechanisms of SAN mechanosensitivity, we examined the
expression levels of Piezo1-2, LRRC8a-e, TRPCs, TRPVs,
TRPMs, K2P, and ClCs in a genome-wide RNA sequencing data
set derived from murine SAN (Figure 2). Hyperpolarization-
activated cyclic nucleotide-gated potassium channel 4 (HCN4) is
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robustly expressed and enriched inmurine SAN. Remarkably, the
most highly expressedmechanosensitive andmechanoresponsive
ion channels (or essential components) in SAN are Piezo1 (3.6-
fold greater than HCN4), LRRC8a [SWELL1/volume-regulated
anion channel (VRAC), 2.4-fold greater than HCN4], ANO1
(2.04-fold greater than HCN4), and TASK-1 (4.6-fold greater
than HCN4). Among TRP channels, the cells expressing
TRPM7 were the most present (2.2-folds more than cells
expressing HCN4), followed by cells expressing TRPM4,
TRPV2, TRPV4, and TRPC1. Regarding mechanosensitive K2P
channels, the number of counts for TREK-1 was lower than
the number of HCN4. RNA sequencing data did not detect
any cells expressing TRAAK. On the contrary, there were
more counts for TASK1 than HCN4. Among ClC channels,
the number of CICn3 counts was more than that for HCN4,
the opposite for CICn2. Furthermore, RNA sequencing
showed that the BK channel alpha subunit (KNCMA1) is
lowly represented in SAN. Based on these data, we will
discuss primarily those mechanosensitive/responsive ion
channels that are highly expressed in SAN relative to HCN4.
However, one limitation of mouse SAN is that they are the
only known species to have a negative chronotropic response
to sustained SAN stretch (56). Furthermore, please refer to
Table 1 as a resource for where the following ion channels
have been confirmed, how they were analyzed, and their
literature sources.

DIRECTLY MECHANOACTIVATED ION
CHANNELS

Piezo Channels
Piezo1 and Piezo2 ion channels are bona fide mechanoactivated
cation channels with established roles in the cardiovascular
system (57, 72) and provide another potential mediator of
SAN mechanosensitivity. These non-selective cationic channels
may be activated by shear stress from nearby blood flow
(laminar or turbulent) as well as membrane stretch induced by
increased blood pressure, and their activation is highly sensitive
to mechanical stimulus variation in frequency and duration
(73). In addition, they are non-selective and are therefore
permeable to Ca2+ and Na+, in addition to K+, and have a
relatively low threshold formechanoactivation (57, 74). Although
there have been no studies directly examining Piezo1 in the
SAN, it is expressed in cardiac tissue (54) and appears highly
expressed in the murine SAN (Figure 2). Moreover, Piezo1
plays an important role in the regulation of vascular tone (54)
and baroreceptor pressure sensing (55). Since Piezo1 channels
provide a depolarizing current in response to mechanoactivation,
they are good candidates for mechanically activated increases in
SAN automaticity and heart rate acceleration (72). Moreover,
Piezo1 channels activate rapidly (within milliseconds) and are
responsive to phasic, high-frequency mechanical inputs, such as
systolic contractions, but may also be modulated bymore gradual
mechanical inputs (75), such as increases in atrial filling pressures
and could therefore govern SAN mechanosensitivity on a beat-
to-beat basis and during periods of chronic stretch. Future studies

with targeted genetic deletion of Piezo1 from SAN may directly
test these hypotheses.

TREK-1 Channels
Cardiac cells have two-pore domain potassium currents with
little time- or voltage-dependency, also known as background
currents, that regulate resting membrane potential and cell
excitability (76). The family of cloned mammalian background
K+ channels includes 14 members encoded by different genes.
The members were divided into six subfamilies, TWIK, TREK,
TASK, TALK, THIK, and TRESK, on the basis of sequence
homology and functional similarities (77). Two-pore domain
potassium channels are typically insensitive to conventional
K+ channel blockers such as 4-AP, TEA, Ba2+, Cs+, and
glibenclamide (76), but they are sensitive to membrane stretch,
changes in extracellular or intracellular pH, fatty acids, and
inhalation anesthetic agents (e.g., isoflurane) and are regulated
by second messenger phosphorylation (76). Structurally, these
channels possess four transmembrane domains and two pore
domains; each subunit contains two pore-forming domains, so
two subunits can form a complete pore of the channels. Inmurine
SAN (Figure 2), two subtypes of two-pore domain potassium
channels are mainly expressed: stretch-activated K+ channel
TREK-1 (78–80) and the acid-sensitive K+ channel TASK1 (81–
83). Under basal conditions, the activity of the TREK channels is
low; however, applying negative pressure to the cell membrane
reversibly activates TREK-1 (84). In addition, laminar shear
stress stimulates TREK-1, whereas the cell shrinkage induced by
extracellular hyperosmolarity reduces the amplitude of TREK-1
(84). Indeed, it has been shown that TREK-1 mechanosensitivity
is mediated directly by the lipid membrane perturbations and
changes in plasma membrane tension (85). Given its expression
in the SAN (Figure 2), it is a candidate contributor to SAN
mechanosensitivity on a fast (<1 s) basis.

A number of studies on zebrafish and mice that inhibited
plasma membrane trafficking of TREK-1 by inactivating the
interacting proteins POPDC1 and POPDC2 revealed exercise-
and age-dependent sick sinus syndrome and atrioventricular
block (78, 86), suggesting a role for TREK-1 in cardiac
automaticity. Similarly, transgenic overexpression of a C-
terminal truncation of beta IV spectrin, which also disrupts
TREK-1 plasma membrane trafficking, results in sick sinus
syndrome (87). These studies provide indirect evidence of
TREK-1-mediated effects on SAN automaticity. However,
more direct evidence was provided by Unudurthi et al.
(69). The authors determined that TREK-1 protein is indeed
expressed in both murine and rabbit SAN, and TREK-1-
like background currents were reduced in patch-clamped
SAN cells isolated from cardiac-specific TREK-1 KO mice
(αMHC-Kcnk2f/f). Also, freely moving, telemetered αMHC-
Kcnk2f/f mice exhibited sinus bradycardia at rest, consistent
with studies by Hund et al. (87) where disrupted plasma
membrane TREK-1 trafficking induced sick sinus syndrome.
Paradoxically, isolated TREK-1 KO SAN cells exhibited increased
rather than decreased firing rates as compared with wild-
type (WT) SAN. Furthermore, exercise and treatment with
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TABLE 1 | Compiled mechanosensitive ion channels discussed in the review, their known expression and detection method, and respective references.

Channel Expression References

Piezo1 Mouse heart homogenate (PCR), Mouse SAN

(RNAseq)

(57); Present Publication

Piezo2 Mouse SAN (RNAseq) Present Publication

LRRC8a Mouse heart homogenate (PCR), rat and human

atria (PCR, WB, IHC, IP), Mouse SAN (RNAseq)

(58, 59) Present Publication

LRRC8b-e Mouse SAN (RNAseq) Present Publication

ClC-2 Rat SAN (PCR), guinea pig SAN (PCR, IHC, ICC),

mouse SAN (PCR, KO)

(26, 60, 61)

ClC-3 Mouse SAN (PCR), mouse atria (PCR, WB, KO), rat

and human atria (PCR, WB, IHC, IP)

(59, 60, 62)

TRPC6 Rat SAN (PCR), mouse SAN (PCR, ICC) (61, 63)

TRPM4 Mouse SAN (PCR, WB), mouse SAN (KO) (64, 65)

TRPM7 Mouse SAN (PCR, WB, IHC, ICC, KO) (66, 67)

TRPV1-4

TREK-1

Mouse SAN (RNAseq)

Rat and human SAN (PCR), mouse SAN (PCR, WB,

IHC, KO), rabbit SAN (WB)

Present Publication

(61, 68, 69)

TASK-1 Rat and human SAN (PCR) (61, 68)

TASK-2 Mouse, rat, and human SAN (PCR) (60, 68)

BK

ClCa2

Mouse SAN (WB PCR, and IF)

Mouse SAN (IF and RNA seq)

(70) Present Publication

(71)

ANO1 Mouse SAN (RNAseq) Present Publication

epinephrine uncovered stress-induced sinus pauses in αMHC-
Kcnk2f/f mice via unclear mechanisms, or possibly via variation
in sympathetic and parasympathetic activity. Finally, intrinsic
heart rates measured in telemetered αMHC-Kcnk2f/f mice with
atropine and propranolol treatment exhibited no significant
differences, suggesting that neurohumoral inputs are important
for TREK-1-dependent regulation of SAN automaticity. These
studies illustrate the incomplete understanding of TREK-1 and
its contribution to SAN mechanosensitivity, which requires
further investigation.

BK Channels
BK (large-conductance Ca2+- and voltage-activated K+)
channels are another promising contributor to SAN
mechanosensitivity and automaticity [reviewed in (88)].
These channels are characterized as having large single-channel
conductance and selective inhibitors and are regulated by voltage
and Ca2+ (70). Imlach et al. (89) determined that BK channel
inhibition via paxilline caused a reduction in heart rate in
isolated mouse and rat hearts but not in hearts from Kcnma1 KO
mice. This finding was confirmed at a cellular level when Lai et
al. (70) demonstrated that paxilline applied directly to isolated
mouse SAN cells reduced AP firing rate in WT mice but not in
Kcnma1 KOmice. Lastly, Zhao et al. (90) found that BK channels
are mechanosensitive to a small degree, showing an increased
activity in chick ventricular myocytes plated on stretched
extracellular matrix. Given this and their expression in murine
SAN (Figure 2), BK channels are a putative contributor to SAN
mechanosensitivity. In this case, SAN membrane depolarization,
increases in cytosolic Ca2+, and mechanical stimulation from
SAN/atrial systole all coincide to activate BK channels after the

peak of the SAN AP to augment AP repolarization, re-initiation
of diastolic depolarization, and heart rate acceleration (Figure 3).
Based on this model, mechanoactivation of BK channels must
be relatively rapid to contribute to SAN AP repolarization, as
published data suggest; however, it remains unclear if these
channels are rapidly or slowly mechanoactivated in SAN.

Mechanoresponsive Transient Receptor
Channels
Putative candidates for stretch-responsive non-selective cation
channels include TRP channels expressed in murine SAN:
TRPC1, TRPC3, TRPM4, TRPM7, TRPV2, and TRPV4
(Figure 2). A number of TRP channels that we found expressed
in murine SAN have been described as mechanoresponsive either
directly or indirectly (29, 91). However, thus far, only TRPM4
and TRPM7 have been studied in the context of SAN function.
TRPM4 is an intracellular Ca2+-activated, non-selective cation
channel, which is possibly indirectly mechanoresponsive (29).
At negative membrane potentials, TRPM4 activation allows
Na+ influx, leading to the membrane depolarization, whereas,
at the positive membrane potentials, TRPM4 allows K+ efflux,
leading to membrane repolarization (92, 93) (Figure 3). In
rodent SAN, TRPM4 is thought to contribute to diastolic
depolarization and a positive chronotropic response in response
to stretch (64, 65, 94). TRPM7, an ion channel and protein kinase
(chanzyme), permeable to both divalent cations, including
Zn2+, Mg2+, and Ca2+, as well as monovalent cations such as
Na+ and K+ (95, 96), is broadly expressed. TRPM7 is highly
expressed in murine SAN at the mRNA level (Figure 2) and
generates a robust current in both SAN and atrioventricular
node cells (66). Both cardiac- and SAN-targeted TRPM7 deletion
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impaired cardiac automaticity (67); however, the mechanism was
proposed to be via regulation ofHCN4 and If current rather than
a direct effect on diastolic depolarization via channel activity
(66, 67). While it is clear that none of these TRP channels are
intrinsically mechanoactivated (97, 98), it is possible that some
of these channels form part of a mechanosensory system (29)
and therefore may be mechanoresponsive within specific cellular
contexts (99). Testing these hypotheses would require directly
measuring these mechanoresponsive currents in isolated SAN, as
performed by Kohl et al. (4, 100), in genetic knock-outs of each
of these putative mechanoresponsive channels or using specific
pharmacologic inhibitors.

Volume-Regulated Anion Channels
Another mechanoresponsive ionic current that has been
implicated in the regulation of SAN automaticity is ICl,SWELL

or the swell-activated chloride current. This ionic current
may be carried by VRAC or ClC ion channels, both of
which are most commonly activated by cell swelling, which
is typically achieved by applying hypotonic or hypo-osmolar
solution to cells. However, in a few studies, anion or chloride
conductances were demonstrated by application of mechanical
forces, as described in further details below. VRACs are
activated by cell swelling, ubiquitously expressed in various
mammalian cell types and thought to be implicated in many
physiological and pathophysiological processes, including fluid
secretion, glutamate release, membrane potential regulation, and
apoptosis [summarized in the review article (101)]. Although the
biophysical properties of VRACs have been well-characterized
in multiple cell types over the course of decades, the molecular
identity of VRAC remained a mystery until the Patapoutian
(58) and Jentsch (102) groups identified leucine-rich repeat
containing 8a (LRRC8a, also known as SWELL1) as a required
component of a heterohexameric channel complex consisting
of various stoichiometries of LRRC8a, and/or LRRC8b,c,d,e.
Although the function of the VRAC current has been attributed
to cell volume regulation in response to relatively non-
physiological osmotic gradients, the broad tissue expression
pattern of LRRC8 proteins and presence of VRAC/ICl,SWELL

current in a multitude of cell types (103–108), including
cardiac myocytes (109–113) that are rarely exposed to hypotonic
swelling, suggests that the actual physiological role of VRAC
and LRRC8 channels remains unknown. Indeed, experiments
using magnetic dynabeads bound to monoclonal antibodies
for beta1-integrins demonstrated activation of ICl,SWELL in
cardiac myocytes in response to mechanical force applied via
magnetic fields (109, 110), supporting the notion that ICl,SWELL

is mechanoresponsive in cardiac cells. Therefore, given the high
mRNA counts of LRRC8a (SWELL1) and associated subunits
LRRC8b,c,d in murine SAN relative to HCN4 (Figure 2),
the contribution of SWELL1-mediated ICl,SWELL to pacemaker
activity and response to stretch warrants further investigation.

Elegant studies by Hagiwara et al. (114) demonstrated that
mechanical inflation of isolated rabbit SAN cells using positive
pressure via the patch-pipette in whole-cell configuration induces
an outwardly rectifying, stretch-activated anion current that

is inhibited by chloride channel blockers, 4,4′-diisothiocyano-
2,2′-stilbenedisulfonic acid (DIDs) and 9-anthracenecarboxylic
acid (9-AC). Also, this current exhibits a shift in reversal
potential consistent with a chloride conductance (115) and
has a sequence of anion permeability (I− > NO−

3 > Br− >

Cl− > F−) similar to VRAC or LRRC8 channels. ICl,SWELL

activates over the course of minutes (∼2min), which implies
responsiveness to tonic changes in membrane tension, as may
be expected from gradual atrial stretch-associated increased
venous return, but relatively unaffected by phasic changes
associated with beat-to-beat changes. Based on the outwardly
rectifying current–voltage relationship, and reversal potential
around the Cl− reversal potential (ECl = −30mV), we speculate
that inward chloride current at voltages below −30mV may
contribute to diastolic depolarization and SAN automaticity,
while outward current at voltages above−30mVmay contribute
to SAN AP shortening (116) (Figure 3). The integrated effects on
automaticity and the response to stretch, however, are likely to
be complex.

Similarly, Decher et al. found in guinea-pig atrial myocytes
that ICl,SWELL induced by osmotic swelling leads to a shortening
of AP duration that was inhibited by DCPIB (a relatively selective
ICl,SWELL inhibitor) (117). Furthermore, Seol et al. found the
ICl,SWELL can be activated by axial stretch in cardiomyocytes
isolated from the pulmonary vein (30, 59); and Egorov et al.
determined that ICl,SWELL activation in response to mechanical
stretch can depolarize resting membrane potential, generate
arrhythmic substrates, and confirm that it can also shorten APs
(59). In isolated rabbit SAN tissue, Arai et al. also showed that
application of various non-specific anion channel blockers that
can block VRACs, such as DIDs, caused a reduction in the
stretch-induced increase in firing rate at a high level of distension
(118). On the other hand, Cooper et al. (56) reported that the
application of 9-AC at 1 mM concentration had no effect on the
stretch-induced increase in heart rate when a significant stretch-
stimulus was applied, suggesting that ICl,SWELL may not underlie
the SAN response to mechanical stretch. However, application
of such high concentrations of 9-AC is highly non-specific
and therefore complicates the interpretation of this result.
Furthermore, the use of different stretching techniques between
the two studies may account for the differences observed.
These studies, albeit contradictory, indicate the potential role
of ICl,SWELL in modulating SAN function on a slow, non-beat-
to-beat basis, which may be present during periods of chronic
stretch, and demonstrate the need for additional experiments.
Since SWELL1 (LRRC8a) and LRRC8 subunit proteins are
now known to encode ICl,SWELL in numerous other cell types
(103–108), future studies examining cardiac specific and SAN
targeted Swell1 KO mice, transient knockdown in isolated
cells, and/or more specific small molecules such as DCPIB
will provide important new insights into the contribution of
ICl,SWELL and VRAC in cardiac automaticity and the response to
SAN stretch.

ClC Anion Channels
Other candidates for the molecular identity for ICl,SWELL in SAN
are the ClC ion channels. While both ClC-2 and ClC-3 have been
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studied in cardiac myocytes (26, 62), and ClC-3 has a highmRNA
count in murine SAN (Figure 2), only ClC-2 has been directly
studied with respect to regulating SAN automaticity. Huang et
al. (26) showed that inwardly rectifying chloride current induced
by osmotic swelling in isolated guinea-pig SAN pacemaker
myocytes could be blocked though intracellular dialysis of anti-
ClC-2 antibody, which did not affect other pacemaker currents,
including If, ICa,L, and IKs and the volume-regulated outwardly
rectifying Cl− current (ICl,vol). Anti-ClC-2 antibody reversed the
changes in SAN APs induced by osmotic swelling. The authors
also showed that ClC-2 KO (ClCN2−/−) mice demonstrate a
decreased chronotropic response to acute exercise stress when
compared with their age-matched ClCN2+/+ and ClCN2+/−

littermates. It was then concluded that targeted inactivation
of ClC-2 does not alter intrinsic heart rate but prevented the
positive chronotropic effect of acute exercise stress through
sympathetic regulation of ClC-2 channels. While ClC-2 channels
may contribute in part to cardiac ICl,SWELL, there have been no
studies examining the signaling mechanisms underlying ClC-
2 mechanoresponsivity.

ClC-3, on the other hand, has been proposed to be
mechanoresponsive in osteoblasts (119) and has been shown to
be expressed in cardiac myocytes, to underlie ICl,SWELL, and to
be involved in numerous pathophysiological processes, including
ischemic preconditioning, myocardial hypertrophy, and heart
failure (120). However, there have yet to be any studies directly
examining ClC-3 in SAN cells, and neither global nor cardiac
specific ClC-3 KO mice were noted to show differences in heart
rates (62).

Other Chloride Channels
Other possible contributors to SAN mechanosensitivity
are calcium-activated chloride channels (CaCCs) such
as anoctamin1 (ANO1) and chloride channel accessory 2
(ClCA2). Ye et al. (121) determined that ANO1 is expressed
in mouse ventricular myocytes and facilitates accelerated
AP repolarization. Given that ANO1 is implicated to be
mechanoresponsive (121) and expressed in murine SAN
(Figure 2), it is plausible that ANO1 may contribute similarly
to shorten pacemaker potentials, as Sung et al. speculated (122).
In addition, Mao et al. found that ClCA2 is highly expressed
in SAN tissue and, when mutated, induces mild conduction
block and ectopic pacemaker activity (71). While no study has
examined ClCA2 mechanosensitivity, given its calcium-activated
properties, it is likely to be affect by pressure-induced calcium
transients (123). Given these findings, it is feasible that calcium-
activated chloride channels could play a partial role in the
response of SAN beating rate to stretch.

CAVEOLAE-MEDIATED ION CHANNEL
MECHANOSENSITIVITY

Interestingly, besides ANO1 and ClCA2, all the aforementioned
ion channels affected by mechanical stress have been found to
associate with caveolae, which are abundantly expressed in SAN
cells (5, 124, 125) and are known to mediate cellular response
to mechanical stress by reserving “extra” cell membrane to

buffer mechanical forces and contribute to cell volume regulation
(126–128). Caveolae are small, 50- to 100-nm omega-shaped
membrane invaginations of the plasma membrane enriched by
sphingolipids, cholesterol, cavin proteins, and caveolin proteins.
Caveolin-3 (129) is the dominant isoform in muscle cell caveolae;
however, caveolin-1 has also been found in atrial myocytes
(129, 130). It has been shown that caveolae compartmentalize
multiple ion channels involved in SAN pacemaker activity, such
as canonical contributors to the SAN AP such as HCN channels
(131), L-type calcium channels, and Kv1.5 channels (132), as
well as anion channels such as SWELL1 (LRRC8a), ClC-2, and
ClC-3 (59, 103, 105, 108). Stretch-induced disruption of caveolae
may participate directly or indirectly via localization of other
signaling factors (133) in the activation of mechanoresponsive
ion channels, including VRAC and ClC ion channels responsible
for ICl,SWELL (134). Specific surface membrane proteins may not
only affect changes in membrane potential but also directly or
indirectly regulate intracellular Ca2+ cycling; on the other hand,
intracellular Ca2+ cycling proteinsmay also regulate Vm via Ca2+

modulation of surface membrane electrogenic molecules (135).

MECHANOCHEMICAL SIGNAL
TRANSDUCTION

While changes in cardiac morphology are attributed to
mechano-electrical signal transduction via regulating the
activity of mechanosensitive ion channels, mechanochemical
signal transduction could be described as a mechano-induced
regulation of various second messenger signaling pathways that
are ultimately translated into changes of calcium handling and
ion channel activity. Here, we focus on mechano-dependent
regulation of ROS, cAMP, and IP3 signaling pathways (Figure 4).
It should be noted that mechano-electrical andmechanochemical
feedbacks are not mutually independent but rather interact in
a complex and dynamic manner as described below. While
mechanochemical signal transduction pathways could be
involved in the regulation of various ion channels via different
post-translational modifications (such as phosphorylation,
nitrosylation, and oxidation), activation of mechano-electrical
feedback can significantly modify intracellular ion composition
affecting intracellular Ca2+ signaling. Below, we briefly
summarize several key mechano-chemical signaling pathways
that could be involved in SAN mechanosensitivity. Though
the role of these pathways has not been demonstrated in SAN
mechanosensitivity, it is feasible that they have an impact on
mechanical heart rate modulation.

Petroff et al. (33) were the first to use confocal microscopy
to monitor subcellular Ca2+ events in cardiomyocytes
during stretch and to provide direct evidence that stretch
modulates the elementary Ca2+ release process, the Ca2+

spark. Stretch-induced increases in Ca2+ spark frequency are
a phenomenon consistently observed in myocytes (136, 137),
also in response to other mechanical stimuli, such as shear
stress and afterload (123). A single myocyte stretch event
immediately—within milliseconds—triggers a burst of Ca2+

sparks, which is reversible and declines within seconds
(137, 138). While in ventricular myocytes these sparks
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FIGURE 4 | Proposed effect of mechanical loading on caveolae-associated signaling pathways and their effect on sinoatrial node calcium clock function. Mechanical

stress: (A) Activates X-ROS signaling via NOX2 (NAPDH oxidase 2) which stimulates CaMKII activity and upregulates RyR (ryanodine receptor) function leading to an

accelerated calcium clock, as well as sensitizes SAC (stretch-activated channels) for increased activation. (B) Displaces the GPCR alpha subunit, activating AC

(adenylyl cyclase)-mediated conversion of ATP to cAMP, which activates PKA leading to an accelerated calcium clock via RyR activation and PLB (phospholamban)

inhibition of SERCA (sarcoplasmic reticulum Ca2+-ATPase). (C) Induces PLC (phospholipase C)-mediated conversion of PIP2 to IP3 (inositol triphosphate), which

activates IP3 receptors (IP3R) and an accelerated calcium clock and also activates VRACs (volume regulated anion channels). All three pathways lead to accelerated

cardiomyocyte calcium cycling, LCR (local calcium releases) rate, and increased activity of mechanosensitive channels.

are restricted in time and space, unique patterns of RyR
expression and the presence of bridging RyR groups between
large clusters demonstrated in the SAN cells (139–141)
could lead to the generation of propagating LCR events as
demonstrated in modeling studies by Stern and colleagues
(141). This mechanism of stretch-induced increase in Ca2+

spark activity might be also present in the SAN and potentially
contribute to mechanical regulation of Ca2+-clock activity
(Figure 4).

NOX2–Reactive Oxygen Species
Mechanical modulation of Ca2+ spark activity was linked
to stretch-induced activation of ROS signaling that is also
graded in a stretch-dependent manner (142). The stretch-
induced NOX2-dependent ROS response sensitizes RyR
to Ca2+ possibly through direct oxidation but may also
do so indirectly via oxidation of calmodulin, displacing
it from the RyR and promoting activation (143) or via
RyR phosphorylation by oxidized CaMKII (144). These
pathways of mechano-transduction are termed X-ROS signaling
and require an intact microtubule network and functions
independently of stretch-activated channels (SACs) and
transsarcolemmal Ca2+ influx (33, 137). Furthermore, X-ROS
signaling is confined to dyads (the cytosolic space between
the sarcolemmal and SR membranes) (145) and has been
proposed to be an important regulator of beat-to-beat adaptation

to hemodynamic load in working cardiomyocytes (142).
However, these pathways have not been confirmed specifically
in SAN myocytes, but they are known to contain the necessary
components (146).

In addition to regulation of Ca2+ signaling, the X-ROS
pathway has also been found to be involved in the modulation
of mechanoresponsive ion channels as well (147). Patch-clamp
studies on stretched ventricular myocytes revealed NOX-
dependent modulation of SACs (148), and this modulation
may be facilitated by co-localization of NOX2 and SAC
in caveolae (149, 150). Although SACs are not involved
in X-ROS signaling per se, these channels may contribute
to stretch-induced modulation of AP as discussed above
for mechano-electrical signal transduction. Additionally,
ICl,SWELL activated by osmotic swelling has been found to
be controlled by an angiotensin II-dependent ROS cascade
that is previously implicated by integrin stretch (113). This
is consistent with persistent activation of ICl,SWELL and ROS
present in several models of cardiac disease. Furthermore,
Gradogna et al. demonstrated that LRRC8 channel subunits
and their currents are differentially modulated by oxidation
depending on LRRC8 channel subunit composition (151). Given
that inflammation and oxidation are present in the setting of
hypertension, it is possible that SAN mechanosensitivity could
differ from other cardiac regions due to varying SWELL1 subunit
expression (151).
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Nitric Oxide Synthase
Nitric oxide synthase (NOS) also plays a discrete role facilitating
cardiac stretch as Petroff et al. demonstrated that stretch increases
nitric oxide (NO) production with concurrent increases in Ca2+

spark frequency and transient amplitudes (33). Pharmacological
inhibition or genetic deletion of both neuronal NOS (nNOS) and
endothelial NOS (eNOS) demonstrates that subtypes contribute
to the increase of systolic Ca2+, but only nNOS participated in the
afterload induced Ca2+ sparks (152). Due to the short lifetime of
NO, its effective signaling range is limited and dependent on the
diffusion distance, amount produced, and the buffer capacity of
the cell (33). Therefore, one possible explanation for the distinct
effects of nNOS vs. eNOS-derived NO on Ca2+ sparks is their
different subcellular localizations. While eNOS is localized at the
caveolae (153, 154), nNOS is preferentially localized at the SR
membrane in the vicinity of RyR, and nNOS increases RyR Ca2+

leak, directly by S-nitrosylation or indirectly via CaMKII (155).
In addition, nNOS facilitates SERCA Ca2+ reuptake (155), which
may compensate for the increased SR Ca2+ leak and reduced
basal ICa,L (156). In regard to the SAN, in a study by Vila-
Petroff et al. using exogenous NO donors, high levels of NO
induced a large increase in cGMP and a negative inotropic effect,
while low levels of NO increased cAMP and caused positive
inotropy via cGMP-independent activation of adenylyl cyclase
(157). Furthermore, it has been shown that inhibition of NOS
has a negative chronotropic effect on SAN activity and that NOS
activation has an opposite effect, indicating that SAN function
is somewhat dependent on NOS activity (158, 159). However,
unlike X-ROS signaling, NO mechanosensitivity operates on a
slower time scale of minutes rather than seconds (33), suggesting
that it may play a more significant role in conditions where
chronic stretch is a factor (i.e., hypertension and chamber
filling pressures).

Atrial Natriuretic Peptide
Another important factor in myocyte stretch signaling is atrial
natriuretic peptide (ANP) (160). Similar to X-ROS, ANP is a
mechanosensitive signaling factor that is activated by a caveolae
and angiotensin II-dependent pathway (161). ANP has been
found to enhance reflex bradycardias (162); therefore, it is likely
that ANP has a compensatory mechanosensitive role on the
SAN, acting to restore it to normal function in response to
elevated stretch. ANP has been found to shift midpoint activation
of pacemaking If current toward less negative potentials (163)
and thus accelerate SAN rhythm. ANP is also able to increase
intracellular cGMP and cAMP levels (163), which play a crucial
role in SAN automaticity via phosphorylation of the calcium
clock proteins (50, 164). Indeed, ANP has been identified as a
critical regulator of SAN automaticity (38, 165).

Inositol Trisphosphate
IP3Rs are another type of SR Ca2+ release channels, which are
activated by IP3 through the hydrolysis of phosphatidylinositol-
(4, 5)-bisphosphate by phospholipase C and thus may also
contribute to the LCR generation via hypersensitization of RyRs.
They are highly abundant in atrial and SAN myocytes (166–
168), and recent studies demonstrated that this signaling pathway

might be confined within specific microdomains, including lipid
rafts and dorsal ruffles (169). Stimulation of IP3Rs was found
to accelerate spontaneous beating rate of the mouse SAN likely
through regulation of Ca2+ spark activity and RyR function
(170). In rabbit ventricular myocytes, upregulation of IP3R-
induced Ca2+ releases was detected and linked to enhanced
spontaneous SR Ca2+ releases (170). It has been shown that
mechanical stretch can directly activate phospholipase C with
production of IP3 (171), which may subsequently modulate SAN
automaticity (Figure 4).

Mechanochemical Signal Transduction and
Caveolae
While there are numerous mechanochemical signaling factors
that may affect SAN automaticity, they are united as facilitators
of cardiac mechano-transduction through their association with
caveolae membrane structures (Figure 4) (123, 172–174). For
example, NOS (173), NOX2-mediated ROS (150), and calcium
dynamics (123) are all affected by the presence of caveolae,
which are suspected to play an inhibitory role on these factors,
which are disrupted by shear stress. Digging deeper, angiotensin
II mediates activation of cAMP production (175) and X-ROS
through caveolae membrane structures (176), further linking the
discussed factors to these structures. The suspected regulation
of these signaling factors of SAN automaticity by caveolae
may explain the connection between caveolae loss and cardiac
pathology (177) as chronic shear stress depletes caveolae (178),
allowing these factors to activate constitutively and/or enter
unusual feedback loops. For example, as shear stress increases,
caveolae flatten and release NOS, which should reduce the initial
mechanical stimuli and allow caveolae to reform. However, if the
mechanical stimulus is prolonged, membrane caveolae density
will decrease, eliminating a crucial regulator of nNOS activity.
Without this negative regulation, these signaling factors can enter
positive feedback loops, inducing the generation of excess ROS
from sarcolemmal and mitochondrial sources that can ultimately
lead to changes in myocyte electrophysiology as calcium kinetics
are subsequently altered. For these reasons, it is highly plausible
that SAN caveolae may regulate downstream signaling factors
that are known to alter SAN automaticity and consequently
heart rate.

PATHOPHYSIOLOGY

While physiological stretch provides a critical autoregulatory
feedback loop to adjust SAN pacemaker rate upon hemodynamic
changes, pathophysiological stretch (and physiological stretch
applied to diseased myocardium) can lead to SAN dysfunction
and trigger cardiac arrhythmias (6, 7, 179). It has been shown
that conditions associated with atrial pressure and/or volume
preload/afterload, including heart failure, atrial fibrillation,
hypertension, and valvular disease, are common comorbidities
linked to SAN dysfunction or sick sinus syndrome (23, 180–183).
Sick sinus syndrome is manifested clinically as arrhythmias that
can include sinus bradycardia, sinus pauses or arrest, sinoatrial
exit block, or alternating brady- and tachyarrhythmias (184).
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These manifestations can lead to chronotropic incompetence,
which is an inadequate heart rate response to exercise or
stress (184). Electrophysiological mechanisms that underlie
SAN dysfunction in the setting of pathologically elevated
atrial stretch are not completely understood and may vary for
different conditions. The mechanisms could include abnormal
functioning, expression, and/or regulation of the components
of mechano-electrical and mechanochemical signal transduction
and may be also conditioned by structural remodeling of
the SAN.

Importantly, in the setting of sinus node dysfunction
when SAN is not able to maintain physiologically robust
rhythm, mechanical stretch can enhance automaticity in latent
atrial pacemakers or provoke arrhythmogenic activity in the
working myocardium to form ectopic foci and trigger atrial
fibrillation (30, 185, 186). Though distribution patterns of
stretch-induced atrial ectopic foci are not currently known,
pulmonary veins represent the most common source of
atrial fibrillation ectopy (187, 188). Mechanical stretch of
pulmonary vein myocardium has been shown to promote
arrhythmogenic activity from this region and may initiate
atrial fibrillation (186, 189). Recently, we have demonstrated
that stretch-induced activation of ICl,SWELL in rat pulmonary
veins leads to membrane depolarization and decreased AP
amplitude, which trigger conduction discontinuities and both
ectopic and reentrant activities (30, 59). We also found
that downregulation of caveolin-3 protein expression and
disruption of caveolae structures during chronic hypertension in
spontaneously hypertensive rats significantly facilitates activation
of ICl,SWELL and increase the sensitivity of pulmonary vein
in response to stretch to 10- to 50-fold (59). The increased
sensitivity to stretch could be linked to the presence of
constitutively active ICl,SWELL that has been previously reported
in failing (a pacing-induced congestive heart failure model)
canine ventricular myocytes (111) and in human atrial
myocytes obtained from patients with right atrial enlargement
and/or elevated left ventricular end-diastolic pressure (112).
Similar results of constitutively (i.e., without hypotonic stress)
active, DIDS-sensitive ICl,SWELL current was shown in cultured
neonatal rat ventricular hypertrophic myocytes induced by cyclic
mechanical stretch (190) and in mouse ventricular myocytes
isolated from hearts subjected to 4 weeks’ transverse aortic
constriction (TAC) (191).

Pressure overload for 8 weeks using the TAC mouse model
demonstrated a smaller basally active ICl,SWELL as well as
a significantly reduced hypotonic solution-induced ICl,SWELL

(191). Similar decreases in hypotonic ICl,SWELL current without
basal activation are observed in rabbit hypertrophied ventricular
cells after treatment of volume and pressure overload (192)
and spontaneous hypertrophic ventricular cells from caveolin-3-
deficient mice (193). These may indicate that in an early adaptive
stage of cardiac pressure/volume overload, ICl,SWELL is basally
activated by persistent mechanical stretch of the cell membrane
and thus contributes to SAN tachycardia as well as facilitate
atrial ectopy, as discussed earlier. However, attenuation of
ICl,SWELL mechanical sensitivity by long-term mechanical stretch
of the plasma membrane may contribute to depressed SAN
function and contribute to transformation to a non-adaptive

stage. Indeed, our preliminary findings indicate that in 8-week
post-myocardial infarction mouse model of heart failure, mRNA
protein expression levels of ClC-2 and ClC-3 mechanosensitive
chloride channels are significantly downregulated within the
intercaval region of the right atrium, which correlates with a
significantly enhanced cardiomyocyte membrane tension and
downregulation of caveolae structures (194).

Pathological stretch can also affect mechanochemical signal
transduction and contribute to stretch-mediated ectopic foci
and atrial arrhythmogenesis. Stretch-induced activation of ROS
systems via activation and upregulation of NADPH oxidases
NOX2 and NOX4 have been linked to an increase in oxidation
of RyRs and concomitant rise in spontaneous Ca2+ release
event frequency, elevated Ca2+ leak, and significant increase in
atrial fibrillation susceptibility (195). It should be also noted
that chronic mechanical stretch may dramatically attenuate
the protein expression profile of various ion channels and
Ca2+-handling proteins, including those involved in mechano-
electrical and mechanochemical signal transductions, further
contributing to SAN dysfunction and atrial arrhythmogenesis.

SUMMARY

Emerging evidence demonstrates that mechano-electrical
and mechanochemical signal transduction pathways could
be implicated in mechanical modulation of SAN function
and thus represent an important mechanism for intrinsic
regulation of cardiac rhythm. This adds another level of
complexity to SAN automaticity and could be described as a
“mechanics-clock” component of the pacemaker system (6, 7).
Though the exact components of mechano-electro-chemical
signal transduction involved in SAN mechanosensitivity are
currently unknown, as summarized in the current review,
these may involve a number of complex signaling feedback
mechanisms that alter the function of both the voltage and
calcium pacemaker clocks. As discussed, these mechanisms
may interplay with each other, providing a precise attenuation
of the SAN beating rate in response to various mechanical
stimuli. Disruption of SAN function and regulation has
been observed with multiple pathological conditions that
are associated with atrial pressure/volume overload and
thus may involve the remodeling of the components of
the mechano-electro-chemical feedback loops in the SAN.
Identification of such components, their impact into SAN
pacemaking, and pathological remodeling may provide new
therapeutic targets for the treatment of SAN dysfunction and
associated rhythm abnormalities. Moreover, linking molecular
components of mechano-electro-chemical signaling to certain
cellular nanodomains and nanostructures may introduce a
novel framework for therapeutic approaches for pacemaker
dysfunction treatment targeted at preventing the degradation of
cardiac cytoarchitecture.
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