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Despite recent advances in chronic heart failure management (either pharmacological or

non-pharmacological), the prognosis of heart failure (HF) patients remains poor. This poor

prognosis emphasizes the need for developing novel pathways for testing new HF drugs,

beyond neurohumoral and hemodynamic modulation approaches. The development of

new drugs for HF therapy must thus necessarily focus on novel approaches such as the

direct effect on cardiomyocytes, coronary microcirculation, and myocardial interstitium.

This review summarizes principal evidence on new possible pharmacological targets for

the treatment of HF patients, mainly focusing on microcirculation, cardiomyocyte, and

anti-inflammatory therapy.
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INTRODUCTION

Despite significant improvements in cardiovascular (CV) mortality over the last decades, CV
disease is the main reason for death in several countries. CV therapies improved the survival of
patients with CV disease, but, at the same time, increased the number of subjects affected by chronic
CV conditions such as heart failure (HF).

Several clinical randomized studies assessed the efficacy of drug therapies in patients with HF.
Residual CV mortality, however, remains considerable (1), potentially because novel therapeutic
options are too often pursued with an “old” approach, with non-targeted and non-personalized
therapies, not based on individual pathophysiology. Each patient affected by HF, instead, may
be characterized by different etiologies, clinical characteristics, and comorbidities, each one to
be possibly considered (2). Benefits from drugs based on neurohumoral and hemodynamic
modulation (3) quickly reach a therapeutic plateau, with very limited possible additional benefit
from incremental doses or additional drugs based on the same pathway. Recently, a novel paradigm
has been reported in HF with preserved ejection fraction (HFpEF). Some comorbidities (obesity,
diabetes mellitus, and chronic obstructive pulmonary disease) drive myocardial dysfunction
through coronary microvascular endothelial inflammation in HFpEF. These comorbidities lead
to a systemic proinflammatory state causing coronary microvascular endothelial inflammation
(4). The development of new drugs for HF therapy must be necessarily focused on additional
targets (anatomical or structural as cardiomyocyte and myocardial interstitium, and physiological
or functional as microcirculation and inflammation) [(5); Figure 1] above all for HFpEF.
Detailed knowledge of the interstitium and of cardiomyocyte biology becomes therefore essential;
we thus briefly report principal evidence on new possible pharmacological targets for the
treatment of HF patients (Table 1), mainly focusing on microcirculation, cardiomyocyte, and
anti-inflammatory therapy.

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.665797
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.665797&domain=pdf&date_stamp=2021-05-05
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:opsfco@tin.it
https://doi.org/10.3389/fcvm.2021.665797
https://www.frontiersin.org/articles/10.3389/fcvm.2021.665797/full


Correale et al. New Targets in HF

FIGURE 1 | The development of new drugs for HF therapy must be necessarily focused on additional targets, such as cardiomyocytes, coronary microcirculation, and

myocardial interstitium.

MICROCIRCULATION

A functional and “healthy” coronary microcirculation is essential
for myocardial activity and effectiveness. It plays a pivotal
role in the regulation of coronary blood flow in response to
cardiac oxygen requirements. Impairment of this mechanism
is defined as coronary microvascular dysfunction (CMD) (26).
Microcirculatory anomalies can be often found in HF patients
(27) and parallel disease progression in ischemic HF (28).
CMD is associated with the development of HFpEF. In fact,
decreased bio-accessibility of nitric oxide (NO) in endothelial
dysfunction plays an important role in HF (29), mainly in HF
with (HFpEF) (30). In HFpEF models, coronary microvascular
endothelial inflammation reduces nitric oxide bioavailability,
cyclic guanosine monophosphate content, and protein kinase G
(PKG) activity in adjacent cardiomyocytes (31).

Recent reports suggest that the microcirculation has
additional roles in supporting a healthy microenvironment
(6). Experimental models have showed that restoring a
healthy microcirculation and endothelium could be a possible
therapeutic approach to treat HF.

Coronary perivascular fibrosis and the consequently impaired
coronary blood flow may represent a new therapeutic target to
improve coronary microcirculation (32).

Finally, there is emerging evidence about new translational
drugs on themicrocirculation (including growth factors and non-
coding RNA therapeutics, as well as the targeting of metabolites
or metabolic signaling) (6).

Forthcoming trials would better assess coronary
microcirculation by cardiac magnetic resonance imaging
(cMRI) (33, 34).

INTERSTITIUM

The knowledge of interstitium biology is essential for the
development of new drugs for HF, providing several potential
therapeutic targets in the case of HF: fibroblasts, collagen, and
regulatory enzymes regulating collagen synthesis. Myocardial
interstitium is not an inert scaffold, but rather an elaborate and
active micro-habitat within the myocardium (35). HF fibrotic
changes in the interstitium and near capillaries are featured
by extracellular matrix (ECM) expansion and myofibroblast
secretion of type I collagen. The level of collagen type I
crosslinking is related to increased filling pressures in HF patients
(36). A new cMRI technique, the T1 mapping (measures the
extracellular volume fraction, ECV in human myocardium)
permits the distinction of different components of interstitium
(cardiomyocytes and connective tissue) and a more precise
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TABLE 1 | New possible pharmacological targets and promising drugs for the

treatment of HF patients.

Area target Targets New

promising

drugs

HF form References

Microcirculation Targeting EC

metabolism

Targeting EC nutrient

transport

Only translation

drugs

HFpEF (6)

Interstitium Myocardial interstitial

fibrosis

Chymase

Sacubitril/

valsartan;

Empagliflozin

Fulacimstat

HFrEF

HFpEF

(7)

(8)

(9)

Cardiomyocyte

(calcium

handling)

SERCA2a Istaroxime (10)

Cardiomyocyte

(nitroxyl donors)

SERCA2a BMS-986231 AHF-

HFrEF

(11, 12)

Mitochondria Partial adenosine A1

receptor

Neladenoson HFrEF;

HFpEF

(13, 14)

Cytochrome C Elamipretide HFrEF (15)

Signaling

pathways

Soluble guanylate

cyclase (sGC)

Vericiguat HFrEF;

HFpEF

(16–18)

Arginine vasopressin

signaling

Pecavaptan HFrEF;

HFpEF

(19)

Myofibrillar

pathway

Myosin Omecamtiv

mecarbil

HFrEF (20–23)

Inflammation Interleukin-1 receptor Canakinumab HFrEF (24)

Interleukin-1 receptor Anakinra HFrEF (25)

definition of myocardial fibrosis (37). ECV can be used as a tool
in phase II trials to assess the efficacy of novel anti-myocardial
fibrosis therapeutics (38).

Myocardial interstitial fibrosis (MIF) is very common in
patients with HFpEF and with HFrEF. It is related to cardiac
function impairment and poor outcome. It is determined by the
changes in the quantity and quality of collagen fibers and in the
ECM (39).

Pharmacological drugs formerly utilized with demonstrated
safety may also be interesting for the treatment of MIF by
means of new mechanisms. The sacubitril/valsartan and the
sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin
decreased MIF in HF mice with diabetes and improved LV
function (7, 8). However, sacubitril/valsartan, in a recent
phase III clinical research trial in patients with HFpEF,
showed just a marginal reduction of the primary composite
endpoint of total hospitalizations for HF and death from
CV origin (40). Currently, SGLT2 inhibitors are still under
evaluation to determine if they can effectively reduce MIF
in humans.

An antifibrotic action was also demonstrated by pirfenidone
and tranilast, through the inhibition TGF-β signaling. Prolonged
usage of such drugs, however, may cause hepatic toxicity andmay
culminate in liver failure, therefore further studies are necessary
to search for new effective TGF-β pathway targets, but safely too,
for MIF reduction (41).

Chymase is a chymotrypsin-like serine protease that is
secreted from activated mast cells and other cells, such as
cardiomyocytes in the case of tissue damages (42, 43). Chymase
is produced after secretion and produces or activates locally
profibrotic factors, such as angiotensin (Ang) II, transforming
growth factor (TGF) β, and matrix metalloproteinases that take
part in adverse remodeling post-MI (44). For these reasons it
can be a potential new target for post-MI therapy. Fulacimstat
is an orally existing chymase inhibitor which has a multi-
functional anti-remodeling effect that reduces LV disfunction
after myocardial infarction (9).

CARDIOMYOCYTE

Calcium Handling
Abnormal handling of intracellular Ca2+ in cardiomyocytes
plays an important role in impaired cardiac contractility of HF.
Ca2+ homeostasis is maintained in cardiomyocytes by ryanodine
receptor and Ca-calmodulin kinase IIdelta (CaMKIIdelta), acting
separately to manage cardiac Ca2+ handling, which was impaired
in cardiac dysfunction (45). Until now there are only translational
drugs. However, istaroxime may be a promising drug in the
future. Istaroxime is a molecule with a luso-inotropic effect
in HF, across the stimulation of SERCA2a ATPase activity
and the augmentation of Ca2+ uptake into the sarcoplasmatic
reticulum (SR) by mitigating the phospholamban inhibitive
effect on SERCA2a in a cAMP/PKA independent way (46). In
patients affected by HFrEF during hospitalization for AHF, a 24-
h infusion of istaroxime improved the parameters of diastolic
and systolic cardiac function without major cardiac adverse
effects (10).

SERCA2a is in charge of sequestrating cytosolic Ca2+ back
into the sarcoplasmic reticulum, enabling an effective uncoupling
of actin-myosin and upcoming ventricular relaxation. Previous
studies have proved that the expression of SERCA2a is
downregulated in CHF, which later leads to serious systolic and
diastolic function impairment.

JTV519 (K201) consolidates the closed state of type-
2 ryanodine receptor (RyR2) by improving its affinity for
FKBP12.6, which inhibits the leakage of Ca2+. K201 prevents
spontaneous diastolic Ca2+ issued during Ca2+ overload by a
double inhibitory effect on SR Ca2+-ATPase (SERCA2a) and
RyR2, with no antiarrhythmic impact (47).

Another potential target for new HF drugs may be Na+-
H+ exchanger-1 (NHE-1). Treatment with cariporide, an NHE-
1 inhibitor, induced the reversal of hypertrophy and HF and
the attenuation of apoptosis in cardiomyocytes (48), with some
antiarrhythmic effects (49).

Nitroxyl (HNO) donors are compounds which improve
cardiomyocyte function by direct improvement of SR Ca2+

cycling. BMS-986231 demonstrated a favorable safety and
hemodynamic profile in patients hospitalized with advanced
HF (11). An ongoing phase II randomized placebo-controlled
clinical trial (StandUP-AHF) was designed to provide evidence
of tolerability and efficacy of BMS-986231 in patients with
HFrEF (12).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 May 2021 | Volume 8 | Article 665797

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Correale et al. New Targets in HF

Nucleotide-binding oligomerization domain-containing
protein 1 (NOD1) is a recent accredited innate immune sensor
implicated in CV diseases. The NOD1 pathway was over-
expressed in human and murine failing myocardia. Val-Blasco
et al. (50) demonstrated that NOD1 may modulate intracellular
Ca2+ mishandling in HF, appearing as a novel target for
HF therapy.

Mitochondrial Function
In HF patients, several mitochondrial anomalies have been
found. Impaired mitochondrial electron transport chain activity,
enhanced reactive oxygen species (ROS) formation, changed
metabolic substrate usage, abnormal mitochondrial dynamics,
and modified ion homeostasis are currently being studied (51).

Neladenoson and elamipretide are the most promising
drugs affecting mitochondrial function. Neladenoson, the novel
partial adenosine A1 agonist, seems to be harmless, with no
atrioventricular conduction or neurological side effects in HFrEF
patients (13). In particular, the treatment was not related to
dose-dependent favorable effects on cardiac function or clinical
outcome but was linked with a dose-dependent renal function
reduction (14) and no significant change in exercise capacity in
patients with HFpEF (52).

Elamipretide is a water-soluble tetrapeptide capable of
entering the inner mitochondrial membrane and joining with
the phospholipid cardiolipin (53). This association leads to
a stabilized cytochrome c conformation in order to promote
effective electron transport in mitochondria and improve
oxidative phosphorylation (54). LVEF, LV end diastolic pressure,
cardiac hypertrophy, myocardial fibrosis, and cardiac ATP
synthesis improvement in animal models and humans in
treatment with elamipretide was demonstrated (55–57). On the
other hand, in the PROGRESS-HF (phase 2) trial, elamipretide
did not show a statistically significant change of LV end systolic
volume in stable HFrEF patients compared with placebo after
4 weeks (15). More clinical studies of elamipretide in other HF
phenotypes are required to assess its potential role in HF. At the
same time longer term trials in HFrEF may be necessary too.

Capadenoson, a partial adenosine A1R agonist through
inhibition ofmPTP opening, might affect mitochondrial function
(58). Another potential agonist (VCP746), an atypical A1AR
agonist, has been investigated in order to develop ligands
that promote A1AR cytoprotection in the absence of adverse
hemodynamic effects (59).

Inhibition of mitochondria permeability transition pore
(mPTP), in failing cardiomyocytes with cyclosporine A,
maintained the expression of cytochrome c oxidase, increasing
mitochondrial cytochrome c oxidase-dependent respiration and
ATP synthesis (60). Sevoflurane, a volatile anesthetic, increases
the threshold of calcium-induced mPTP opening (61).

Mitochondria are an important ROS source, and progress
has been achieved to understand the way the matching of
energy supply and demand across calcium handlingmight impact
mitochondrial ROS development and removal. In mitochondria,
oxidative stress generates a switch toward fission that leads
to mitochondrial fragmentation and cell death. Doxycycline
defends mitochondria against oxidative stress, and regulates the

mitochondrial function causing a change of equilibrium toward
fusion, so it might be an innovative therapeutic approach for
HF (62).

Ca2+/calmodulin-dependent protein kinase II (CaMKII) has
a crucial role in the progression of HF and in the generation of
myocardial mitochondrial injury. Inhibition of CaMKII avoids
Ca2+ intake toward mitochondria and decreases destruction of
these organelles. Therefore, rising evidence supports the targeting
of CaMKII and the mPTP as a way to preclude tissue damage.
H2S-induced inactivation of CaMKII also may allow for a new
therapeutic approach for CV diseases (63).

This approach might provide new possibilities to improve
mitochondrial function in HF by fixing cytosolic and
mitochondrial ion transporters. So, very specific molecules such
as the preclinical CGP-37157, or ranolazine and empagliflozin
(64), may be effective. Ranolazine decreases pressure overload-
induced cardiac hypertrophy and improves cardiac function
by preserving Na+ and Ca2+ handling (65). Empagliflozin
decreases CaMKII activity (66). However, mitochondrial
biogenesis, the production of ROS, and maintenance of cellular
iron homeostasis need further studies to confirm their possible
role for novel therapies in HF (67).

The GLP-1 receptor agonist liraglutide might have a
therapeutic role in the modulation of cardiac inflammation.
Liraglutide improved IL-1β-induced cellular ROS production
and NADPH oxidase (NOX)-4 expression. Furthermore,
it preserved cardiomyocytes from IL-1β-induced reduced
mitochondrial membrane potential and decreased ATP
production (68).

Melenovsky et al. demonstrated that, in the presence of
profoundly impaired mitochondrial function in HF patients,
myocardial iron deficiency may aggravate mitochondrial
metabolism and ROS handling. So, the restoration of good levels
of myocardial iron might help to ameliorate the bioenergetics of
HF (69).

Acetylation of mitochondrial proteins was demonstrated to
play an active role in the pathogenesis of cardiac diseases.
Proteins are deacetylated by NAD+-dependent deacetylases so-
called sirtuins (SIRTs). SIRT3, with the regulation of the activity
of enzymes involved in ATP production in the mitochondria,
might keep the equilibrium between cardiac function and
energy consumption. Downregulation of SIRT3 may lead to the
unbalance of mitochondrial bioenergetics related to impaired
mitochondrial function. Therefore, the preservation of SIRT3
activity may be a possible approach to avoid pathological
consequences of cardiopathies (70).

Myocytes have control mechanisms to maintain functional
mitochondria with the removal of compromised mitochondria
through specialized autophagy. Huang et al. observed that
IGF-IIR signaling impaired expression and circulation of
dynamin-related protein (Drp1) andmitofusin (Mfn2) (71). IGF-
IIR activates JNK-mediated Bcl-2 phosphorylation to stimulate
ULK1/Beclin 1-dependent autophagosome development.
Unreasonable mitochondrial fission by Drp1 improved the
Rab9-dependent autophagosome identification and swallowing
of damagedmitochondria and eventually reduced cardiomyocyte
viability. These results showed the link between Rab9-dependent
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autophagosomes and mitochondrial fission in cardiomyocytes,
which gives another potential therapeutic approach.

Signaling Pathways
Reduced NO bioavailability leads to a relative sGC deficiency and
a reduction in cGMP synthesis, essential for normal cardiac and
vascular function (72–74). Cyclic GMP ameliorates endothelial
function and reduces cardiac fibrosis. Direct NO-independent
sGC stimulation might provide a new chance to address the
relative cGMP deficit in HF. Vericiguat is a novel soluble
guanylate cyclase (sGC) stimulator, tested in the SOCRATES
PRESERVED study (16), REDUCED study (17), and recently also
in the VICTORIA trial (18). It avoids that nitric oxide step and
directly binds to induce the sGC. This promising drug raises
solid cGMP production and produces the subsequent beneficial
effects on the CV system. The VICTORIA trial showed that
patients taking vericiguat were 10% less likely to have the primary
outcome, a composite of CV death or first hospitalization for HF,
than those taking placebo.

Increased arginine vasopressin signaling in either or both
the V1a and V2 receptors could contribute to the development
of HF. V1a activation could cause vasoconstriction, cardiac
hypertrophy, and fibrosis (75) as intracellular signaling pathways
are closely related to those for angiotensin II. Renal tubular
V2 activation could cause water retention and hyponatremia.
A novel dual-balanced vasopressin antagonist (pecavaptan) may
lead to decongestion (via V2) and protect heart and vessels
(via V1a), improving outcomes. It was shown to be superior to
tolvaptan in preclinical models (76). This is the rationale for an
ongoing trial (AVANTI) (19) which will enroll HFpEF andHFrEF
patients with incomplete decongestion despite standard therapy
at day 3–7 after index hospitalization.

All other options are translational drugs. Some receptor-
mediated signaling pathways (natriuretic peptides, mediators
of glycogen synthase kinase 3 and ERK1/2 pathways, beta
adrenergic receptor subtypes, relaxin receptor signaling,
TNF/TNF receptor family, TWEAK/Fn14 axis, andmicro-RNAs)
may represent targets for emerging therapies in HF treatment
(77). miRNAs are endogenous non-coding single-stranded
RNAs that control gene expression and regulate adaptive and
maladaptive cardiac remodeling (78, 79). By blocking the ERK1/2
pathway it is possible to prevent progression of CHF by reducing
fibrosis, inflammation, and apoptosis in the myocardium (80).

Recently, more attention has been given to signaling pathways
linking cysteine cathepsins. They play a role in synthesis and
degradation of the ECM, affecting ventricular remodeling and
contractile capacity (81).

The potential therapeutic strategy targeting protein
phosphatase 1 (I-1) by restoring the balance of cardiac protein
phosphorylation needs further study in order to prove its real
clinical benefit (82).

G-protein-coupled receptor (GPCR) kinase-2 (GRK2) is a
regulator of GPCRs, in particular beta adrenergic receptors, and
has a crucial role in the development and advance of CV disease,
like HF. GRK2 inhibition has been examined in several models
(83); in a rat model, inhibition by a cyclic peptide C7, improved
mitochondrial activity, and improved the contractility (84).

Myofibrillar Pathways
Myosin activators, such as omecamtiv mecarbil and danicamtiv,
facilitate the rate-limiting step of the myosin enzymatic cycle
and switch the cycle for the benefit of the force-producing state.
Myosin activators improve cardiac contractility by increasing
the conversion of the actin–myosin complex from a weak to a
strong bond, with no variation of intracellular Ca2+ homeostasis,
increasing LV systolic function, and without improvement
of energy request or arrhythmogenesis (85–87). Omecamtiv
mecarbil ameliorates left ventricle systolic ejection time, SV,
and CO, without side effects from the inotropic drugs; its
bioavailability is high and the drug is safe in HFrEF (88).
As shown in the ATOMIC-AHF trial in symptomatic CHF
and LVEF lower than 40%, the drug was not associated with
improved dyspnea but it did increase systolic EF, decrease the
LV end-systolic diameter, and was well-tolerated (20, 21). It
also significantly decreased NT-pro-BNP compared with placebo
(22); it was also safe for acute HF.

Its effects on CV outcomes were tested in the GALACTIC-HF
trial (23). Among patients with HFrEF, those who received this
drug revealed a significant relative risk reduction in a composite
of a HF event or CV death, compared with placebo. A phase III
study (METEORIC-HF) is currently ongoing to assess its effects
on exercise capacity1. This new drug seems to be a promising new
approach for patients affected by HFrEF.

The giant protein titin is anchored at the Z-disc; changes
in titin stiffness occur in HF through a switch in the
expression fraction of the two major titin isoforms in cardiac
sarcomeres, N2BA (compliant) and N2B (stiffer). In HF patients,
increased passive stiffness can be detected because of a titin
phosphorylation deficit (89), thus representing another potential
drug target in HF.

ANTI-INFLAMMATORY EFFECTS OF
DRUGS

To the best of our knowledge, there are not sufficiently valid
data (anti-TNF-α drugs have not shown benefits in CHF)
about anti-inflammatory drugs in HF. Previous studies showed
that inflammatory mediators may be relevant in the CHF,
contributing to adverse remodeling and peripheral vascular
anomalies. Inflammatory mechanisms are also hypothesized in
HFpEF, with pro-inflammatory/pro-fibrotic or immunological
alterations (90).

Previous research showed increased values of inflammatory
cytokines such as TNF-α, IL-1β, and IL-6 in HF. In HF
patients, this improvement in inflammatory mediators does
not appear to be joined by an equivalent increase in anti-
inflammatory cytokines such as IL-10 and TGF-β; thus resulting
in an inflammatory imbalance in the cytokine system (91).
Interleukin-1β (IL-1β) is known to depress cardiac function. A
small secondary analysis of the CANTOS (Canakinumab Anti-
inflammatory Thrombosis Outcome Study) trial (24) confirmed
IL-1 as a potential therapeutic target in HF. Instead, in

1ClinicalTrials.gov Identifier: NCT03759392.
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patients with LVEF <50% and administration of anakinra (IL-
1 receptor antagonist) was only associated with exercise capacity
improvement after 12 weeks of therapy (25).

Recently in some drugs already used in HF therapy, such as
glycosides (92) and ivabradine (93), anti-inflammatory effects
have been demonstrated.

Others authors have proved the possible advantage of the
combination ofmethotrexate with conventional therapy, through
the interaction between the activated immune and inflammatory
mediator’s system (94).

Pentoxyfylline, intravenous immunoglobulin, thalidomide,
and statins, have demonstrated encouraging results in smaller
studies (95), although these have not been verified in multicenter
randomized studies with relevant endpoints (96–101). In a meta-
analysis, lipophilic statins were superior to hydrophilic statins in
terms of follow-up LVEF, BNP, C-reactive protein, and IL-6 in
HF (102).

Some recently discovered therapeutic targets (peroxisome
proliferator-activated receptor gamma activators, Rho-kinase,
p38 mitogen-activated protein kinase, nuclear transcription
factor NF-kappaB) modulating parasympathetic tone,
macrophage inhibitors, and chemokine receptor antagonists,
have already been tested.

Oleuropein mitigates the progression of HF, presumably by
anti-oxidative and anti-inflammatory effects (103). Also oral
taurine supplementation in HF with LVEF <50% has anti-
atherogenic and anti-inflammatory effects (104).

Another possible strategy can be represented by resveratrol.
The resveratrol treatment decreased the galectin-3 level, which is
secreted by macrophages, and plays a role in mediating cardiac
fibrosis and inflammation. This leads to the reduction of IL-
1 and IL-6 levels. The reduced activity of leukocytes may be a
significant effect of resveratrol, and it can lead to heart function
improvement in HFrEF (105).

FUTURE DEVELOPMENTS

The most encouraging results for near future developments are
given by gliflozins.

Encouraging results in type 2 diabetic patients with prior
CV events from the EMPAREG-HF study (empagliflozin) (106),
from the CANVAS program (canagliflozin) (107, 108), and
from the DECLARE-TIMI 58 trial (dapagliflozin) (109) induced
researchers to test SGLT2i in people with HF regardless of the
presence of diabetes mellitus. Results from the DAPA-HF trial
(110) and from the EMPEROR-Reduced trial (111) in both
diabetics and non-diabetics showed an important reduction in
CV death and HF hospitalization. The mechanisms underlying

the cardiac effects of gliflozins have not yet been fully defined,
although possible effects of these drugs on cardiomyocytes could
be supposed. Ongoing clinical trials will clarify the effects and
mechanisms of gliflozins in HFrEF and HFpEF patients with
and without T2DM (112, 113). New results have been derived
from the studies on endothelial function in CHF (114), especially
interesting results have been obtained in HFpEF in treatment
with empagliflozin (115, 116).

Other possible approaches for the future include RyR2 and its
associated accessory proteins, which might be potential new drug
targets. RyR2 placed on the sarcoplasmic reticulum produces
systolic Ca2+ transients within cardiomyocytes. Appropriate
functioning of RyR2 is therefore pivotal to the timing and
force produced by cardiomyocytes. Impaired intracellular Ca2+

handing secondary to impaired function of RyR2 may be related
to HF (117).

Normal cardiac Ca2+ handling is also due to striated muscle
preferably expressed protein kinase (SPEG), a member of the
myosin light chain kinase family. SPEG has been causally
linked to HF and atrial fibrillation, so it can be taken into
consideration (118).

Gene therapy is still far from being clinically applicable (119).
The gene cysteine-rich secretory protein LCCL domain
containing 1 (CRISPLD1) is overexpressed in HF. The
downregulation of some signaling pathways upon CRISPLD1-
KO implicates a role in adverse remodeling. These discoveries
offer novel candidate genes with encouraging potential roles for
therapeutic interventions (120).

The cardiac bridging integrator 1 gene (cBIN1) therapy
stabilizes the subcellular membrane within cardiomyocytes,
preserving intracellular distribution of calcium (121), and
potentially could be a new way forward to find new drugs.

CONCLUSIONS

Possible new HF drugs, above all for HFpEF, might target
myocytes, mitochondria, microvascular circulation, and
interstitium. Further studies are needed to transfer evidence
derived from pre-clinical evidence to real-life with new possible
therapeutic approaches aimed at new therapeutic targets in HF.
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