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Background: Although various biomarkers predict cardiovascular event (CVE) in

patients with diabetes, the relationship of urinary glycan profile with CVE in patients with

diabetes remains unclear.

Methods: Among 680 patients with type 2 diabetes, we examined the baseline urinary

glycan signals binding to 45 lectins with different specificities. Primary outcome was

defined as CVE including cardiovascular disease, stroke, and peripheral arterial disease.

Results: During approximately a 5-year follow-up period, 62 patients reached

the endpoint. Cox proportional hazards analysis revealed that urinary glycan signals

binding to two lectins were significantly associated with the outcome after adjustment

for known indicators of CVE and for false discovery rate, as well as increased

model fitness. Hazard ratios for these lectins (+1 SD for the glycan index) were

UDA (recognizing glycan: mixture of Man5 to Man9): 1.78 (95% CI: 1.24–2.55,

P = 0.002) and Calsepa [High-Man (Man2–6)]: 1.56 (1.19–2.04, P = 0.001).

Common glycan binding to these lectins was high-mannose type of N-glycans.

Moreover, adding glycan index for UDA to a model including known confounders

improved the outcome prediction [Difference of Harrel’s C-index: 0.028 (95% CI:

0.001–0.055, P = 0.044), net reclassification improvement at 5-year risk increased by

0.368 (0.045–0.692, P = 0.026), and the Akaike information criterion and Bayesian

information criterion decreased from 725.7 to 716.5, and 761.8 to 757.2, respectively].
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Conclusion: The urinary excretion of high-mannose glycanmay be a valuable biomarker

for improving prediction of CVE in patients with type 2 diabetes, and provides the rationale

to explore the mechanism underlying abnormal N-glycosylation occurring in patients with

diabetes at higher risk of CVE.

Trial Registration: This study was registered with the University Hospital

Medical Information Network on June 26, 2012 (Clinical trial number:

UMIN000011525, URL: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?

recptno=R000013482).

Keywords: cardiovascular event, diabetes, lectins, N-glycans, urinary biomarkers

INTRODUCTION

Cardiovascular disease (CVD) is a global burden especially
in low- and middle-income countries and the leading cause
of disability and mortality (1). The understanding of CVD
risk factors is quite important to establish the cardiovascular
risk prediction models. The age, gender, body mass index
(BMI), systolic blood pressure (SBP), diabetes mellitus, smoking,
total cholesterol levels, and past cardiovascular events are
established and also traditional risk factors in middle-aged
and older individuals (2). Chronic kidney disease (CKD) is
an emerging global health burden with prevalence of ∼15%
of adult populations and is independently associated with
increased cardiovascular event (CVE) including stroke and
peripheral arterial disease (PAD) besides the traditional risk
factors (3, 4). The addition of albuminuria and estimated
glomerular filtration rate (eGFR) to traditional risk factors is
significantly associated with cardiovascular outcomes in meta-
analysis of general population cohort (5, 6). In type 2 diabetes,
the CVE risk prediction is potentially improved by novel
biomarkers involved in the biological process, not explained
by the traditional risk factors (7). The improvement of risk
prediction is statistically evaluated by discrimination ability
and reclassification. The area under the receiver operating
characteristic (AUROC) or c-index is a measurement for
discrimination capacity of classification model, while the net
reclassification improvement (NRI) is a commonly used measure
for the prediction increment by the addition of new biomarkers.
In the Second Manifestations of ARTertial disease (SMART)
and the European Prospective Investigation into Cancer and
Nutrition-NL (EPIC-NL) (8), Action in Diabetes and Vascular
Disease: Preterax and Diamicron Modified Release Controlled
Evaluation (ADVANCE) study (9), and the Outcome Reduction
With Initial Glargine Intervention (ORIGIN) trial (10), the
23, 16, and 284 serum or plasma biomarkers were evaluated
as to whether these biomarkers independently improve the
AUROC and NRI, respectively. The three biomarkers in
SMART/EPIC-NL, six in ADVANCE, and 10 in ORIGIN were
identified in the prediction of CVD composite outcomes. N-
terminal pro-B-type natriuretic peptide (NT-proBNP) was only
the common biomarker in two studies for the prediction of
composite CVE. In addition to the candidate approach for
the identification of biomarkers, non-biased screening using

metabolomic approach was also attempted such as amino acid
(11) and lipid profiles (12).

The vigorous attempts were made for the identification of
circulating biomarkers, and some of the urinary biomarkers
were independently associated with CVE in patients with type
2 diabetes; however, they have failed to achieve significant
incremental ability based on c-statistic and NRI (13–15). Urine
albumin creatinine ratio (UACR) and eGFR are now regarded as
the classical risk factors for CVE in type 2 diabetes; the concept of
“cardiorenal syndrome” suggests that the identification of urinary
biomarkers is promising approach. In the Urinary biomarker
for Continuous And Rapid progression of diabetic nEphropathy
(U-CARE) study, we performed urinary lectin microarray,
measured urinary glycan signals binding to 45 lectins, and
evaluated the potential for the prediction of 30% decline of
eGFR or end-stage renal disease (ESRD) in the patients with
type 2 diabetes (16). We found that the urinary glycan binding
signals to Sambucus nigra (SNA), Ricinus communis (RCA120),
Dolichos biflorus (DBA), Agaricus bisporus (ABA), Artocarpus
integrifolia (Jacalin), and Amaranthus caudatus (ACA) improved
the prediction of renal outcome in the models employing the
known risk factors (16). The U-CARE study suggested that
the global alterations of glycosylation of urinary protein are
valuable disease progression markers and may be linked to
disease mechanisms in diabetic kidney disease (DKD). The aim
of this study (U-CARE Study 2) is to investigate in patients
with type 2 diabetes the impact of urinary lectin microarray on
the prediction of CVE by adding the glycan binding signals in
the multivariate model containing the established risk factors
of CVE.

MATERIALS AND METHODS

Study Design and Participants
This is a second report of the U-CARE Study, a prospective
cohort study, which started in 2012. Precise study design was
described previously (16). In the current study, among 688
patients with type 2 diabetes admitted to multi-institutions in
Japan, 680 patients were enrolled. Eight patients were excluded
in this study since they were diagnosed with slowly progressive
type 1 diabetes during follow-up. The diagnosis of diabetes was
based on the Japanese Diabetes Society criteria (17). This study
was registered with the University Hospital Medical Information
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Network in June 2012 (UMIN000011525). Written informed
consent was obtained from all participants.

Laboratory Parameters and Definitions
Urinary glycans were measured by the evanescent-field
fluorescence-assisted lectin microarray (18). In brief, we
measured urinary levels of Cy3-labeled glycoprotein binding
to 45 lectins coated on microplates. In a previous study, we
demonstrated that net glycan intensity [Net-I; raw glycan
intensity (Raw-I)—background intensity] more accurately
predicted the 24-h urinary glycan in comparison with Net-I or
Raw-I/urinary creatinine ratios (16, 19). Based on the evidence,
we analyzed glycan indexes defined by Net-I and logarithmically
transformed Net-I when they did not follow normal distribution.

In this study, CVD was defined as events requiring admission
for treatment, excluding the events with arrhythmia, dilated
cardiomyopathy, and valvular heart disease to focus attention on
the atherosclerotic cardiovascular diseases. Stroke was defined
as cerebral bleeding and infarction requiring admission for
treatment, while PAD as an event requiring admission for open
surgery and/or endovascular intervention. CVE was defined as
any CVD, stroke, or PAD events. Mortality due to cardiovascular
death or other causes was also assessed. BMI was calculated as
weight divided by the square of height (kg/m2). Hypertension
was defined as a baseline blood pressure ≥140/90 mmHg or use
of antihypertensive drugs. GFR was estimated by the Japanese
coefficient-modified Chronic Kidney Disease Epidemiology
Collaboration equation. The baseline UACR (mg/gCr) was
measured in a spot urine specimen, and normoalbuminuria,
microalbuminuria, and macroalbuminuria were defined as
UACR <30 mg/gCr, 30 ≤ UACR < 300 mg/gCr, and
300 mg/gCr ≤ UACR, respectively. Hemoglobin A1c (HbA1c)
data are presented as National Glycohemoglobin Standardization
Program values according to the recommendations of the
Japanese Diabetes Society and the International Federation of
Clinical Chemistry (20). The grade of diabetic retinopathy
was determined by an ophthalmologist at baseline. The
average annual values of clinical parameters including HbA1c,
SBP, and diastolic blood pressure (DBP) were obtained. The
administration of statin, angiotensin-converting enzyme (ACE)
inhibitor or angiotensin II type I receptor blocker (ARB),
glucagon-like peptide-1 receptor agonists (GLP1), and sodium
glucose transporter 2 (SGLT2) inhibitor during follow-up were
also recorded. These data and previous CVE were compared
between patients with and without outcome.

Study Endpoint
The primary endpoint was defined as incidence of CVE, and
follow-up period was defined as the period from the initiation
of observation to the earliest CVE, death, or last observation of
clinical variables.

Statistical Analysis
Data were presented as percentages or the mean ± standard
deviation (SD), as appropriate. All skewed variables were
subjected to natural logarithmic transformation to improve
normality before analysis. Correlations among glycan indexes

were evaluated by Pearson correlation analysis. The cumulative
incidence rate of the primary outcome was estimated by Kaplan–
Meier curves for urinary glycan quartiles in all patients, and
incidence rates were compared with the log-rank test, including
trend test among quartile groups. The Cox proportional hazards
model was used to calculate the hazard ratio (HR) and 95%
confidence interval (CI) for the event-censored endpoint. HR and
95% CI for the 1 SD increase of glycan index were individually
calculated in each model. In the multivariate model, HRs were
adjusted for age, gender, BMI, SBP, low-density lipoprotein (LDL)
cholesterol, HbA1c, eGFR, and previous CVE at baseline. These
covariates were selected as potential confounders on the basis
of biological plausibility and previous reports (15, 21). False
discovery rates (FDRs) for 45 glycan indexes were calculated
by the Benjamini–Hochberg procedure in these Cox regression
analyses to control the expected proportion of false rejections
(22). The level of FDR was defined as 0.05. Time-dependent
area under curve (AUC) in multivariate Cox regression analysis
was obtained by integration of AUC in every 0.2 year from
0.5 year-observation calculated by 500 bootstrap sampling
(23). We also compared Harrell’s concordance index (c-index)
between multivariate Cox proportional hazards models with or
without glycan biomarkers. In addition, the Akaike information
criterion (AIC) and Bayesian information criterion (BIC) in the
multivariate Cox regression models were calculated to compare
the model fitness. Furthermore, improvement in discriminating
the 5-year risk of the study outcome was assessed by
analyses of AUROC, category-free NRI, and absolute integrated
discrimination improvement (IDI), as reported elsewhere (24,
25). The 95% CIs for the differences of the Harrell’s c-index
and AUROC, category-free NRI, and IDI were computed from
5,000 bootstrap samples to adjust for optimism bias. Two-
tailed P-values < 0.05 were considered as statistically significant.
Analyses and creation of graphs were performed with Stata
SE software (version 14.0, StataCorp LP) and Origin (version
2018, OriginLab).

RESULTS

Observation Period and Outcome
Incidence
The median follow-up period was 4.8 years [interquartile range
(IQR): 3.6–5.1 years]. During follow-up, the primary endpoint
(CVE) occurred in 62 patients (9%), and 21 patients (3%)
died. CVE was the cause of two patient deaths. Detailed
information of CVE and other causes of death are shown in
Supplementary Tables 1, 2.

Clinical Characteristics
The clinical characteristics of all participants at baseline
are displayed in Table 1. Their age was 63 ± 11 years
(mean ± SD), 61% of the patients were men, and 24% of
them had previous CVE. The median duration of diabetes was
11.1 years (IQR: 6.2–17.7), and baseline HbA1c was 7.1 ± 1.1%
(54.3 ± 12.0 mmol/mol). Under 56% of statin use, the baseline
LDL and non-high-density lipoprotein (non-HDL) cholesterol
levels were 100.1 ± 25.3 and 126.5 ± 30.6 mg/dl, respectively.
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TABLE 1 | Baseline clinical parameters.

Clinical parameters All patients (n = 680)

Age (years) 63 ± 11

Male (%) 61

BMI (kg/m2 ) 25.6 ± 4.6

Prior CVD/stroke/PAD (%) 17/9/1

Prior cardiovascular event (%) 24

Duration of DM (years)* 11.1 (6.2 > 17.7)

HbA1c (%) 7.1 ± 1.1

(mmol/mol) 54.3 ±12.0

Triglyceride (mg/dl)* 116 (81–163)

Total cholesterol (mg/dl) 180.5 ± 31.9

LDL cholesterol (mg/dl) 100.1 ± 25.3

Non-HDL cholesterol (mg/dl) 126.5 ± 30.6

Uric acid (mg/dl) 5.4 ± 1.4

SBP (mmHg) 131.0 ± 17.0

DBP (mmHg) 74.7 ± 10.9

Hypertension (%)† 70

Retinopathy (NDR/SDR/prePDR/PDR, %)‡ 67/17/6/10

eGFR (ml/min/1.73 m2) 71.0 ± 17.7

CKD GFR Categories (G1/G2/G3a/G3b/G4/G5, %) 10/69/11/6/3/1

UACR (mg/gCr)* 17.7 (7.8–74.1)

Normo/Micro/Macro (%) 63/25/12

Any type of antihypertensive agents (%) 62

ACE inihibitor or ARB (%) 53

Calcium channel blocker (%) 38

Number of antihypertensive agents* 1 (0–2)

Treatment for diabetes

(Diet only/OHA/Insulin, %) 4/64/32

Drug treatment for hyperglycemia 32/10/35/28/15/49/7

(SU/GLIN/BG/αGI/TZD/DPP4-I/GLP1, %)

Drug treatment for dyslipidemia/statin use (%) 64/56

BMI, body mass index; CVD, cardiovascular disease requiring admission for treatment;

Stroke, cerebral bleeding or infarction requiring admission for treatment; PAD, peripheral

arterial disease requiring admission for intervention or surgery; Cardiovasular event,

any event of CVD, Stroke, and PAD; HbA1c, hemoglobin A1c; Duration of DM,

estimated duration of diabetes mellitus; LDL cholesterol, low-density lipoprotein

cholesterol; non-HDL cholesterol, non high-density lipoprotein cholesterol; SBP, systolic

blood pressure; DBP, diastolic blood pressure; Retinopathy, diabetic retinopathy;

NDR/SDR/prePDR/PDR, non diabetic retinopathy, simple diabetic retinopathy, pre

proliferative diabetic retinopathy, and proliferative diabetic retinopathy, respectively; eGFR,

estimated glomerular filtration rate, CKD GFR Categories; G1: ≥90 ml/min/1.73 m2, G2:

60–90 ml/min/1.73 m2, G3a: 45–59 ml/min/1.73 m2, G3b: 30–44 ml/min/1.73 m2, G4:

15–29 ml/min/1.73 m2; UACR, urinary albumin creatinine ratio; Normo/Micro/Macro,

normoalbuminuria, microalbuminuria, and macroalbuminuria, respectively; ACE inhibitor

or ARB, treatment with an angiotensin-converting enzyme inhibitor or angiotensin

II type I receptor blocker, respectively; Diet only, diet regimen only; OHA, oral

hypoglycemic agent; Insulin therapy, treatment with insulin (including basal-supported oral

therapy); SU, sulfonylurea; GLIN, meglitinide anologs; BG, biguanide (Metformin); αGI,

alpha-glucosidase inhibitors; TZD, thiazolidinediones; DPP4-I, DPP-4 inhibitors; GLP1,

glucagon-like peptide 1 receptor agonists; SGLT2, sodium glucose transporter 2.

*Median (interquartile range).
†
Hypertension was defined as blood

pressure ≥140/90 mmHg or any antihypertensive drug treatment. ‡Data from

664 patients (98%) were available.

Similarly, 62% of the patients received antihypertensive agents,
average blood pressures were SBP (131.0 ± 17.0 mmHg)
and DBP (74.7 ± 10.9 mmHg). The mean baseline eGFR

was 71.0 ± 17.7 ml/min/1.73 m2 and median UACR was
17.7 mg/gCr (IQR: 7.8–74.1). The average annual HbA1c, SBP,
and DBP levels, and percentage of the use of ACE inhibitor or
ARB, and GLP-1 receptor agonist during follow-up were not
significantly different between the patients with and without
outcome. Statin use during observation was significantly higher,
and the use of SGLT2 inhibitor was significantly lower in
patients with outcome compared with those without outcome
(Supplementary Table 3).

Relation Between Primary Endpoint and
Glycan Binding to the Lectin Panel
Unadjusted and adjusted HRs for glycan binding to the panel of
45 lectins with different specificities and the reported structure
of the glycan binding to each lectin are shown in Figure 1

and Supplementary Table 4. The urinary glycan binding signals
to 13 lectins [Pisum sativum (PSA), Lens culinaris (LCA),
Aleuria aurantia (AAL), SNA, Tanthes japonica (TJAI), RCA120,
Narcissus pseudonarcissus (NPA), Canavalia ensiformis (ConA),
Galanthus nivalis (GNA), Hippeastrum hybrid (HHL), Tulipa
gesneriana (TxLCI), Urtica dioica (UDA), and Calystegia sepium
(Calsepa)] were significantly associated with the outcome in
either of the univariate and multivariate models. Among them,
both glycan binding signals to UDA and Calsepa were selected
based on the FDR <0.05 in the multivariate models. We
fitted a series of multivariate Cox regression models, which
include (i) only covariates, (ii) covariates + UACR, (iii)
covariates + glycan signals (binding to UDA or Capsela), and
(iv) covariates + UACR + glycan signal (Table 2). Then, the
improvement of model fitness was evaluated based on the
reduction of both AIC and BIC criteria. These criteria were
minimized at model (iii) for both of UDA and Capsela, which
were considered the best fitting model, that is, the two glycans
weremore substantially improvedmodel fitness, and the addition
of UACR did not exhibit improvement of model fitting. Glycan
signals for UDA and Calsepa were not incorporated into the
model at the same time to avoid multicolinearity because of the
high correlation with each other (r = 0.87).

The relationships between the glycan indexes and outcome
remained largely unchanged when treated of statin, ACE
inhibitor or ARB, and SGLT2 inhibitor during the follow-
up period, and the average annual HbA1c, average annual
SBP, and baseline non-HDL cholesterol were incorporated into
the multivariate model (Supplementary Table 5). As shown in
Supplementary Table 4, UDA and Calsepa are known to bind
to a mixture of Man5 to Man9 and to High-Man (Man2-6),
respectively. The common recognized glycans are classified into
intermediate and immature products of N-glycan synthesis (26).

Time-Dependent Area Under Curve and
Harrell’s C-Index in Cox Regression Model
With or Without Urinary Glycans
Time-dependent AUCs and Harrell’s C indexes in multivariate
Cox regression model with or without glycan binding signals
to UDA and Calsepa are displayed in Figures 2A,B. Overall,
AUCs during observation were higher in models with those
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FIGURE 1 | Univariate and multivariate Cox proportional hazard models for the outcome. (A) Univariate Cox proportional hazard models. (B) Multivariate Cox

proportional hazard models. HR per 1 SD increase in each glycan index is shown. In the multivariate model, HR was adjusted for age, gender, body mass index,

systolic blood pressure, hemoglobin A1c, low-density lipoprotein cholesterol, estimated glomerular filtration rate, past cardiovascular event at baseline. HR, hazard

ratio; 95% CI, 95% confidence interval.

TABLE 2 | Comparison of hazard ratio and model fitting between multivariate models with or without UACR and urinary glycans for UDA and Calsepa.

Markers Multivariate model Markers Multivariate model with UACR

HR 95% CI P-value AIC BIC HR 95% CI P-value AIC BIC

None – – – 725.7 761.8 UACR 1.32 0.99–1.75 0.058 724.1 764.8

UDA 1.78 1.24–2.55 0.002 716.5 757.2 UDA 1.70 1.16–2.49 0.006 718.0 763.2

Calsepa 1.56 1.19–2.04 0.001 718.0 758.7 Calsepa 1.50 1.11–2.02 0.009 719.6 764.8

Covariates in multivariate model: age, gender, body mass index, systolic blood pressure, hemoglobin A1c, low density cholesterol levels, estimated glomerular filtration rate, and past

cardiovascular event at baseline. Each glycan index was employed into the multivariate model with or without log transformed UACR. UACR, urinary albumin creatinine ratio; HR, hazard

ratio; 95% CI, 95% confidence interval; AIC, Akaike’s information criterion; BIC, Bayesian information criterion; UDA, Urtica dioica; Calsepa, Calystegia sepium.

glycan indexes than in model without them, while the Harrell’s
C-index was significantly higher only in the model containing
glycan binding signal to UDA than in model without the glycans
[Harrell’s C-index for model without UDA: 0.766 (95% CI:
0.705–0.828), Harrell’s C-index for model with UDA: 0.794
(0.739–0.850), and the difference in Harrell’s C-index: 0.028
(0.001–0.055, P = 0.044)].

Cumulative Incidence Rate of the Primary
Outcome in Urinary Glycan Quartiles
Kaplan–Meier curves stratified according to quartiles for baseline
urinary glycan binding to UDA and Calsepa are shown in

Figure 3. The cumulative incidence rate of the outcome was
significantly higher in the higher quartile for urinary glycan
binding to UDA and Calsepa than in the lower quartiles [P for
trend: <0.001 for UDA (Figure 3A) and <0.0001 for Calsepa
(Figure 3B)].

5-Year Risk Classification Ability of Urinary
Glycan Binding to Urtica Dioica and
Calystegia Sepium
The difference of AUROC between logistic regression models
with or without urinary markers, category-free NRI, absolute
IDI for predicting the primary outcome at 5-year follow-up time

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 May 2021 | Volume 8 | Article 668059

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Mise et al. Urinary Glycan Biomarkers for CVE

FIGURE 2 | Time-dependent area under curve (AUC) and Harrell’s C-index in Cox regression model with or without urinary glycans binding to UDA and Calsepa. (A)

AUC and Harrell’s C-index with or without urinary glycans binding to UDA. (B) AUC and Harrell’s C-index with or without urinary glycans binding to Calsepa. In the

multivariate Cox regression model without glycan, age, gender, body mass index, systolic blood pressure, hemoglobin A1c, low-density lipoprotein cholesterol,

estimated glomerular filtration rate, past cardiovascular event at baseline were incorporated as adjusted variables. On the other hand, multivariate model with glycan

includes the same covariates and any of two glycans binding to UDA and Calsepa. UDA, Urtica dioica; Calsepa, Calystegia sepium.

FIGURE 3 | Cumulative incidence rate of the outcome. (A) Cumulative incidence rate in patients stratified according to the quartiles of urinary glycan indexes for UDA.

(B) Cumulative incidence rate in patients stratified according to the quartiles of urinary glycan indexes for Calsepa. The cumulative incidence rate was significantly

higher in patients with higher glycan indexes than in those with lower glycan indexes (UDA: P for trend <0.001, Calsepa: P for trend <0.0001). Among quartile groups

for UDA, cumulative incidence rate was significantly higher in highest quartile group (Q4) compared with lower quartile groups (Q1–3) (P < 0.05). The log-rank test was

used for failure analysis. UDA, Urtica dioica; Calsepa, Calystegia sepium; Man, Mannose.

obtained by adding UACR and the glycan indexes for UDA and
Calsepa are summarized in Table 3. Adding of either glycan
indexes to the multivariate model significantly improved the
ability of discrimination and reclassification such as AUROC
and NRI [difference in AUROC: 0.031 (95% CI: 0.001–0.062,

P = 0.045) for UDA, 0.027 (0.001–0.053, P = 0.040) for Calsepa,
category-free NRI: 0.368 (0.045–0.692, P = 0.026) for UDA, and
0.388 (0.099–0.677, P = 0.008) for Calsepa], whereas either of
the two glycan indexes did not significantly improve integrated
discrimination [IDI: 0.024 (−0.009–0.056, P = 0.16) for UDA
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TABLE 3 | AUROC, category-free NRI, and IDI for predicting the 5-year outcome with UACR and urinary glycan binding to UDA and Calsepa.

AUROC Difference of AUROC P-value Category-free NRI P-value IDI P-value

(95% CI) (95% CI) (95% CI) (95% CI)

Only covariates 0.774

(0.711–0.837)

With UACR 0.790 0.017 0.083 0.269 0.075 0.005 0.59

(0.732–0.849) (−0.002–0.035) (−0.027–0.564) (−0.014–0.024)

With glycan to UDA 0.805 0.031 0.045 0.368 0.026 0.024 0.16

(Mixture of Man5 to Man9) (0.748–0.862) (0.001–0.062) (0.045–0.692) (−0.009–0.056)

With glycan to Calsepa 0.801 0.027 0.040 0.388 0.008 0.021 0.18

[High-Man (Man2-6)] (0.744–0.857) (0.001–0.053) (0.099–0.677) (−0.010–0.053)

Covariates: age, gender, body mass index, systolic blood pressure, hemoglobin A1c, low density cholesterol levels, estimated glomerular filtration rate, and past cardiovascular event

at baseline.

AUROC, The area under a receiver operating characteristic; NRI, net reclassification improvement; IDI, integrated discrimination improvement; UACR, urine albumin creatinine ratio;

95% CI, 95% confidence interval; UDA, Urtica dioica; Calsepa, Calystegia sepium; Man, Mannose.

and 0.021 (−0.010–0.053, P = 0.18) for Calsepa]. On the other
hand, adding UACR did not show any significance on the
incremental prediction [difference in AUROC: 0.017 (−0.002–
0.035, P = 0.083), category-free NRI: 0.269 (−0.027–0.564,
P = 0.075), and IDI: 0.005 (−0.014–0.024, P = 0.59)].

DISCUSSION

The urine glycan binding signals to UDA (mixture of Man5
to Man9) and Calsepa [High-Man (Man2-6)] improved model
fitness scores for discrimination ability (Harrell’s C index and
AUROC), reclassification (NRI), and log-likelihood/complexity
(AIC and BIC) when they were incorporated into themultivariate
Cox and logistic regression model employing traditional risk
factors. The strength of the current study was that the two
urinary glycan signals were the novel urinary markers, which
could provide the new mechanism of CVE in diabetes. They
demonstrated the incremental predictive power with statistical
significance, and they might be better markers than UACR.
In previous studies of patients with type 2 diabetes, several
urinary markers such as urinary kidney injury molecule 1,
urinary neutrophil gelatinase-associated lipocalin, urinary liver-
type fatty acid-binding protein, and urinary COOH-terminal
propeptide of collagen VI, have been investigated for predicting
CVE (13, 15, 27). However, none of them showed the statistical
significance of model discrimination or reclassification in the
multivariate model including known risk factors. Although it
has been shown that UACR is associated with CVE independent
of established confounders, its incremental predictive ability is
limited (21). In our study, UACR had a marginal impact on
the outcome in the multivariate Cox regression analysis [HR for
logUACR: 1.32 (95% CI: 0.99–1.75), P = 0.058, Table 2], while it
failed to demonstrate the significant values of AUROC, NRI, and
IDI (Table 3) in the multivariate models, which was compatible
with the previous results (21). In contrast to UACR, glycan
indexes for UDA and Calsepa showed statistical significance of
the incremental prediction as mentioned above. In addition,
model fitness scores, i.e., AIC and BIC, were clearly better than

that of UACR. Therefore, these novel glycan indexes might be
superior to UACR for predicting CVE in patients with type
2 diabetes.

Interestingly, UDA and Calsepa recognize the high mannose
glycan structures (Supplementary Figure 1). In endoplasmic
reticulum (ER), Glc3Man9GlcNAc2 is transferred to the
NXT/NXS sites of protein, Glc residues removed by glucosidases,
and Man9GlcNAc2 converted to Man8GlcNAc2 by ER
α-mannosidase I (MAN1B1). The glycoproteins are then
transferred to cis-Golgi; the additional Man residues are removed
until Man5GlcNAc2 is generated. Man5GlcNAc2 is a key
intermediate for the pathway to hybrid and complex N-glycans
in trans-Golgi and trans-Golgi network by the removal of
mannose residues by Golgi mannosidases, while some of
Man5GlcNAc2 also escapes further modification, and mature
membrane or secreted glycoprotein carries Man5-9GlcNAc2,
i.e., high mannose structures (Supplementary Figure 1A)
(26). In the glycan analysis by urine lectin microarray, the
elevation of high mannose and complex type of N-glycans in
urine glycoproteins are tightly linked to the development of
composite CVE.

The high-throughput plasma or serum N-glycan profiling
studies using hydrophilic interaction liquid chromatography
(HILIC) of peptide-N-glycosidase F digested and fluorescently
labeled N-glycans were reported, and 46 N-glycan peaks
(GP1-GP46) were demonstrated (28–32). In the patients with
normo- and hyperglycemia during acute inflammation,
the comparison of N-glycan profile demonstrated that
increased branched, galactosylated, and sialylated tri- and
tetraantennary N-glycans are associated with the development
of type 2 diabetes (28). In Ghanaian population, branched,
trigalactosylated, antennary fucosylated, and triantennary
N-glycans (Supplementary Figure 1B) were increased in the
patients with type 2 diabetes (29). A lower relative abundance
of simple biantennary N-glycans and a higher abundance of
branched, galactosylated, and sialylated complex N-glycans were
increased both in type 1 (31) and type 2 (30) diabetes, and similar
trends with increased levels of complex N-glycans (GP12, GP16,
and GP22) were seen for higher UACR and greater annual loss of
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eGFR (29, 31). Recently, in the prospective European Prospective
Investigation of Cancer (EPIC)—Potsdam cohort (n = 27,548),
the increased levels of complex N-glycans, GP5 in women, and
GP16, GP23, and GP29 in men, improved the accuracy of risk
prediction score for CVD (32).

Independent of serum or plasma N-glycan profiling, our
efforts to identify the biomarkers to improve the prediction of
DKD and CVD outcomes have been directed to the clinical
studies using urinary glycan profiling by lectin microarray in
the patients with type 2 diabetes (16, 33). Previously, we found
that urinary glycan profiling by lectin microarray demonstrated
the considerable changes in glycan binding signals during the
progression of DKD in urine samples rather than serum samples
(16, 33). The changes in glycan profile in urine samples may
reflect the glycosylation changes in glycoproteins produced in
kidney tissues or the changes in selective permeabilities of
blood-derived glycoproteins through glomerular capillaries. In
addition, the lectins are long-standing experimental tools to
identify the glycan structures, which enable lectin microarray
to detect the broad range of glycans compared with HILIC or
other methods using mass analysis. For instance, the capture
of O-glycans and neutral N-glycans such as high-mannose
type and hybrid type N-glycans (Supplementary Figure 1C) are
extremely difficult in HILIC (34). Furthermore, only 20 µl of
urine samples is required, and the single step of Cy3 labeling
without enzymatic treatments achieve the less-time consuming
and high-throughput analyses. By taking these advantages of
urine lectin microarray, we successfully identified that the
glycan binding signals to high mannose or mannose-recognizing
lectins, UDA and Calsepa, contributed the improvement of the
prediction models using established risk factors for CVE. In
the previous study, we identified that the glycan-binding signals
to SNA, RCA120, DBA, ABA, Jacalin, and ACA significantly
improved the prediction models for 30% decline in eGFR
or ESRD, and these lectins mainly recognized the O-glycan
structures, suggesting the specificity of the analyses with lectin
microarray (16). Furthermore, the application of those eight
lectins for the urine samples of the patients with type 2 diabetes
provides a useful diagnostic tool for the future risk of the CVD
and DKD progression.

Novel Mechanism of the Atherosclerotic
Cardiovascular Event in Diabetes
The current clinical study provides the insight into the
mechanism for the progression of atherosclerosis in type
2 diabetes. The detection of high mannose N-glycans, i.e.,
immature forms of N-glycans, in the urine samples in the
patients with type 2 diabetes suggests the abnormalities in the
processing and maturation of N-glycans in the ER and Golgi.
In the ER, Glc1Man9GlcNAc2 N-glycans are properly folded by
the assistance of calnexin and calreticulin, while the misfolded
Man9GlcNAc2 is recognized by ER-degradation-enhancing α

mannosidase I-like (EDEM) leading to ER degradation (26). The
inhibition of ER α-mannosidase I (MAN1B1), which mediates
the conversion of Man9GlcNAc2 toMan8GlcNAc2, was reported
to enhance high mannose intercellular adhesion molecule-1

expression on endothelial cell surface (35). The impairment of
quality control of glycoproteins and mannosidase activity in
ER may cause the accumulation of high mannose N-glycans
in ER. In addition, the knockout of the triple gene encoding
Golgi α1,2-mannosidases (MAN1A1, MAN1A2, and MAN1B1)
resulted in the production of high mannose N-glycans (36).
The defects in the Golgi α1,2-mannosidases are also candidate
mechanisms to produce high mannose N-glycans. The link
between high mannoseN-glycans and CVE further suggested the
new mechanism for the progression of atherosclerosis in type 2
diabetes. High mannose N-glycans induced on endothelial cells
by oscillatory shear stress, or tumor necrosis factor-α mediates
the monocytic recruitment (37), and hypercholesterolemic
patients exhibited higher plasma levels of a cluster of high-
mannose and complex/hybrid N-glycans (38).

Study Limitations
One of the key limitations in this study is that this was a
multi-center observational study, and the therapeutic strategy
of diabetes and its complications in each participant was not
exactly standardized, which might have affected the incidence of
the outcome. However, the sensitivity analyses revealed that the
impact of glycan indexes for UDA and Calsepa on the outcome
did not largely change even when the various treatment factors
during follow-up periods were incorporated into the multivariate
Cox regression models (Supplementary Table 5). In addition,
we might not be able to adjust for other possible confounders
in the multivariate models. Several blood biomarkers, such
as NT-proBNP and high-sensitivity troponin T, have been
established as useful markers for predicting CVE (9, 39). It
remains unknown whether glycan indexes for UDA and Calsepa
are significantly associated with the outcome independent of
those biomarkers. Nevertheless, we hope that these novel urinary
markers predict CVE independent of other confounders since
these glycan markers could reflect the novel mechanism of CVE
as mentioned above.

CONCLUSIONS

The glycan profiling by urine lectin microarray demonstrated
that the elevation of high mannose and complex type of
N-glycans in urine glycoproteins is tightly linked to the
development of CVE. UDA and Calsepa in lectin microarray
may be a useful diagnostic tool for the prediction of CVD
risk in patients with type 2 diabetes. The evidence linking the
increased high mannose and complex type of N-glycans to
the incidence of CVE in patients with diabetes suggests that
the disease mechanisms and therapeutic targets are related to
organellar dysfunction in the ER and Golgi, as well as to the
progression of atherosclerosis.
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