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Background: The morphological structure and tissue composition of a coronary

atherosclerotic plaque determine its stability, which can be assessed by intravascular

optical coherence tomography (OCT) imaging. However, plaque characterization relies on

the interpretation of large datasets by well-trained observers. This study aims to develop a

convolutional neural network (CNN) method to automatically extract tissue features from

OCT images to characterize the main components of a coronary atherosclerotic plaque

(fibrous, lipid, and calcification). The method is based on a novel CNN architecture called

TwopathCNN, which is utilized in a cascaded structure. According to the evaluation,

this proposed method is effective and robust in the characterization of coronary plaque

composition from in vivo OCT imaging. On average, the method achieves 0.86 in

F1-score and 0.88 in accuracy. The TwopathCNN architecture and cascaded structure

show significant improvement in performance (p < 0.05). CNN with cascaded structure

can greatly improve the performance of characterization compared to the conventional

CNNmethods andmachine learningmethods. This method has a higher efficiency, which

may be proven to be a promising diagnostic tool in the detection of coronary plaques.

Keywords: optical coherence tomography, convolutional neural network, plaque characterization, cascaded

structure, two-pathway architecture

INTRODUCTION

Cardiovascular disease remains to be the leading cause of morbidity and mortality globally.
Acute events, such as heart attack and stroke, are usually triggered by the development
of plaque rupture/erosion and subsequent thrombus formation. It has been shown that
plaque components and morphology are the main factors in the determination of plaque
stability (1–3). A coronary plaque normally consists of three different tissue types: fibrous,
calcified, and lipid-rich, with mixed forms appearing in many cases. Plaques that have a large
lipid core and a thin fibrous cap are more prone to rupture, whereas plaques containing
calcification tend to be stable (4). Therefore, to prevent the acute cardiovascular events, it
is crucial to develop strategies to characterize plaque morphology and components so that
the vulnerable plaques can be identified at an early stage to reduce the risk of rupture.
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Based on the analysis of the reflected light, optical coherence
tomography (OCT) has a high resolution. Its axial resolution can
reach to 12–18µm (5), which is a promising diagnostic technique
in interventional cardiovascular imaging. High-resolution cross-
sectional images of coronary artery can be seen via OCT, which
allow us to observe the plaque components and morphology
directly and distinguish different plaque types. The expert
consensus document indicates that the fibrous tissue appears
as uniform high-signal regions, the calcified tissue appears as
uneven, low-signal regions with clear boundaries, whereas the
lipid tissue is the low-signal region with blurred boundaries
in OCT (6). In current clinical application, vascular lumen
segmentation and characterization of plaque components are
performed manually, which is laborious and time-consuming.
Moreover, the accuracy is dependent on the experience of the
observers. Therefore, developing a fast, accurate, and reliable
method for an automatic characterization of atherosclerotic
plaque composition is crucial, which can reduce the time and
cost of analyzing data and avoid human interference errors,
and thus can improve risk assessment of patients with coronary
artery diseases.

Levitz et al. (7) published a study demonstrating that
atherosclerotic plaque characterization by OCT could be done
by measuring the back-scattering and attenuation coefficients
(8), which enhanced the differentiations between the fibrous,
calcified, and lipid tissues. The preliminary data indicated
that differences in scattering properties may exist between
the normal and the atherosclerotic plaques and that optical
scattering properties provided by OCT can contribute to
plaque characterization. After that, more optical parameters
were introduced to characterize components of plaques in
OCT studies (9–13). Although optical properties are good
representations of various intracoronary tissues, detailed
information regarding plaque morphology is required for
better recognition of various plaque types. To utilize more
texture features, machine learning methods have been applied
to plaque characterization. Wang et al. (14) proposed a method
for semiautomatic segmentation of calcified plaques with
the morphology operation. Ughi et al. (15) combined the
attenuation coefficients and Gray-Level Co-occurrence Matrix
(GLCM) (16) to obtain texture features and utilized the random
forest (17) model to classify the test set and compared the
result with the manually segmented ground truth. The overall
classification accuracy was 81.5% with a feasibility of 76.5%.
The accuracy for each type was 89.5% for fibrotic tissue,
72.1% for calcium, and 79.5% for lipid-rich tissue. Athanasiou
et al. (18) used K-means (19) to divide calcified tissue and
applied GLCM and local binary pattern (20) to characterize
texture features. Rico-Jimenez et al. (21) applied least square
optimization strategy to estimate the depth of plaque. Our
group (22) also presented the characterization of atherosclerotic
plaque components based on the machine learning methods.
Although these methods have shown a better performance
compared to the methods based on attenuation coefficients,
the features extracted by algorithm cannot completely describe
all the global morphological information, thus leading to
classification noise.

Convolutional neural networks (CNNs) (23) have shown
remarkable successes in image processing tasks, such as image
classification, facial identification (24), and object detection (25).
In terms of OCT, Gessert et al. (26) developed a CNN model
to detect images with calcified plaques. Kolluru et al. (27)
implemented a CNN model consisting of two convolutional and
max-pooling layers and applied a fully connected conditional
random field (CRF) as a post-processing step to improve
classification sensitivity. Yong et al. (28) proposed a linear-
regression CNN model to segment the lumen in OCT images
automatically. Lee et al. (29) implemented SegNet and Deeplab
v3+ for plaque characterization in terms of pixel-wise and
A-line-based classifications. Our group also presented calcium
classification on the OCT pullback with 3D deep neural networks
(30). Gharaibeh et al. (31) used deep learning and transfer
learning methods to analyze the calcification components in
OCT images. Li et al. (32) proposed a deep residual U-Net
network for the segmentation of vulnerable plaque components
in coronary OCT. Athanasiou et al. (33) proposed a patch-based
CNN network to characterize plaque components. Previous
studies on deep learning-based plaque characterization mainly
fall into two categories: one is utilizing segmentation networks
to learn and evaluate OCT images directly, such as FCN, SegNet,
etc. However, this method requires a huge training dataset. The
other way is using a patch-based CNN network to achieve the
segmentation goal by classifying small patches, but some position
and boundary information may be lost, and the evaluating
efficiency is low because the networks need to characterize each
pixel by classifying a patch. Most patch-based CNN models
realize segmentation function by predicting the M × M patch
centered on that pixel; the segmentation results are determined
by the classification category of the M × M patch. Therefore,
when evaluating the whole OCT image by normal patch-based
CNN models, the experts need to make patches for all the pixels
in the region of interest and classify themwith CNNmodels. This
means the CNN models have to classify thousands of patches
when evaluating an OCT image.

Therefore, in this study, we designed a patch-based CNN
model to analyze the OCT dataset of coronary arteries to
characterize three plaque components automatically: fibrotic,
calcified, and lipid-rich tissues. Three trained observers provided
segmentations for each OCT image, and the selected regions
were divided into patches with different sizes. All the patches
were put into a CNN model to obtain an automated classifier
of atherosclerotic plaques. For testing, the performance of
the model was subsequently evaluated against the testing set
manually segmented by a trained OCT observer, which includes
10 samples for three plaque components, respectively, 30 in total.
To convince the reliability of testing results, these samples were
selected from 10 different pullbacks and 3 different patients,
which were not used in the training period. This is the first
study that Two-Pathway Cascade CNN Architecture is applied
into the field of coronary plaque characterization from OCT
imaging. Compared with other patch-based CNN models, the
method achieved a more accurate result than the methods
published in the literature especially for the calcified plaques.
The time complexity is also significantly reduced by using
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convolutional output layer, which makes the method more
clinically realistic. Several novel strategies on CNN architectures
and training process were utilized to avoid the weakness of patch-
based CNN model, and demonstrated the effectiveness with
statistical methods.

METHODS

Data Collection
All the coronary OCT imaging data were collected from
Nanjing Drum Tower Hospital. The whole imaging procedure
was performed using the C7XR OCT imaging system (St.
Jude Medical, Minneapolis, MN, USA) connected to a C7
Dragonfly intravascular imaging catheter (St. Jude Medical).
During imaging, the catheter was inserted into the patient’s
coronary artery. By rotating the probe inside the catheter and
pulling it backwards, the images inside the vessel were acquired.
The light source emits an optical signal and the detector receives
the interference signal produced by the signal light backscattered
by the vessel and the reference light reflected by the reflector, then
the system further processes the signal to obtain a scan line signal
(A- line). The C7XR OCT has 504 scan A-lines per blood vessel
section. In one scan, the C7XR OCT can obtain a 271-frame
blood vessel image in polar representation with the resolution
of 976 × 504 pixels in gray scale. For easier observation, all the
images were transformed into Cartesian space with 1,024× 1,024
pixels, and the B-scan is color-mapped to RGB using a colormap
for visualization contrast.

For ground-truth annotation, three experienced observers
firstly excluded images with stenting cases. To avoid plaques with
similar patterns containing in the dataset, we extracted one frame
in each adjacent three frames for dataset making. All the selected
images were segmented manually. To ensure the reliability of
dataset, all images were separated randomly to three observers for
manual segmentation. After the segmentation, they exchanged
the segmented OCT images and double-checked the results.
When disagreement occurred, the final segmentation results
were confirmed by an interventional cardiologist. Figure 1

shows the template of an example of the manually segmented
plaque compositions.

In total, the dataset included 2,000 images from 31 patients,
and 2,000 regions of interest were extracted from these images.
Fibrous tissue and lipid tissue comprised 40% of the whole
dataset, respectively, and calcified tissue occupied 20%. One sixth
of the dataset were used to validate and the rest were used to train.
The regions of interest in the training images (corresponding to
color regions in the template) were sliced into the size of 65 ×
65 × 3 and 33 × 33 × 3 pixels. Different patches (e.g., 17 × 17
× 3 or 83 × 83 × 3) were also tested, but 65 × 65 × 3 and 33
× 33 × 3 achieved the best performance. A smaller size cannot
obtain location features in the training period while a larger size
introduces more noise that may affect the training results. All the
patches were labeled according to their corresponding color in
the template. Here, we used patches with RGB channels for CNN
training to guarantee that the images for prediction are in the
same condition with those for manual analysis.

FIGURE 1 | Characterization of coronary plaque components from OCT

images. Different colors represent different plaque composition: (A) red:

fibrous. (B) green: calcified, (C) blue: lipid.

Data Augmentation
From the number of patches belonging to each label, we
discovered that patches belonging to calcified tissue were the
least. Seriously, data imbalance can affect the training result
of the CNN model. To deal with the problem of imbalanced
data, the often-used approach is to modify loss function or use
data augmentation. In our cases, modifying loss function did
not perform efficiently because there was a considerable gap
in the amount of data in each category. Thus, we used data
augmentation to the calcified patches to enable the quantity of
patches in each label to be strictly equal.

A certain number of calcified patches were randomly chosen
for data augmentation. We applied flipping along the x and y
directions on the chosen patches. In total, the final patches dataset
consisted of 120,000 patches with equal quantity in each label.We
split off an independent validation set of 20,000 patches to detect
the learning condition of the CNN model during the training
process and the others were considered as the training set. To
further reduce the impact of imbalanced dataset, two-phased
training strategy was utilized in the training process, which is
introduced in section Segmentation Results.

CNN Approach
Like most CNN-based segmentation models, we replaced the
calculation of each pixel by predicting the M × M patch
centered on that pixel. Thus, the input of CNN model
was M × M patches with different types. By applying a
series of convolutional layers, CNN had the ability to extract
complex features. More detailed information of patches can
be learned by treating the output feature maps of the
previous convolutional layer as the input of the subsequent.
To obtain non-linear features from the input, ReLU (34)
was utilized as an activation function. A normalization
process was also added after the activation function to
bring mean value and variance close to zero and one,
respectively. The normalization process can be summarized by
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FIGURE 2 | The TwoPathCNN architecture. The input patch goes through a global pathway (marked with a thin red line) and a local pathway (marked with a thin blue

line) with convolution. The feature maps produced by two pathways are concatenated together (marked with a thick blue line) and it goes through a convolutional

output layer (marked with a thick red line) to obtain the prediction.

the following formula:

xn =
x− µ

√
σ 2 + t

Here, xn and x represent the feature maps after
and before the normalization process, respectively,
and µ and σ

2 are the mean and variance of the
feature maps. t is a small constant to avoid division
by zero.

Due to the lack of training examples in our study, the model
was vulnerable to over-fitting. Accordingly, we used Dropout
(35) regularization method to overcome it. When computing
the hidden layer of CNN, dropout masks the input or hidden
unit with a certain probability. In this case, the prediction of
CNN did not only rely on a small part of weights in the
entire network.

In conventional CNN models, for classification purposes, the
output layer is typically fully connected, which is inefficient
in segmentation. To perform a prediction of the segmentation
labels, we replaced the fully connected layer by a convolutional
output layer. The number of kernels in the layer equaled to the
number of labels (four in our case, the background was also
included). The output of kernels was considered as the final
estimation of CNN model, which can be normalized by SoftMax

function as follows:

Softmax(a) =
exp(a)∑
iexp(ai)

Here, a is the output vector of convolutional output layer. Each
element of w = SoftMax(a) is limited to the range of (0, 1)
and the sum equals to 1. Thus, w is regarded as the probability
distribution of all labels of the patches. The CNN approach
performs the segmentation by assigning the label with largest
probability to each pixel. By placing the convolutional output
layer at the end, when doing segmentation tasks, the speed of
testing was 40 times faster than the conventional CNN model.
More details are shown in section Implementation Details.

Two-Pathway CNN Architecture
To find the most appropriate CNN architecture for the
segmentation task, we constructed a new CNN model instead
of applying transfer learning because the state-of-the-art CNN
architectures typically use large images as their training set (about
270 × 270 in most cases). Two-pathway CNN (TwoPathCNN)
(36) was introduced to extract features. Different from the
straight structure of conventional CNN networks, TwoPathCNN
is made of two streams: a pathway with several convolutional
layers in smaller receptive fields (local pathway) and the other
with a convolutional layer in a larger receptive field (global
pathway). After the convolution operation, a concatenation layer
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FIGURE 3 | Cascaded structure. The 65 × 65 patches go through the trained TwopathCNN network (shown in Figure 2), and the results are concatenated with the

33 × 33 patches to build new training data.

combined the feature maps from two streams together. In this
architecture, the prediction of labels can be influenced by two
aspects: the visual details of the region and the general features.

The full architecture is illustrated in Figure 2. To satisfy
the concatenation, the size of the top hidden layers of both
pathways must be the same. The local pathway contains three
convolutional layers with 7 × 7 and 3 × 3 kernels. The global
pathway contains one convolutional with 15 × 15 kernels.
In this network, more feature maps were extracted from the
global pathway.

Cascaded Structure
Single CNN structure predicts segmentation label according
to each individual patch, lacking the information of position.
In response to this shortcoming, the segmentation method in
literatures often define a conditional random field (37, 38) to
simulate the relationship between each label from a spatial
perspective, and the final prediction is influenced by both the
original prediction and segmentation labels in the vicinity.

In our study, the cascaded structure was applied to make a
connection between CNN networks with different input sizes. As
Figure 3 illustrated, the output of the first CNN is concatenated

with the patches in a smaller size, the output and the patches
both comprise the input to the second CNN. Thus, the input
of the second CNN is the feature maps with seven channels.
This kind of structure can overcome the ignorance of the
relative position by regarding the probability distribution of
labels of surrounding pixels as a prerequisite to the prediction.
Compared to conditional random field, this method takes the
advantage in the consuming of computational resource, which
is important when dealing with large amounts of OCT data in
clinical diagnosis.

Lumen and Guidewire Line Segmentation
Due to the limitation of the tissue penetration of OCT (about
1–1.3mm) (39), OCT may not be able to correctly display the
region outside the region far away from the lumen border;
therefore, the region of interest (vascular tissue) of an OCT
image was considered as the domain that lumen expands 1mm
outward. Lumen and guidewire line segmentation can greatly
improve the performance of characterization by implying an
additional known condition during the analysis. This process is
necessary because even experienced interventional cardiologists
cannot always clarify the difference between the outer border of
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FIGURE 4 | The procedure of fully automated lumen segmentation based on

dynamic programming. (A) shows the original image in polar coordinate. (B)

shows the concentration of average intensity of each frame; the guidewire line

region became a continuous dark band traversing the whole image. (C) shows

the lumen segmentation result with guidewire line exclusion, and (D) shows

the regions of interest (vascular tissue, the region between the two white lines)

segmented by the algorithm.

lipid tissue and the background. If the region of interest is not
strictly defined, the outer border of the segmentation result will
be uneven.

The lumen and guidewire line segmentation was based on
dynamic programming, which has been proven effective and
robust in Wang et al.’s research (40). The lumen boundary was
detected according to the gradient in original polar image and the
contour with the highest pixel value difference across the vertical
axis. Guidewire always shows a long dark shallow in OCT images.
Therefore, in terms of guidewire line region, the average intensity
of each A-line is significantly lower. When concentrating the
average intensity of all images in the whole pullback together,
due to the continuity of pullbacks, the guidewire appears as a
dark strip throughout the vertical axis, as shown in Figure 4B. In
this condition, using dynamic programming can directly extract
the guidewire of all frames in the whole pullback. On the basis
of resolution of intravascular C7-XR OCT (15µm), a constant
depth of 100 pixels was utilized in our study. Figure 4 shows the
whole segmentation process.

Implementation Details
Our study is based on the deep learning toolbox in Matlab
platform. Deep learning toolbox integrates multiple application
and visualization tools to create and analyze deep learning
architecture. It also supports the use of NVIDIA GPU, which can
greatly accelerate the training process of CNN. Moreover, Matlab
has excellent computing capability in matrix and is very effective
in disposing data like images or feature maps.

The hyper-parameters of CNN architecture are shown in
Figures 2, 3. The pooling layers uniformly applied max pooling
with a stride of 1. As for optimizer selection, we chose RMSprop
(41), which has been proven efficacious in many deep learning
networks. The squared gradient decay factor was set to 0.9. These
hyper-parameters and optimizer selection were determined

according to the cross-validation results. The chosen hyper-
parameters and optimizer achieved the best performance on the
validation sets.

For testing time, the specific structure of convolutional output
layer mentioned in section CNN Approach can accelerate the
proceeding by simplifying the computation. This was realized by
feeding a full image instead of individual patches as the input.
The trained models can automatically convert the image under
test to all label probabilities of the entire image. This testing
mode can be 40 times faster than extracting patches at each
pixel and predicting them individually because convolution can
better deal with large-sized input compared with multiple small-
sized input data. Moreover, the extracting operation is spared.
Finally, as post-processing, we removed small isolated regions in
the predicted results, which may be classification noise. In total,
the TwoPathCNN model can provide a segmentation for each
image in 2 s with the NVIDIA 1080Ti card. When using cascaded
structure for prediction, it takes <3 s on average.

Because our study was focused on the characterization of
plaque composition, only the prediction on the region of vascular
tissue was held. After going through the trainedmodel, the region
outside the border produced in section Implementation Details
was set as background by default.

EXPERIMENTS AND RESULTS

Evaluation Standard
F1-score (42) is an evaluation standard of classification problems,
which is the harmonic average of precision and recall. Many
competitions about deep learning use it as the final evaluation
method. F1-score divides the classification results of models into
four types as follows:

(a) True Positive (TP): Correctly predicting the target category.
(b) False Positive (FP): Incorrectly predicting other categories

into the target category.
(c) True Negative (TN): Correctly predicting other categories.
(d) False Negative (FN): Incorrectly predicting the target

category into other categories.

By counting the number of patches or pixels of these four
types, the precision, recall, and accuracy of each category were
calculated, which can be summarized as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN

accuracy =
TP + TN

TP + FP + TN + FN

The F1-score of each category was obtained from its precision
and recall, and the general evaluation score was the average
value of all the F1-scores. The details are shown in the
following formula:

F1k =
2precisionkrecallk

precisionk + recallk
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FIGURE 5 | The activations of convolutional layers in the local path and the global path from a randomly selected patch. The activations can take any value, so the

value is normalized to the range from 0 to 1 for visualization. Here, white pixels represent a strong positive activated region and black pixels represent a strong

negative one. The channel is mostly gray if it does not activate as strongly on the original image.

F1-score=
1

n

∑
k
F1k

Compared to the conventional accuracy evaluation standard, F1-
score has a more comprehensive estimation of the CNN model.
In addition, F1-score provides different indicators, which can be
selectively adopted according to actual classification tasks.

TwoPathCNN Architecture
To clearly illustrate the different features extracted from
different paths of TwoPathCNN architecture, the activations of
convolutional layers in each path is shown in Figure 5 to observe
which areas activate on the patches in the convolutional layers.
Although there are explicit explanations on the advanced features
learned by CNN, different emphasis is indicated in these two
paths. The global path mainly detects the edge information of
plaques, whereas local path pays more attention on the localized
texture features.

To study the effect of TwoPathCNN architecture compared
to conventional linear CNN networks, we regarded the CNN
model consisting of only the local path or the global path as the
control group. The results of these variations are listed in Table 1,
which contains the performance of TwoPathCNN, LocalPath,
and GlobalPath in terms of precision and recall value of each
class, the average F1-score, and the overall accuracy. According
to the result of Wilcoxon signed-rank test, both F1-score and
accuracy have a significant improvement compared to the control
group. Moreover, the confidence interval of precision and recall
on TwoPathCNN is evidently narrower than the other two CNN
architectures. This indicates that TwoPathCNN is more stable
and robust than the original CNN architecture because different
OCT images can obtain similar performance on TwoPathCNN
model. TwoPathCNN joins the local and global paths to co-adapt
the features learnt from the training data, thus actualizing the
promotion of capability and robustness of the CNN model.

Cascaded Structure
To investigate the performance of cascaded structure, we
applied the cascaded structure to TwoPathCNN architecture and
compared it with the same architecture without using it. In order
to maintain the consistency of the whole structure, when training

TABLE 1 | The confidence interval of performance on different CNN architectures,

including precision, recall, F1-score, and accuracy.

Architecture Class Precision Recall F1-score Accuracy

TwoPathCNN Fibrous 0.96 ± 0.03 0.95 ± 0.03 0.86 ± 0.06* 0.88 ± 0.05*

Calcified 0.68 ± 0.12 0.87 ± 0.06

Lipid 0.89 ± 0.13 0.81 ± 0.11

LocalPath Fibrous 0.94 ± 0.05 0.93 ± 0.05 0.81 ± 0.07 0.85 ± 0.06

Calcified 0.63 ± 0.23 0.75 ± 0.15

Lipid 0.85 ± 0.12 0.77 ± 0.13

GlobalPath Fibrous 0.96 ± 0.04 0.87 ± 0.10 0.71 ± 0.09 0.77 ± 0.09

Calcified 0.43 ± 0.18 0.67 ± 0.13

Lipid 0.80 ± 0.23 0.74 ± 0.16

With TwoPathCNN, both F1-score and accuracy were significantly improved compared to

GlobalPath and LocalPath ( *p < 0.05). For statistical analysis, the Wilcoxon signed-rank

test was performed.

the newly built dataset by concatenation, we selected the same
architecture as the network that generated output comprised in
the concatenated dataset (Output 1 in Figure 4). At the same
time, we also investigated the impact of two-phase training
method in our dataset. Two-phase training method retrains the
CNN network with the unbalanced training set and keeps all
the layers fixed except the output layer in the second phase.
Therefore, we divided the testing performance into four groups:
cascaded structure with two-phase training, cascaded structure
with original training, non-cascaded structure with two-phase
training, and non-cascaded structure with original training.
Table 2 provides the corresponding performance results.

As shown in Table 2, we found that cascaded structure
with two-phase training achieved best performance, which
was shown by the Wilcoxon signed-rank test (p < 0.05).
Regardless of whether two-phase training was utilized or not,
cascaded structure significantly improved the performance over
the normal structure, with a statistically significant difference
for all metrics (p < 0.05). However, in terms of two-phase
training, two-phase training with cascaded structure had shown
significant improvements on F1-score and accuracy compared to
one-phase training with cascaded structure (p < 0.05). Without
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TABLE 2 | The confidence interval of performance with or without training strategies (cascaded structure and two-phase training).

Structure/training Class Precision Recall F1-score Accuracy

Cascaded and two-phase training Fibrous 0.96 ± 0.03 0.95 ± 0.03 0.86 ± 0.06* 0.88 ± 0.05*

Calcified 0.68 ± 0.12 0.87 ± 0.06

Lipid 0.89 ± 0.13 0.81 ± 0.11

Cascaded and one-phase training Fibrous 0.97 ± 0.02 0.90 ± 0.06 0.82 ± 0.07 0.86 ± 0.08

Calcified 0.58 ± 0.15 0.94 ± 0.03

Lipid 0.86 ± 0.14 0.78 ± 0.15

Non-cascaded and two-phase training Fibrous 0.95 ± 0.04 0.89 ± 0.04 0.75 ± 0.06 0.80 ± 0.06

Calcified 0.51 ± 0.19 0.64 ± 0.08

Lipid 0.77 ± 0.17 0.81 ± 0.09

Non-cascaded and one-phase training Fibrous 0.93 ± 0.09 0.87 ± 0.08 0.74 ± 0.07 0.80 ± 0.07

Calcified 0.50 ± 0.18 0.69 ± 0.14

Lipid 0.76 ± 0.18 0.79 ± 0.11

With cascaded structure and two-phase training, both F1-score and accuracy had the best performance ( *p < 0.05). Cascaded structure significantly improved the performance of the

segmentation (p < 0.05). For statistical analysis, the Wilcoxon signed-rank-test was performed.

cascaded structure, the overall metrics of two-phase training
were slightly increased but statistically insignificant (0.05 < p <

0.25). Therefore, we consider that two-phase training may bring
positive effects on the segmentation results, but is not as effective
as cascaded structure.

Segmentation Results
From the confidence interval of precision and recall value in
each class shown in Tables 1, 2, we found that in all cases,
CNN models had shown best performance in fibrous tissues,
whereas the calcified tissue had a lower precision and recall
coefficients compared to other tissues. From small patches,
many texture features were learnt by CNN models, but location
features and edge features were ignored at the same time.
Fibrous tissues usually express high-intensity region in OCT
images, which is significantly different from other tissues. Experts
usually identify calcified tissues according to clear boundaries,
but in terms of texture, the calcified tissues represent similar
features with other tissue types in many cases. Although many
strategies like cascaded structure were taken to addmore location
information into CNN models, some features were still lost in
small patches. Figures 6, 7 show the prediction of different types
of plaques with different networks. Compared with the results
of TwoPathCNN, the cascaded structure makes the boundary
of characterized plaque smoother, which is more reasonable and
accurate. Whereas, the LocalPath network mis-characterized the
plaque in some cases.

Table 3 shows a comparison between our CNN architectures
and other published state-of-the-art methods in plaque
characterization. We chose a recently published method using
deep learning (29) and a machine learning method established by
our group (22) for comparison. Compared with the deep learning
method, although our method had a similar performance in
calcified and lipid tissues, our method is able to achieve a
more complicated task by segmenting the fibrous tissues. In
terms of comparison with the machine learning method, our
method achieved a better performance in all cases. Lambros
et al. (33) used normal patch-based CNN to categorize four

TABLE 3 | Comparison of our method with other state-of-the-art segmentation

methods published previously in terms of sensitivity and specificity (—— means

the author did not segment the corresponding plaques).

Methods Fibrous Calcified Lipid

Our method Sensitivity 0.95 ± 0.03 0.87 ± 0.06 0.81 ± 0.11

Specificity 0.97 ± 0.02 0.92 ± 0.06 0.96 ± 0.03

Deep learning method Sensitivity —— 0.85 ± 0.07 0.87 ± 0.07

Specificity —— 0.94 ± 0.02 0.90 ± 0.05

Machine learning method Sensitivity 0.81 0.65 0.80

Specificity 0.91 0.91 0.88

Other patch-based method Sensitivity 0.89 0.34 0.88

Specificity 0.98 0.97 0.98

plaques and achieved good results in overall accuracy. However,
the sensitivity is relatively low especially for calcified plaques.
According to the consensus, calcified plaque contains IVOCT
evidence of fibrous tissue, along with calcium that appears as a
signal-poor or heterogeneous region with a sharply delineated
border (43). Therefore, it is hard to characterize calcified plaques
by only using texture features; thus, the normal patch-based
CNNmodels have a poor performance. In this study, by applying
cascaded structure, more information of location and border
is learnt by CNN models, which can greatly improve the
characterizing performance on calcified plaques. In addition, by
using convolutional output layer, the computation time can be
reduced.

DISCUSSION

Currently, plaque characterization from OCT imaging requires
trained observers, which is impractical when analyzing hundreds
of pullbacks in the clinical setting. Therefore, developing an
automatic algorithm for plaque characterization can effectively
assist clinician in analyzing OCT images and facilitate the
clinical diagnosis. We proposed a CNN-based algorithm for
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FIGURE 6 | The prediction results of OCT images with fibrous caps by different types of networks. Rows (A–D) show the initial OCT image, prediction by

TwoPathCNN network with cascaded structure, prediction by TwoPathCNN only, and prediction by LocalPath, respectively. Different colors represent different plaque

composition: blue: lipid, red: fibrous.

FIGURE 7 | The prediction results of OCT images with calcified composition by different types of networks. Rows (A–D) show the initial OCT image, prediction by

TwoPathCNN network with cascaded structure, prediction by TwoPathCNN only, and prediction by LocalPath, respectively. The characterized calcific composition is

marked in green.

the automated characterization of coronary plaque compositions
from OCT imaging and reformed the conventional CNN
architecture according to the features of plaque composition. The
results show that our CNN-basedmethod can effectively segment

different plaque compositions using trained CNN models. For
each OCT image, all pixels in the region of vascular tissue
are classified to one of the tissue types of atherosclerotic
plaque components.
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Compared to the accuracy of conventional methods using
machine learning (around 81%), most architectures we
mentioned in this paper can achieve this accuracy under the
premise of considering a more complicated situation that an
additional category besides fibrous, calcified, and lipid is taken
into consideration. Methods based on texture and attenuation
coefficients analyze each individual pixel with relevant intensity
and texture features. This often leads to scattered noise in final
prediction when the texture of tissue is uneven. Thanks to the
cascaded structure, this problem has been greatly improved by
providing more information on local tissue.

The algorithm was programmed in Matlab R2019b and tested
in the computer with the following configuration: Windows
64-bits, CPU Intel i7 with 6 cores at 3.4 GHz, 32 GB RAM,
and two NVIDIA 1080Ti cards. In machine learning methods,
computational time of analysis is around 80 s per image.
However, it takes only 3 s on average when using cascaded
structure for prediction, which includes the lumen segmentation
operation and plaque characterization. CNN methods and GPU
equipment greatly accelerate the characterization. This gap in
efficiency is huge especially when dealing with large datasets
consisting of hundreds of OCT images.

When processing the dataset consisting of OCT imaging
data, we had to exclude some images, which were hard to
identify their plaque composition to prevent controversial
ground truth from misleading the CNN models. This may
result in error when testing on similar OCT images. Therefore,
referring to segmentation results of neighboring images in the
pullback and using interpolation to adjust the prediction is
sometimes necessary.

OCT images in vivo do not have their corresponding histology
slices, so the ground truth datasets were produced by trained
observers via manual analysis. Although a series of actions were
taken to reduce bias, inevitably, manual analysis of OCT images
is prone to emerge error resulting in a weaker ground truth.
This may affect the testing results and mislead the CNN network
during the training process.

To deal with these limitations, a platform providing large
amounts of OCT images and agreed validation standard can
greatly improve the performance of characterization. The
training sets of plaque composition require trained observers
to segment substantial images manually, which is time- and
labor-consuming. In addition, more observers may be required
to reduce possible errors due to inter-operator variability. Lack
of dataset has become a huge barrier in the promotion of
automatic characterization of plaque composition. For example,
accumulating evidence has shown that plaque erosion and
calcified nodule are the underlying pathological causes for acute
coronary events. However, due to the limitation of dataset,
only a small amount of OCT images indicates the features of
plaque erosion and calcified nodules, which cannot meet the
requirement of CNN training. Increasing classification categories
also affect the performance of CNN models especially when the
training dataset is small. Given that our computational resource
is limited, we selected a simple structure of CNN with only 20
layers and the input size of 33 × 33 × 8. Under the precondition

of enough memory, more complex network structures can be
developed to improve the performance of characterization.

In addition, although conventional OCT can provide
morphological detail because of the high resolution, it also
has some limitations in diagnosis. Lipid plaque by OCT is a
signal-poor region with poorly delineated borders. However, the
signal-poor region may represent other tissues like macrophage
or intraluminal debris. Therefore, conventional OCT cannot
provide a complete description of coronary artery, which may
be one of the reasons why current methods to characterize
plaque components has been reported with limited success.
The next-generation OCT (44–46) can detect signal like
unique human coronary autofluorescence signature during
the imaging procedure, which may provide complementary
information to that obtained by conventional OCT. In further
research, auto-characterizing algorithms can be combined with
these features provided by the next-generation OCT, which
can improve the capacity of plaque characterization and
risk assessment.

CONCLUSION

We developed a novel automated algorithm based on CNN
to characterize coronary atherosclerotic plaque composition
from in vivo OCT imaging. F1-score and accuracy index
were used to evaluate its performance. The experimental
results show that CNN with cascaded structure can greatly
improve the performance of characterization compared to
the conventional machine learning methods. This method
has a higher efficiency, which may be proven to be a
promising practical method for future clinical practice. With
further development and validation, it may be developed
to be an automatic OCT-based diagnostic tool for coronary
plaque characterization.
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