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Background: Pericardial adipose tissue (PAT) may represent a novel risk marker for

cardiovascular disease. However, absence of rapid radiation-free PAT quantification

methods has precluded its examination in large cohorts.

Objectives: We developed a fully automated quality-controlled tool for cardiovascular

magnetic resonance (CMR) PAT quantification in the UK Biobank (UKB).

Methods: Image analysis comprised contouring an en-bloc PAT area on four-chamber

cine images. We created a ground truth manual analysis dataset randomly split into

training and test sets. We built a neural network for automated segmentation using

a Multi-residual U-net architecture with incorporation of permanently active dropout

layers to facilitate quality control of the model’s output using Monte Carlo sampling. We

developed an in-built quality control feature, which presents predicted Dice scores. We

evaluated model performance against the test set (n = 87), the whole UKB Imaging

cohort (n = 45,519), and an external dataset (n = 103). In an independent dataset, we

compared automated CMR and cardiac computed tomography (CCT) PAT quantification.

Finally, we tested association of CMR PAT with diabetes in the UKB (n = 42,928).

Results: Agreement between automated and manual segmentations in the test set was

almost identical to inter-observer variability (mean Dice score = 0.8). The quality control

method predicted individual Dice scores with Pearson r = 0.75. Model performance

remained high in the whole UKB Imaging cohort and in the external dataset, with

medium–good quality segmentation in 94.3% (mean Dice score = 0.77) and 94.4%

(mean Dice score = 0.78), respectively. There was high correlation between CMR and

CCT PAT measures (Pearson r = 0.72, p-value 5.3 × 10−18). Larger CMR PAT area was
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associated with significantly greater odds of diabetes independent of age, sex, and body

mass index.

Conclusions: We present a novel fully automated method for CMR PAT quantification

with good model performance on independent and external datasets, high correlation

with reference standard CCT PAT measurement, and expected clinical associations

with diabetes.

Keywords: cardiovascular magnetic resonance, pericardial fat, epicardial fat, obesity, automated image analysis,

neural network, machine learning

INTRODUCTION

Pericardial adipose tissue (PAT), which surrounds the surface
of the heart and adventitia of the coronary arteries, has
been linked to a range of important cardiovascular and
metabolic conditions, including atrial fibrillation (1), diabetes
(2), and coronary artery disease (3). These relationships
appear independent of subcutaneous fat, total body weight,
and classical cardiovascular risk factors (4), suggesting
distinct biological significance of PAT. Indeed, it has

been proposed that adipocytokines and proinflammatory
markers secreted by metabolically active PAT may act as
mediators for these associations through promotion of a
milieu for disease development at both local and systemic

levels (5, 6). Thus, PAT may provide novel insights into
disease processes and has a potential role as a marker of
cardiovascular risk.

Technical difficulties in quantification of PAT in an
efficient and radiation-free manner have precluded its
systematic study in large cohorts. While cardiac computed

tomography (CCT) PAT quantification is well-established
(3, 7–9), exposure of large population cohorts to ionizing
radiation is not ethically permissible (10). Cardiovascular
magnetic resonance (CMR) is the reference imaging
modality for assessment of cardiac structure and function
and has been used in several large population studies,
including the Multi-ethnic Study of Atherosclerosis (11),
the Framingham Heart Study (12), and the UK Biobank
(UKB) (13). Thus, CMR PAT quantification would have
high utility for research, with potential for translation into
clinical care; however, existing methods require dedicated
acquisitions and, often, arduous manual image analysis (14, 15),
limiting their applicability to large datasets with standard
sequence acquisitions.

We present a novel fully automated method for PAT
quantification using standard-of-care CMR images with
in-built quality control (QC) developed and tested in the
UKB. We test the correlation of this CMR PAT metric
with reference standard CCT PAT quantification in an
external dataset and investigate clinical validity through
consideration of associations with diabetes in UKB.
Reporting in this paper is in accordance with relevant
aspects of the Proposed Requirements for Cardiovascular
Imaging-Related Machine Learning Evaluation (PRIME)
guidance (16).

MATERIALS AND METHODS

Setting and Study Population
The UKB incorporates data from over half a million participants
recruited between 2006 and 2010 from across the UK. Individuals
aged 40–69 years old were identified through National Health
Service (NHS) registers and requested to participate via
postal invites. There was detailed baseline characterization of
participant demographics, lifestyle, and medical history (17). The
UKB protocol is publicly available (18). The UKB Imaging Study,
which includes detailed CMR imaging, aims to scan 100,000 of
the original participants (approximately 50,000 completed, June
2021) (19).

CMR Image Acquisition
CMR imaging was with 1.5-T scanners (MAGNETOM Aera,
Syngo Platform VD13A, Siemens Healthcare, Erlangen,
Germany) using a standardized acquisition protocol, which is
detailed elsewhere (13). Cardiac function was assessed using
balanced steady state free precession cine sequences with
standard long-axis cuts and a complete short-axis stack. No
signal or image filtering was applied, with the exception of
distortion correction.

Standard Operating Procedure for PAT
Segmentation
The analysis protocol comprised segmentation of an en bloc PAT
area from standard four-chamber cine images (single 2D slice),
a universal component of standard CMR studies and one that
demonstrates less variability in cut plane positioning compared
to other acquisitions (e.g., short axis slices). For consistency, we
measured PAT at phase 1 of the imaging cycle (approximately
end-diastole). A single contour was drawn to select areas of high
signal intensity adjacent to the epicardial surface of the left and
right ventricular myocardium, resulting in output of an area
measure in cm2 (Figure 1). Areas of high signal intensity over the
liver were not included, as this almost always represents adipose
tissue below the diaphragm (Figure 1B).

Creation of a Ground Truth Manual
Segmentation Dataset
We selected 500 random UKB participants with record of
an imaging center visit using the random number generator
package in R. We excluded participants with missing (n = 45)
or inadequate quality (n = 23) CMR images. PAT contours
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FIGURE 1 | Two examples of PAT contoured in end-diastole on four-chamber bSSFP cine-CMR, performed using CVI42
®
software according to the established SOP.

A single contour was drawn to select areas of high signal intensity adjacent to the epicardial surface of the left and right ventricles, resulting in output of an area

measure (A). Areas of high signal intensity over the liver were not included in the PAT measure as this almost always represents adipose tissue below the diaphram

(B). bSSFP, balanced steady state free precession; CMR, cardiovascular magnetic resonance; PAT, pericardial adipose tissue; SOP, standard operating procedure.

Images reproduced with permission of UK Biobank©.

were manually drawn for the remaining 432 participants.
For the purposes of model training and evaluation, the
sample was randomly split into training (n = 345) and
test (n = 87) sets. Image analysis was performed blind

to participant details using CVI42
R©

post-processing software
(Version 5.11, Circle Cardiovascular Imaging Inc., Calgary,
Canada). Contours were drawn by AB and cross-checked
by ZRE.

Neural Network Architecture
As the size of PAT does not alter during the cardiac cycle, it
may be quantified on static images, without consideration to
cardiac motion. Thus, PAT quantification can be framed as a
simple foreground-segmentation problem using a single frame
per experimental subject, from which the area it occupies can
be extracted. The task is to predict whether individual pixels
represent a point of interest (i.e., within PAT) or are a part of
the background.

Great progress has been made with automated medical
image segmentation using fully convolutional neural networks
(20, 21), particularly using encoder–decoder architectures (22).
We developed a neural network using a Multi-residual U-net
(MultiResUNet) base architecture (23) with the incorporation
of a permanently active dropout layer (24) at the end
of each multi-residual block (Figure 2). The best trade-off
between overall segmentation accuracy and prediction of that
accuracy was obtained with a dropout rate r = 0.3, which
we found to be optimal for model performance. This was
selected as the largest r value at which the segmentation
quality was not statistically reduced relative to a non-stochastic
network (Supplementary Figure 1). To incorporate a measure
of uncertainty that can be used for QC, we used permanently
active dropout layers to add a stochastic component to their
network outputs, meaning that multiple Monte Carlo (MC)
samples can be drawn for any given input (24). This MC
sampling from a stochastic neural network generates N samples
of predicted probability maps {P1...PN}, from which thresholding
at 0.5 can generate Boolean segmentation maps {S1...SN}. For our
foreground detection problem, the final segmentation S for each

voxel (x) is defined by thresholding the voxelwise mean of S:

S(x) =

{

1
∑N

i=1 Si(x)
N ≥ 0.5

0 otherwise

Network Implementation
The neural network was implemented and trained using the
TensorFlow 2.0 Python API (25), software available from https://
www.tensorflow.org. A combination of resampling images to
enforce uniform resolution, robust data augmentation, and
intensity normalization has previously been shown to increase
the generalizability of segmentation networks (26). Inspired by
this approach, all image data were first resampled to a uniform
resolution (1.82 × 1.82mm pixel spacing) and cropped/padded
to a size of 208 × 208 pixels, including the test set. During
training, data were augmented with rotation (up to 25◦), altered
resolution (resizing of up to 20%), random shearing up to 20%,
and random panning of up to 25% of the image dimension. All
data augmentation was performed on-the-fly, meaning that each
complete training epoch utilized a different set of images. All
images were normalized such that their pixel intensity range was
between 0 and 1.

Training proceeded for a maximum of 300 complete epochs
on a NVIDIA Tesla M40, using a batch size of eight images.
The loss function used was the binary cross-entropy, and this
was optimized using the Adam optimizer (27), with an initial
learning rate of 0.01, β1 = 0.9,β2 = 0.999. The learning rate
was decreased by a factor of 0.3 if, for 10 consecutive epochs, the
loss was not decreasing. If 20 epochs elapsed with no decrease in
the loss function, training was ceased and the weights yielding the
lowest loss were restored.

Metrics for Assessment of Segmentation
Agreement, Inter-observer Variability, and
Model Performance
We evaluated agreement between manual segmentations of
different expert observers (AB, ZRE, and SEP) and between
manual and automated segmentation. When multiple MC
samples are drawn from the stochastic neural network,
their level of agreement is correlated with the quality of
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FIGURE 2 | Central illustration. Summary of model architecture used in the present study. The MultiRes blocks (A) form the encoder and decoder arms of the

network. The number of filters used throughout the different components of the block is parameterized by U. The encoder and decoder arms are joined by Res paths

(B), which are parameterized by F and L. They are formed of L repeating units, and their convolutional components each have F filters. The complete network is

shown in (C). In (C), the colors indicate the placement of MultiRes blocks (A) and Res paths (B), while the hyperparameters used in each instance of the blocks are

indicated as overlaid text. Because of the permanently active dropout components, each prediction the network makes is equivalent to a Monte Carlo (MC) sample.

(D) shows three such samples drawn based on the same input image. Note the disagreement at the edges of the segmented regions, particularly clear as shown on

the overlay (far right). Images reproduced with permission of UK Biobank©.

the consensus segmentation (24). We expressed level of
segmentation agreement using metrics based on the well-
known intersection-over-union (or Jacard Index) and the Dice

score. Thus, we used four metrics for agreement between
segmentations: the Dice score, Intersection-over-Union (IoU)
metrics for overlap, the mean contour distance, and the
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symmetric Hausdorff distance (compares the closeness of
foreground voxels borders). Both of the overlap metrics are
bounded between 0 and 1, with 0 representing no overlap
and 1 representing perfect overlap. For both of the distance
metrics, lower distances represent closer agreement between
segmentation results. In line with previous literature pertaining
to QC (24, 28), we classified segmentation accuracy as poor,
medium, or good based on Dice scores of <0.6, 0.6–0.8, and
≥0.8 respectively.

Correlation of Automated CMR PAT
Quantification With CCT Measured PAT
We tested the correlation of our derived CMR PATmeasurement
with established CCT PAT measurements. We utilized the Barts
Health NHS Trust local sub-study, from the EValuation
of INtegrated Cardiac Imaging for the Detection and
Characterization of Ischaemic Heart Disease (EVINCI) dataset
(29), a clinical trial dataset including n = 109 participants
with paired CMR and CCT imaging performed within a
maximum interval of 37 days. We used the QFAT software
(version 2.0, Cedars-Sinai Medical Center) for CCT PAT
quantification (7, 8), which segments and quantifies epicardial
and thoracic fat from non-contrast calcium scoring CCT.
We utilized deep learning-based contouring with no manual
adjustment. Voxels containing thoracic fat deposits were
defined as those with a radiodensity of between −190 and
−30 Hounsfield units. The total PAT volume was measured in
cm3. For the CMR analysis, we used our automated pipeline:
four-chamber cine images were resampled to a resolution
of 1.82 × 1.82mm, padded/cropped to 208 × 208 pixels,
normalized to have pixel intensities ranging between 0 and
1, and our stochastic network segmentation and QC applied
with N = 15. Finally, the segmented area was extracted as
the mean foreground area of the MC samples. Thus, we were
able to test the performance of our automated image analysis
pipeline on CMR studies within the EVINCII cohort and also
to assess the correlation between these measures and CCT
PAT quantification.

Association With Diabetes
Given the established association between diabetes and increased
PAT, we tested the clinical validity of our PAT measures
through consideration of associations with this condition.
We applied our automated CMR PAT analysis tool to the
entire UKB Imaging cohort for whom adequate imaging was
available (n = 42,928). Diabetes was coded based on self-
report of the diagnosis, self-reported use of “medication for
diabetes,” or serum glycosylated hemoglobin >48 mmol/mol.
We tested the association of PAT area with diabetes status
in multivariable logistic regression models with adjustment
for age, sex, and body mass index (BMI). We present the
results as odds ratio associated with a 10 cm2 increase
in PAT with corresponding 95% confidence intervals and
p-values.

RESULTS

Model Training
We trained a MultiResUNet (23) with a Bayesian modification,
such that multiple MC samples are drawn for each input, in order
to perform QC and derive measures of uncertainty (24). Within
this context, there is one hyperparameter that must be optimized
after model training—that of the number (N) of MC samples
drawn when segmenting an unseen image. When multiple MC
samples are drawn during segmentation, they can be summarized
in a number of ways. Firstly, they can be used to produce a
single “best-guess” segmentation, via a simple voxel-wise voting
procedure. It is expected that drawing more samples from a well-
trained network will increase its accuracy, but with diminishing
returns. Where the area of “foreground” pixels is particularly of
interest (as in this use case, quantifying the area of PAT), we can
report the mean and standard deviation of the areas across the
N samples, which can be used for propagating uncertainty in
downstream calculations. N was set to 15 for all further work,
for the following reasons: Comparisons of segmentation accuracy
with a deterministic neural network showed that consistent with
prior work (24), there was no sacrifice in segmentation quality by
using a stochastic network relative to a deterministic one when
N was set to an appropriate level (Supplementary Figure 1A).
Additionally, increasing N beyond 15 gave very little extra
segmentation accuracy (Supplementary Figure 1A) or estimated
standard deviation of area.

There are a number of different metrics that were proposed
as correlates of final segmentation accuracy; however, it was
concluded that, of these, both the most conceptually convenient
and the most easily interpretable are those corresponding to
often-used segmentation accuracy metrics—the Dice score and
the IoU of the MC samples (24). We tested calculation of both
IoU and Dice score globally or mean pairwise over the MC
samples, finding that the best predictor of true segmentation
accuracy was the mean pairwise Dice score between the MC
samples, assessed on quantitative measures of agreement with
the true Dice score of the test set (Supplementary Figure 2).
Further details, as well as relevant equations, are detailed in the
Supplementary Material.

Evaluation of Automated CMR PAT
Segmentation Model Performance
The performance of the automated segmentation within the test
set relative to manual segmentations was good and very similar
to the agreement between human observers (mean Dice score
= 0.8). This was the case both for raw segmentation metrics
(Table 1) and under Bland–Altman analysis (Figures 3E–H).
Arguably, this is the best performance that may be achieved by
an automated segmentation algorithm and reflects the inherently
challenging nature of the PAT segmentation task. A few cases
(n = 4, 4.5%) had poor segmentation quality (Dice score <

0.6) (Figures 3A–D) and very large Hausdorff distances. This
underlines the importance of the in-built QC feature, which
would flag such cases.We also successfully applied the automated
segmentation to the whole UKB imaging cohort (n = 45,519);
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TABLE 1 | Standard segmentationperformance metrics for pairwise comparisons of manually contoured PAT by 3 observers (O1–O3), and comparing automated

segmentation with manual for the test set.

Metric O1 vs. O2 (n = 50) O1 vs. O3 (n = 50) O2 vs. O3 (n = 50) Automated vs. manual (O1) (n = 87)

Intersection-over-Union 0.689 (0.133) 0.636 (0.153) 0.678 (0.123) 0.677 (0.116)

Dice 0.808 (0.102) 0.766 (0.127) 0.801 (0.096) 0.800 (0.090)

Mean contour distance (mm) 2.78 (2.44) 3.83 (3.48) 3.79 (3.44) 2.79 (2.35)

Hausdorff distance (mm) 30.1 (23.8) 37.0 (28.6) 39.9 (28.8) 29.9 (22.9)

All values are mean (standard deviation).

FIGURE 3 | Model performance. (A–D) Histograms of standard segmentation performance metrics on the test set (n = 87). (E–H) Bland–Altman plots of PAT area

between manual measurement between measurements by different human observers, and a human observer (O1) and automated measurement. The x-axis denotes

the average of two measurements and the y-axis denotes the difference between them. The dark line is the mean difference, and the dashed lines show ±1.96

standard deviations from the mean. (E–G) show the inter-observer variability evaluated by three observers (O1–O3) on a randomly selected subset of the manually

contoured training set (n = 50 subjects). (H) shows the agreement between automated and manual measurements in the manually contoured test set (n = 87

subjects). (I) Example segmentations from the test set, with annotations showing Dice score and the predicted Dice score. Images reproduced with permission of UK

Biobank©.
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94.3% of cases (n = 42,928) had predicted Dice score of medium
or good quality (mean predicted Dice score = 0.77). Example
segmentation results from the UKB test dataset can be seen in
Figure 3I. The automated segmentation also performed well in
the external EVINCII dataset, with the majority of studies having
medium/good segmentation quality (n = 103, 94.4%), with an
overall mean predicted Dice score of 0.78 (Figure 4A). Running
on a laptop PC with an Intel R© CoreTM i7-1165G7 processor,
using a MC sample size (N) of 15, the model and QC step
took 2.1 s, including image pre-processing and final estimation
of Dice score.

Correlation of Automated CMR PAT With
CCT PAT Quantification
Within the EVINCII dataset, we tested the correlation of CMR
PAT measures derived using our automated analysis with PAT
derived using the QFAT tool from paired CCT scans. CMR
studies with poor segmentation quality (predicted Dice score <

0.6) were excluded from the analysis (n = 6). For illustration,
we present example segmentations with a range of Dice scores in
Figure 4C. There was a strong, statistically significant correlation
between CCT PAT volume and CMR PAT area (Pearson r= 0.72,
p-value 5.3× 10−18, Figure 4B).

Application to the UK Biobank Imaging
Cohort and Association With Diabetes
We applied our neural network to CMR scans from 45,519
UKB participants. We excluded cases with a segmentation
Dice score of <0.6 (n = 2,591, 5.7%). The remaining 42,928
participants were included in the analysis; of these, 2,529 were
diabetic. Consistent with existing evidence (2), larger PAT area
was associated with greater risk of diabetes in univariate and
multivariable models (Table 2). In fully adjustedmodels, every 10
cm2 increase in PAT was associated with ∼7% greater likelihood
of diabetes independent of age, sex, and BMI.

DISCUSSION

Summary of Findings
We present a novel method for PAT quantification using
standard-of-care CMR images, fully automated through a
convolutional neural network with an in-built QC algorithm.
The automated segmentation tool performed well within the test
set, the whole UKB imaging cohort, and an external dataset,
producing segmentation agreement close to that of human
observers. Our segmentation method demonstrates validity
against CCT PAT quantification, with a strong statistically
significant correlation between paired CMR and CCT PAT
measurements. Furthermore, we demonstrate, within the UKB,
expected clinical association of CMR PAT with diabetes
independent of age, sex, and BMI. Thus, the proposed CMR
PATmethod has great potential in facilitating investigation of the
clinical significance of PAT in large population cohorts.

Comparison With Existing Work
Limited studies have attempted to quantify and study the
clinical associations of CMR PAT. In a study from 1992,

Ross et al. (30) proposed a method for quantification of
abdominal and subcutaneous fat on spin echo T1-weighted
magnetic resonance imaging (MRI) sequences. They propose
a signal intensity threshold for defining adipose tissue pixels;
the area of adipose tissue regions was then calculated by
summing adipose tissue pixels and multiplying by the pixel
surface area; this area was then multiplied by slice thickness to
derive the volume of adipose tissue. Unsupervised approaches
for quantification of abdominal fat using this method have
been developed using small datasets (31). More recently, these
principles have been repurposed to derive CMR measures of
thoracic fat using spin echo T1-weighted CMR acquisitions
with zero slice gap and to investigate clinical associations in
small cohorts (32–34). While this approach has had some
utility, there are two fundamental limitations. Firstly, as the
thresholding is based on pixel intensity levels, this is subject to
variation based on technical (e.g., magnet strength, acquisition
sequences, vendor) factors; as such, the threshold would need to
be re-established depending on technical parameters. Secondly,
because the methodology aims to derive a volumetric measure
of adipose tissue, dedicated acquisitions with zero slice gap
have been obtained. As standard protocols do not have zero
slice gap (usually 5–8mm slice gap), this approach, as it
stands, is not suitable for application to standard-of-care
CMR images.

Ding et al. (14) propose another approach for CMR PAT
quantification; they present a limited study demonstrating
feasibility of a fully automated pericardial fat quantification
method from water/fat-resolved whole-heart non-contrast
coronary magnetic resonance angiography. The very small
sample size (n = 10) in this limited feasibility study precludes
any meaningful assessment of model performance and the
clinical validity of the proposed measurement is not known.
Furthermore, as fat/water sequences are not routinely acquired
as part of standard CMR studies, this methodology is unlikely to
have wide application.

In a similar approach to our work, Rado et al. (15)
quantify epicardial and pericardial fat areas from four-
chamber cine images. They use a manual analysis protocol
taking measurements in end-diastole and end-systole and
making distinction between epicardial and pericardial
fat area. They use their manual analysis measures (n =

374) to investigation associations with impaired glucose
metabolism and left ventricular function. In developing our
SOP, we also experimented with distinguishing between
epicardial and pericardial fat areas. However, on inspection
of a large number of studies, it became apparent that
reliable distinction of these two areas was not possible for a
substantial number of cases. Hence, we opted for a simpler
approach of using a single en bloc contour. The strong
correlation of our measure with CCT PAT quantification and
observed associations with diabetes suggest that quantification
according to our SOP does not detract from the potential
utility of the measurement. Furthermore, the simplicity
of our method enabled development of a fully automated
analysis tool, which is essential for study of CMR PAT in
large datasets.
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FIGURE 4 | Comparison of quantified PAT from CT and CMR. (A) The predicted Dice scores of the segmented data. (B) Correlation between PAT volume quantified

via QFAT software and PAT area quantified using our method. Subjects with a predicted Dice < 0.6 were excluded from Pearson analysis. (C) Some example CMR

images, their automatically segmented PAT, and the predicted segmentation quality are also shown for reference.

Technical Implications
In terms of the technical details of our neural network, the Multi-
Residual U-net architecture (23) was vital, yielding far better
results than “vanilla” U-nets (21) (data not shown). Meanwhile,
a QC method has been demonstrated using an extension of a
stochastic network, which approximates Bayesian MC sampling
(24). Consistent with prior work, we find that measures of
similarity between MC samples are correlated with segmentation
quality; intuitively, this corresponds to how “sure” the network
is of the output. However, in contrast, we found that the mean
pairwise Dice score dMC yielded best prediction, in contrast to
the global intersection-over-union IoUG used in previous work,
and that an additional linear correction was required.

A potential consideration is whether better segmentation
accuracy could be obtained via the removal of the stochastic
component, thereby providing a single prediction. This would
be undesirable for a number of reasons. Firstly, it is important
to have some estimate of segmentation quality, which can only be
provided if the actual segmentation is derived from our stochastic
process. Secondly, a comparison with a non-deterministic
MultiresUNet is provided in Supplementary Figure 1, and the
accuracy is comparable with our stochastic model. However,
note that dropout was not used within training of this network
for the following reason: The MultiResUNet architecture makes
extensive use of batch normalization. Because of a phenomenon
known as variance shift, the combination of batch normalization
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TABLE 2 | Logistic regression for prediction of diabetes in the UK Biobank dataset.

Variable Odds ratio 95% CI p-value

Model 1 PAT Area (cm2) 1.44 1.40, 1.47 8.43 × 10−164

Model 2 PAT Area (cm2) 1.36 1.32, 1.40 1.26 × 10−92

Male sex 1.32 1.20, 1.44 8.97 × 10−9

Age (years) 1.03 1.03, 1.04 4.66 × 10−30

Model 3 PAT Area (cm2) 1.07 1.03, 1.10 1.41 × 10−4

Male sex 1.80 1.63, 1.98 2.43 × 10−32

Age (years) 1.05 1.04, 1.05 7.91 × 10−54

BMI 1.18 1.17, 1.19 4.27 × 10−305

The dataset includes 2,529 diabetics and 40,399 non-diabetics. Odds ratios for PAT area are indicated for an increase of 10 cm2. BMI, body mass index; CI, confidence interval; PAT,

pericardial adipose tissue.

and dropout often produces reduced accuracy once the dropout
is “turned off” (35). However, this problem does not apply to our
results, as the dropout is kept permanently active.

STRENGTHS AND LIMITATIONS

Using a modest manually annotated dataset, we have achieved
good segmentation accuracy, with a mean Dice score of 0.80.
However, the performance of machine learning tools may
be reduced when applied to external datasets (decline in
generalizability); to minimize this effect, we made use of robust
data augmentation procedures during training (26). We are
reassured by the good performance of our tool on the whole
UKB imaging cohort and on the external EVINCII CMR dataset.
We use a very simplified SOP taking PAT area measurement
from a single 2D slice; clearly, this approach does not accurately
quantify the volume of mediastinal fat. However, we demonstrate
correlation of ourmeasurement with established volumetric CCT
PAT measure and replicate known clinical associations with
diabetes. This suggests that our CMR PAT measure is valid as a
marker to study associations with the PAT exposure. Indeed, we
would argue that complicated acquisitions to quantify thoracic
fat have hampered previous attempts to make wide practical use
of this measure. A potential limitation of the method is that the
model cannot distinguish between specific pathologies—e.g., fat
or fluid. In UKB, and similar cohorts, we do not expect this to
be a significant source of error, as there are very few participants
with pericardial effusions. However, with broader application of
the tool to clinical cohorts, such considerations may be more
relevant. Further studies in large cohorts are now needed to
establish the clinical utility of this CMR PATmeasure in different
settings and patient cohorts, and the proposed automated tool
will facilitate such studies in large (and small) cohorts. As we
use standard-of-care images, the CMR PAT measurement can be
retrospectively applied to any existing dataset and, furthermore,
if clinical value of this metric is established, it could be readily
integrated into clinical practice.

CONCLUSION

We present a novel fully automated quality-controlled
method for CMR PAT quantification using standard-of-care

four-chamber cine images. Throughout the study, we
demonstrate that our QC method functions as intended, and we
demonstrate that the segmentation performance of thismethod is
equivalent to inter-observer variability and that the area extracted
by our method is strongly correlated with measurements taken
using reference standard CCT quantification. Finally, we
demonstrate that our CMR PAT quantification method can
recapitulate known clinical associations with diabetes. Overall,
we present a novel tool that is now ready to be used for
new research.
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