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Obesity has a strong impact on the pathogenesis of cardiovascular disease, which

raises enthusiasm to understand how excess adiposity causes vascular injury. Adipose

tissue is an essential regulator of cardiovascular system through its endocrine and

paracrine bioactive products. Obesity induces endothelial dysfunction, which often

precedes and leads to the development of cardiovascular diseases. Connecting

adipose tissue-endothelial cell interplay to endothelial dysfunction may help us to better

understand obesity-induced cardiovascular disease. This Mini Review discussed (1) the

general interactions and obesity-induced endothelial dysfunction, (2) potential targets,

and (3) the outstanding questions for future research.
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INTRODUCTION

The increased incidence of obesity contributes to the prevalence of various metabolic diseases.
About 1.9 billion people are predicted to be obese or overweight, worldwide (1). Obesity is an
established risk factor for cardiovascular disease (CVD) (2); obese individuals are predisposed to
a range of cardiometabolic abnormalities (3). Thus, great attention has been drawn to the topic
of how excess adiposity leads to vascular dysfunction. Mechanistically, adipose tissue (AT) affects
the cardiovascular system through the secretion of bioactive products (e.g., adipocytokines and
microvesicles), inorganic molecules, and reactive oxygen species (ROS). AT becomes dysfunctional
in obesity and generates a pro-inflammatory, hyperlipidemic, and insulin-resistant environment,
which ultimately leads to the development of metabolic complications (e.g., diabetes) and
cardiovascular complications (e.g., atherosclerosis) (4). Arteries residing in visceral adipose
display impaired vascular responses to endothelium-dependent agonists (e.g., intraluminal flow),
characteristic of endothelial dysfunction (ED), which occurs long before CVD has developed.
Recognizing the roles of AT in obesity-induced ED/CVD, this mini review will discuss the AT-EC
interactions with their potential as therapeutic targets of obesity-induced ED and the remaining
research questions that merit further investigation.

The Role of AT in Obesity
AT is the body’s largest endocrine organ and secretes hormones, cytokines, and
proteins in endocrine and/or paracrine manners that affect cell and tissue function
throughout the body (5). AT is also essential in maintaining lipid and glucose
homeostasis, which becomes dysfunctional in obesity and excessive deposition of
fat occurs. Enlarged adipocytes in obese individuals promoted macrophage-mediated
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inflammation and adipokine-induced insulin resistance (6). The
pathological function of AT is determined by their cellular
composition, secretome (secretion profiles), and location in the
human body (7). Further, low storage and removal of adipose
triglycerides promote dyslipidemia, while high storage and low
removal prompt obesity (8). In addition, detection of brown
and/or beige AT in adult humans (9, 10) and the realization of
adipocyte heterogeneity and plasticity of white AT spurred great
interest in targeting AT for possible therapeutic advantages (11).

Obesity-Induced Endothelial Dysfunction
(ED)
Impairment of flow-induced vasodilation, arterial dilation
prompted by blood flow, is one hallmark of obesity-induced
ED. It is demonstrated by the impairment of endothelial nitric
oxide synthase (eNOS) and the loss of nitric oxide (NO), a
major vasodilator and anti-inflammatory agent (12). Obesity also
promotes damage of the endothelial glycocalyx, which responds
to mechanical force from blood vessels and regulates NO
production. Flow-mediated vasodilation in mouse and human
mesenteric arteries was hindered by loss of the endothelial
flow-sensitivity of Kir (inwardly rectifying K+) channel
due to obesity-induced glycocalyx thinning (13). Defective
physiological properties of endothelial cells (EC) will switch the
vascular endothelium to a pro-inflammatory, prothrombotic
and proatherogenic phenotype, leading to leukocyte adhesion,
activation of platelets, and pro-oxidation of mitogens, along
with impaired endothelial NO production, decreased synthesis
of endothelium-derived hyperpolarizing factors (EDHF), and
increased vasoconstriction factors, such as angiotensin II (Ang II)
and prostaglandin (PGH2) (14). Through activation of adhesion
molecules, leukocyte proliferation, and transmigration, ED
reportedly launches CVD progression in obesity (15). Moreover,
secretion of angiotensinogen of the renin-angiotensin system
(RAS) by dysfunctional adipocytes leads to its overexpression in
RAS, enhancing ROS production and increasing the atherogenic
and thromboembolic potentials of EC (16). The risks associated
with cardiovascular complications can be mitigated through
inhibition of inflammatory mechanisms and controlling
obesity (16).

MODES OF AT-EC INTERACTION IN
OBESITY

Human AT can be broadly divided into subcutaneous AT (SAT)
and visceral AT (VAT). VAT in the heart can be classified
as epicardial AT (EAT) and pericardial AT (PAT). Among all
AT depots, the perivascular AT (PVAT) is recognized as a
vital regulator of vascular biology because of its anatomical
proximity to the vessels (17). These ATs regulate cardiovascular
system through the secretion of bioactive products, such
as adipokines, microvesicles, and gaseous messengers. The
secretome is under tight control by homeostatic mechanisms,
which can become dysregulated in obesity. There are two modes
of AT-EC interaction: the endocrine mode, which is an indirect
crosstalk through the circulation, and the paracrine mode,

which is a direct interplay. Obesity-initiated systemic or local
inflammation and insulin resistance shift the AT secretome from
an anti-inflammatory and anti-atherogenic state toward a pro-
inflammatory and pro-atherogenic state.

Endocrine Mode
Associated with connective tissue and blood vessel proliferation,
inflammation has been regarded as the first stage of vascular
dysfunction. AT-derived tumor necrotic factor-α (TNF-α) is
one product of inflammation (18). In obesity, microvasculature
from VAT is an important source of low-grade inflammation
and oxidative stress. Both contribute to vascular changes
and favor increased atherosclerosis under clinical conditions.
Mechanistically, excessive macronutrients accumulated on the
AT promote the secretion and release of inflammatorymediators,
including interleukin-6 (IL-6), interleukin-1β (IL-1β), TNF-α,
leptin, and stimulation of monocyte chemoattractant protein-1
(MCP-1), which subsequently produce less adiponectin, thereby
initiating a proinflammatory state (16) and driving vascular
destabilization and leakage (19).

Among AT-secreted factors, MicroRNAs (miRNAs) are short,
single-stranded, non-coding RNA molecules that play important
roles in a variety of cellular processes, such as differentiation,
proliferation, apoptosis, and stress response; their alteration
contributes to the development of many pathologies, including
obesity (20). Specifically, AT-derived miRNA (21) mediates
obesity-induced ED by affecting gene expression of eNOS,
SIRT1, cellular producers of ROS, autophagy machinery, and ER
stress (22).

Paracrine Mode
PVAT and EAT elicit direct impacts on the adjacent vascular
wall or myocardium, respectively, through the paracrine release
of bioactive mediators. These mediators travel to neighboring
vessels, thereby regulating the biology of entire vascular beds
in a “vasocrine” manner (23). In obesity, PVAT-secreted high-
concentrations of adipokines (e.g., TNF-α and IL-6) access the
vascular lumen and suppress the PI3-K pathway of insulin
signaling, which unlocks the vasoconstrictor effects of endothelin
1, leading to a reduction in insulin-mediated muscle nutritive
blood flow, contributing to insulin resistance (23). PVAT also
releases miRNA, including miR-221-3p, which is highly enriched
in obese PVAT and recently reported to induce ED by vascular
remodeling (24). EAT has close proximity to the adventitia of
the coronary arteries and shares the same microcirculation as
the underlying myocardium (25, 26). When adversely remodeled
and dysfunctional in obesity, EAT secretes proinflammatory
cytokines, contributing directly to the pathogenesis of coronary
artery disease (27).

TARGETING AT-EC AXIS TO TREAT
OBESITY-INDUCED ED/CVD

AT has an essential role in obesity-induced CVD (28) Recent
findings suggest that targeting either AT, EC (single-target),
or both (dual-target) with a mechanism-based approach would
improve obesity-induced ED/CVD (Table 1).
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TABLE 1 | Recent advances in treating obesity-induced ED.

Potential targets/interventions Effects and mechanisms

Single-target EC (29)

eNOS Slow-release eNOS substrate arginine (30) or blocking arginase (31, 32) to improve eNOS function

and/or NO bioavailability in rodents and patients.

FTO inhibition Overcame glucose intolerance and insulin resistance and hypertension in mouse models of obesity (33).

NOX inhibition Inhibition of specific subunits ameliorated ROS-induced ED in rat model of obesity (34, 35).

CD40L inhibition Improved ROS-induced inflammation and ED in mouse models of obesity (36).

NETs Blocking formation or increased degradation in EC prevented ED in mouse model of obesity (37, 38).

TRPV4 channels Activity rescue improved ED (39), involving Ca2+-mediated vasoregulation (40), in mouse models of

obesity.

Soluble (pro)renin receptor

inhibition

Soluble (pro)renin receptor induced ED and hypertension by activating AT1R leading to RAS hyperactivity

in mouse models of obesity (41).

AT (4)

GRK2 inhibition Reduced AT-macrophage infiltration and improved ED in mice (42).

Anti-inflammation Reduced AT-pro-inflammatory cytokine production by adipokine and leptin (43).

Dual-target GLP1 agonist

DPP4 inhibitors

Improved cardiovascular outcomes in patients of type 2 diabetes mellitus (44, 45) related to improved AT

function (46).

SGLT2 inhibitor Cardioprotective (47) and beneficial for heart failure in patients (48).

Anti-inflammation Reduced AT-pro-inflammatory cytokine production and restored endothelial function by metformin (49),

resveratrol (50), and methotrexate (51).

Lifestyle intervention Exercise improved EC function (52) or reversed ED (53). Calorie restriction improved vascular insulin

sensitivity and reduced inflammation (54).

Single-Target Interventions
Targeting peripheral vascular EC to improve ED has been
long exploited (29). Recent studies showed that heterozygous
eNOS deficiency was associated with ED in diet-induced
obesity (55). Patients with abnormal arginine metabolism and
bioavailability due to obesity displayed lower cardiometabolic
risk after treatment with a slow-release eNOS substrate, arginine
(30). Vascular function could be rescued in obese vessels by
targeting EC-Ca2+ toolkit, although this was not tested in
obese subjects (56). A recent study showed that deletion of
fat mass and obesity-associated protein (FTO) in EC rescued
metabolic and vascular function in obesity (33), independent
of its known function in regulation of obesity (57). Vascular
arginase reduces NO bioavailability, which hastensmicrovascular
remodeling in obesity (31). EC-derived arginase mediates
obesity-induced vascular dysfunction and arterial stiffening
(32), implicating arginase as a potential target of obesity-
induced ED.

Oxidative stress is a key pathogenic factor of microvascular
complications in metabolic disease. Renal Nox1, Nox2, and
Nox4 contribute differentially to vascular oxidative stress-
associated ED in obesity, suggesting a need to identify specific
Nox subunits as a target (34), which may result in effective
prevention of obesity-related CVD (35). Oxidative stress-
associated inflammation is another frequently tested target.
CD40 ligand (CD40L) signaling regulates ED via immune
cell recruitment and platelet activation in mouse models of
hypertension, the mechanism of which extended to mouse
models of obesity, implicating CD40L as a therapeutic target
for lipid dysmetabolism (36). Neutrophil extracellular traps

(NETs) have an inflammatory web-like chromatin structure
(37). Inhibition or degradation of NETs prevented ED in
mouse model of obesity (38) Further, adipose macrophage
infiltration enhanced vascular ED in obese subjects (58).
Blocking infiltration of macrophages and T lymphocytes in
PVAT prevented obesity-induced ED in mice with G protein-
coupled receptor kinase 2 (GRK2) deletion in myeloid cells (42),
suggesting GRK2 as a potential therapeutic target. Deletion of
lipoxin receptor in leukocytes led to unsolved inflammation
in mice, which augmented ED with diabetic cardiomyopathy
in obesity (59). Similar therapeutic potentials have been found
in other inflammatory mediators, such as adipokine and
leptin (43).

Obesity is a strong predictor of hypertension, although it
remains unknown how obesity increases blood pressure (60).
ED is a hallmark of obesity-induced hypertension. Insulin
resistance and increased systolic blood pressure led to ED
in obesity; however, targeting these factors presented with
different benefits depending on sex (61) and ethnic group
(62). RAS hyperactivity was often thought to result from
Ang II-dependent stimulation of the Ang II type 1 receptor
(AT1R). Recently, the soluble (pro)renin receptor was found
to induce ED and hypertension by activating AT1R in high-
fat diet (HFD) feeding mice (41). Another recent study
reported that endothelial transient receptor potential vanilloid
4 channels (TRPV4) was impaired in a mouse model of diet-
induced obesity and obese human resistance vessels, resulting
in increased blood pressure (39). This contrasted with findings
from another recent study in the same mouse model, but
with a longer duration on HFD feeding, which implicated
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Ca2+-spark vasoregulation as the underlying mechanism (40).
Prolonged HFD feeding in mice appeared to improve the
vascular response to leptin, which overrode ED induction (63)
In any case, strategies to preserve or protect a functional target
on EC would bear promise to improve ED and hypertension
in obesity.

Dual-Target Interventions
In terms of safety, cost, and effectiveness, most clinical
approaches targeting AT have not been successful in the
treatment of AT-induced CVD (28). However, some commonly
used anti-hyperglycemic medications and lifestyle intervention
could elicit a dual action: improving AT function and conferring
an appreciable cardiovascular benefit.

Glucagon-like peptide 1 (GLP1) is an incretin, responsible
for insulin secretion, glucagon inhibition, and decreased
gastrointestinal motility in the post-prandial setting. GLP1 is
inactivated by dipeptidyl peptidase 4 (DPP4), an AT-expressing
enzyme. GLP1 agonists (e.g., liraglutide) and DPP4 inhibitors
(e.g., sitagliptin) are now being used in the management of type
2 diabetes mellitus with improved cardiovascular outcomes in
clinical trials (44, 45), implicating AT involvement (46). Sodium–
glucose transporter 2 (SGLT2) (e.g., empagliflozin) is responsible
for renal glucose reabsorption, the inhibition of which also
exerted direct AT effects with a cardioprotective profile (47).
As reported in a meta-analysis, SGLT2 inhibitors generated
consistent beneficial outcomes for heart failure and kidney
disease, with certain heterogeneity in cardiovascular deaths (48).
Whether endothelial function and/or inflammatory response are
improved and whether they are associated with the favorable
outcomes in these trials remain to be determined.

Since positive cardiovascular outcomes have been observed
in patients with established CVD by the use of anti-
inflammatory agents [e.g., canakinumab (64)], interfering with
AT inflammation could generate favorable outcomes. Indeed,
in rodent models of obesity, several pharmaceuticals [e.g.,
metformin (49), resveratrol (50), and methotrexate (51)] are
reported to reduce pro-inflammatory cytokine expression in AT
and promote adiponectin expression, thereby rescuing eNOS
phosphorylation and endothelial function.

Lifestyle intervention (e.g., exercise and diet) is one of the
best approaches, especially when medicines are not available or
existing medicines have failed. ED directly impairs basic vascular
function (e.g., blood flow alteration), which made it a great
target for pharmacological and/or exercise intervention with
insulin-based therapies (57). Obese individuals who performed
an acute high-intensity interval exercise presented with improved
plasma pentraxin 3 and endothelial function (52). Even a short-
term weight loss could reverse obesity-induced microvascular
ED (53). Calorie restriction improved vascular insulin sensitivity,
which was associated with downregulation of pro-inflammatory
cytokine production in aged AT (54).

Given the functional AT-EC interaction, targeting both AT
and EC (“dual-action therapies”) would be a better approach for
obesity (65–67), which might lead to the cardiovascular benefits
observed in different large-scale clinical trials (68).

DISCUSSION: UNRESOLVED QUESTIONS
AND FUTURE DIRECTIONS

AT-induced ED is central to the development of CVD, the major
cause of morbidity and mortality (69). In obesity, AT induces
ED by releasing bioactive products locally and systematically
(Figure 1). ED is the very first step in CVD pathogenesis;
understanding the molecular mechanism could help us to
identify therapeutic targets. Progress has been made in this
regard, but important questions remain unanswered.

AT has striking biological variability due to its location and
metabolic state, affecting the individual’s overall cardiometabolic
risk (70–73). For example, excess visceral AT has been linked
to diabetogenic/atherogenic metabolic abnormalities more so
than subcutaneous AT (73), partly because the former has more
glucocorticoid receptors, which accelerated fat deposition when
the hypothalamic-pituitary-adrenal axis was activated, leading
to insulin resistance in the liver and in the skeletal muscle. To
uncover how AT promotes CVD in obesity, we should consider
both AT- expansion and its heterogeneous nature as an endocrine
organ (74–78).

Large-scale epidemiological studies have questioned the exact
nature of adiposity-adverse outcomes association, implicating
an “obesity paradox,” in which individuals with overweight
and even obesity present survival benefit compared with
their normal-weight counterparts in general population and
those with chronic diseases (79, 80) or critical illness (e.g.,
heart failure) (74–78). Although under debate (81), the
survival benefits may be attributable to higher energy reserves,
inflammatory preconditioning, endotoxin neutralization, adrenal
steroid synthesis, activation of RAS, secretion of cardioprotective
factors, and prevention of muscle wasting (82). Given the
methodological flaws in these studies, further randomized and
controlled clinical trials and prospective studies are required
to validate the concept. Future research should focus on the
pathophysiologic role of AT in critical illness. In this regard, the
role and mechanism of endothelial (dys)function in the obesity
paradox (83) remains to be elucidated.

Recent studies demonstrated that vascular-derived and heart-
derived signals, such as pro-inflammatory and oxidative stimuli
released from diseased vessels and/or myocardium, modified
AT biology, e.g., by providing adipocyte precursors and driving
angiogenesis in response to excess calories (84). Thus, AT
can be regulated by feedback signals from the vascular EC,
suggestive of a bidirectional interaction. Similar to EC control
of CVD development (e.g., atherogenesis) by interacting with
VSMC (85), emerging studies support that EC controls whole-
body metabolisms through interactions with metabolic tissues
(84), including AT in obesity-associated insulin resistance. The
molecular mechanisms for bidirectional regulation of AT and
EC merit continued investigation to better translate findings into
clinical benefits.

The vasculature is present in all major organs, sustaining
homeostasis and function throughout the body. The vascular
EC display extensive functional heterogeneity depending on the
vessel and tissue in which they reside. It facilitates the unique
physiological function of each organ, such as nutrient transport,
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FIGURE 1 | The scheme of AT-EC interplay in obesity-induced ED. AT interacts with the cardiovascular system via endocrine and paracrine secretion of bioactive

products, e.g., adipokines, gaseous messengers, and microvesicles that carry bioactive molecules such as miRNA. Dysfunctional AT-EC interactions may induce ED

in obesity, leading to CVD.

endocrine signaling, waste disposal, and disease protection. The
mechanisms sustaining EC heterogeneity remain unknown (86).
EC functional diversity was initially investigated by exploring
EC specialization on a global scale [e.g., expression profile of
multiple cultured EC with DNA microarrays (87)], followed
by attempts to decipher functional and transcriptomic features
of organ-specific EC in small populations or seldom-expressed
genes in the lung (88), liver (89), heart (90), and other tissues
(91). The emerging single-cell RNA sequencing technologies
facilitate finding genes and pathways that dictate the organ-
specific function of EC (92). A transcriptome study identified
distinct gene expression profiles in cardiac EC (when compared
with renal, cerebral, or pulmonary EC), e.g., higher expression
of CD36 signaling cascade (90), which is a key regulator of

fatty acid uptake and involved in atherogenesis (93). A recent
study reported a relationship of circulating EC with obesity and
cardiometabolic risk factors (94). Future research could identify
signatures of the EC in depot-specific AT to determine their
pathological roles in vascular complications.

The current COVID-19 pandemic presents an urgent health
crisis (95). Numerous studies reported that severe obesity is
associated with increased morbidity and mortality from COVID-
19 (96–103), suggesting obesity as a risk factor for severe
COVID-19 disease (104, 105). This is not surprising given
that obesity is generally associated with increased incidence
and severity of respiratory viral infection (106, 107). However,
the underlying mechanism has yet to be elucidated. Recently,
COVID-19 has been suggested as a multiorgan endothelial
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disease for its association with vasculitis and ED (108–111),
which may be gender- and age-dependent (112). Although
both the hypothetical role and therapeutic targetability of the
vasculature in COVID-19 remain to be validated (113), an urgent
need in this pandemic is to identify factors that mediate the
physiological interactions between obesity and vasculature that
contribute to CVD. Epithelial cell-derived IL-33 (114) was a
key player in driving all stages of COVID-19 disease (115).
EC also express IL-33 (116), the expression of which was
enhanced in AT-EC by severe obesity (117). It would be timely
to test whether EC-derived IL-33mediates COVID-19-associated
vascular complications (118). The hope is to bring about clinical
breakthroughs for the treatment of COVID-19 in patients
with obesity.

Obesity is a major risk factor for common medical conditions
beyond CVD, such as type 2 diabetes (119), dyslipidemias
(120), fatty liver (121), Alzheimer’s disease (122, 123), and some
cancers (124). These conditions occur due to obesity-induced
insulin resistance and AT-derived endocrine factors (5). Given
the essential roles of EC in the development of these disorders
individually [diabetes (14), dyslipidemias, fatty liver (125, 126),
Alzheimer’s disease (127, 128), and cancers (129)], one would
wonder whether targeting the AT-EC axis would be a novel

avenue to improve these common conditions. Answers to these
questions could be clinically significant in preventing or treating
obesity-related complications.
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