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Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and

signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely

expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515

kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of

LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in

embryogenesis and development. LRP1 has been postulated to participate in numerous

diverse physiological and pathological processes ranging from plasma lipoprotein

homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration

and survival. Many studies using cultured cells and in vivo animal models have revealed

the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and

atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only

participates in the removal of atherogenic lipoproteins and proatherogenic ligands in

the liver but also mediates the uptake of aggregated LDL to promote the formation

of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which

causes a prothrombotic transformation of the vascular wall. The dual and opposing roles

of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This

review highlights the influence of LRP1 during atherosclerosis development, focusing on

its dual role in vascular cells and immune cells.

Keywords: LRP1, atherosclerosis, smoothmuscle cells, macrophages, endothelial cells, adipocytes, immune cells

INTRODUCTION

Atherosclerosis (AS), in concert with its related disorders, such as coronary heart diseases, stroke,
and peripheral vascular diseases, is the leading cause of morbidity and mortality worldwide (1–4).
Some researchers have characterized atherosclerosis as damage to three major processes: systemic
and cellular cholesterol homeostasis, inflammation and apoptosis/endocytosis (5). Atherosclerosis
is initiated by endothelial dysfunction due to activation of endothelial cells by irritative stimuli, such
as hyperlipidemia, high shear forces, hypertension, and proinflammatory mediators, which allow
blood monocytes to permeate the endothelial cell layer and infiltrate into the intima and subintima.
After entering into the intima, the monocytes differentiate into macrophages, which subsequently
uptake modified low-density lipoprotein (LDL) or oxidized phospholipids to further form foam
cells. The successive accumulation of apoptotic foam cells in the endothelium cannot be cleared
in time, gradually leading to the formation of thrombi and inflammatory necrotic cores (6, 7).
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Subsequently, the release of the chemoattractant platelet-
derived growth factor from macrophages, activated platelets and
endothelial cells causes vascular smooth muscle cells (VSMCs)
to migrate from the medium to the intima, proliferate, undergo
apoptosis and senescence, and produce extracellular matrix to
form fibrous caps of atherosclerotic plaques to prevent plaques
rupture. However, the aberrant proliferation of VSMCs promotes
plaque formation, and the balance of VSMC proliferation
between migration vs. cell death and senescence determines the
population of VSMCs within the atherosclerotic plaques. These
processes play important roles in the formation of atherosclerosis
and the stability of plaques (8, 9). Lastly, the rupture of
atherosclerotic plaques promoted by cap thinning due to the
death of VSMCs and the breakdown of collagen and ECM
leads to thrombosis, potentially resulting in major cardiovascular
episodes such as stroke and myocardial infarction (9).

LDL receptor-related protein (LRP1) is a 600-kDa type
I glycosylated transmembrane protein belonging to the LDL
receptor (LDLR) superfamily and is ubiquitously expressed in
multiple cell types (10–13). This multifunctional transmembrane
protein has been reported to regulate cholesterol homeostasis,
inflammation and apoptosis/endocytosis (14–16). LRP1 is
expressed in both normal and atherosclerotic arteries (17) and
can recognize both lipoprotein and non-lipoprotein ligands
to participate in a wide variety of biological processes,
including lipid metabolism (18), blood-brain barrier (BBB)
integrity (19) and macrophage migration (20). Genome-wide
association studies have revealed that the LRP1 gene constitutes
a susceptibility locus for abdominal aortic aneurysms, elevated
plasma lipids and coronary heart disease (21–23). Many
translational studies have shown that LRP1 is involved in
two major physiological processes: endocytosis and signaling
pathway regulation. The endocytosis of multiple extracellular
ligands of LRP1, including apolipoprotein E (ApoE)- and
lipoprotein lipase-enriched lipoproteins, thrombospondin, and
plasminogen activators, is important in vascular biology and
tumor progression. In addition, LRP1 can initiate and regulate
diverse signaling pathways, including the mitogen-activated
protein kinase (MAPK), insulin receptor (IR), serine/threonine
protein kinase (AKT), extracellular signal-regulated kinase
(ERK), and c-jun N-terminal kinase (JNK) pathways (24–29).

However, recent studies have shown that LRP1 has dual
and opposing roles in regulating arteriosclerosis. Studies
have indicated that LRP1 participates in the removal of
atherogenic lipoproteins and other proatherogenic ligands, such

Abbreviations: VSMCs, vascular smooth muscle cells; α-2-M, α2-macroglobulin

receptor; LRP1, low-density lipoprotein receptor-related protein 1; α-SMA, α-

smooth muscle actin; HFD, high-fat diet; BBB, blood-brain barrier; VLDL, very-

low-density lipoprotein receptor; aggLDL, aggregated low-density lipoprotein;

CEs, cholesteryl esters; ICD, intracellular domain; ECD, extracellular domain;

EGF, epidermal growth factor; CRs, cysteine-rich complement-type repeats;

cPLA2, cytosolic phospholipase A2; BMPER, bone morphogenetic protein-

binding endothelial regulator; NFATc1, nuclear factor of activated T cells 1; MAPK,

mitogen-activated protein kinase; IR, insulin receptor; AKT, serine/threonine

protein kinase; ERK, extracellular signal-regulated kinase; JNK, c-jun N-terminal

kinase; t-PA, tissue-type plasminogen activator; u-PA, urokinase-type plasminogen

activator; MMP-9, matrixmetalloproteinase-9;MCP-1, monocyte chemoattractant

protein type-1; TNFα, tumor necrosis factor-α; TSP, thrombospondin.

as tissue-type plasminogen activator (t-PA) and urokinase-type
plasminogen activator (u-PA), from the circulation in the liver
(30, 31). Hepatic LRP1 plays a protective role in atherogenesis
but does so independent of plasma cholesterol. In addition,
several studies have revealed that LRP1 expressed in the VSMCs
(14, 32–35) andmacrophages (15, 35–39) protects the vasculature
against the development of atherosclerosis. Moreover, another
study showed that LRP1 stimulates a canonical Wnt5a signaling
pathway to prevent cholesterol accumulation in fibroblasts
(40). However, several studies have revealed that LRP1
efficiently internalizes aggregated LDL (aggLDL), which binds
to LRP1 cluster II, into VSMCs (41–46) and macrophages
(46), causing high intracellular accumulation of cholesteryl
esters (CEs) in these cells. Furthermore, LRP1 also regulates
cholesterol accumulation in macrophages (47), promoting their
transformation into foam cells and leading to atherosclerosis. In
turn, cholesterol accumulation promotes LRP1 overexpression
and induces a positive feedback loop that efficiently induces
the formation of VSMC- and macrophage-derived foam cells
(44, 46, 48). AggLDL, a major modified form of LDL in the
arterial intima, is a potent inducer of massive intracellular
cholesteryl ester accumulation in both macrophages (49–51) and
VSMCs (41, 44, 48). In addition, studies have shown that LRP1
mediates cholesteryl ester accumulation from lipoproteins in
cardiomyocytes (52, 53), and another study showed that LRP1
controls adipogenesis and is upregulated in obese adipose tissue
from humans and mice (54). Moreover, LRP1 plays a major
role in controlling brain protein and lipoprotein metabolism as
well as the development and regeneration in the central nervous
system (55) and can also regulate the inflammatory response in
the lung (56).

In this review, we mainly provide a great detailed discussion
of the dual role of LRP1 in regulating atherosclerosis and its
implication in antiatherosclerosis or proatherosclerosis, in order
to enhance our understanding of the underlying mechanism in
order to develop novel prophylactic and therapeutic strategies
against cardiovascular diseases (CVDs).

INTRODUCTION TO LRP1

Discovery of LRP1
In 1988, Herz et al. described a cell surface protein containing
4,544 amino acids that was abundant in the liver and had high
structural and biochemical similarity with the LDL receptor.
They named this protein LDL receptor-related protein (LRP)
(12). Later, this receptor was identified by Ashcom et al. and
Moestrup and Gliemann, who isolated and sequenced the liver
receptor responsible for the catabolism of the α-2-M-proteinase
complex (57, 58). Beisiegel et al. described LRP as an ApoE-
binding protein that plays an important role in cholesterol
metabolism by mediating the uptake of LDL from plasma
into cells (59). In addition, LRP is a large multifunctional
clearance receptor that has been implicated in the hepatic
uptake of chylomicron remnants and the removal of both
circulation and extracellular space-associated protease-inhibitor
complexes (60). The LRP1 gene is located on chromosome
12q13-14 (61) and is synthesized in the endoplasmic reticulum
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as a transmembrane glycosylated precursor protein with an
apparent molecular mass of ∼600 kDa. After it enters the
Golgi complex, LRP1 is cleaved to generate two subunits (62).
Global knockout of the LRP1 gene in mice is embryonic lethal,
demonstrating an essential role for LRP1 in embryogenesis and
development (60, 63).

Structure of LRP1 and sLRP1
Structure of LRP1
LRP1, also called CD91 or α-2-M receptor, is a type I glycosylated
transmembrane protein comprising a large extracellular domain
(ECD) (515 kDa, α chain) and a small intracellular domain
(ICD; 85 kDa, β chain), which are non-covalently associated
on the cell surface. The large ECD contains four clusters of
complement-like repeats and epidermal growth factor (EGF)
repeats. The small ICD contains one YXxL motif, two dileucine
motifs responsible for endocytosis and two NPxY motifs that
function as secondary endocytosis signals and binding sites
for signaling adaptor proteins (10–12, 18, 62, 64–69). The
NPxY motif can be phosphorylated on several serine, threonine
or tyrosine residues to regulate signal transduction (70–72).
Additionally, LRP1 can undergo intramembrane proteolysis
called regulated intramembrane proteolysis (RIP), which induces
cleavage of the released ICD of LRP (LRP-ICD) by γ-secretase
and subsequent translocation of this domain into the cell nucleus,
where it represses interferon-γ promoter activity to suppress
inflammation (73, 74). Like all members of the LDL receptor
family, LRP1 consists of five modular structural units: cysteine-
rich complement-type repeats (CRs), EGF precursor repeats, β-
propeller (YWTD) domains, a transmembrane domain and a
cytoplasmic domain (Figure 1) (75). The EGF precursor consists
of two cysteine-rich EGF repeats, a YWTD repeat and another
EGF-like repeat (76). The extracellular region contains four
ligand-binding domains (clusters I-IV) consisting of 2, 8, 10,
and 11 CRs, respectively, with clusters II and IV are the major
ligand-binding regions (77).

sLRP1: The Soluble Form of LRP1
Similar to a wide variety of receptors and other plasmamembrane
proteins, LRP1 can be cleaved by cell surface proteases such
as hepatic metalloproteinases, tPA and neuronal β-secretase
protease (BACE1) to produce soluble LRP1 (sLRP1), which can
be detected in plasma and cerebrospinal fluid (19, 78–84). This
process can be accelerated by inflammatorymediators in cultured
bonemarrowmacrophages, such as lipopolysaccharide (LPS) and
interferon-γ (IFN-γ); sLRP1 contains the α chain and a 55-kDa
fragment of the β chain, suggesting that cleavage occurs near
the plasma membrane (85, 86). In addition, sLRP1 maintains
the ligand-binding properties of cellular LRP1 and may therefore
act as a competitive ligand uptake inhibitor that binds LRP1 on
the cell surface (87). By binding extracellular ligands interacting
with LRP1, sLRP1 could regulate their endocytosis or control
multiple cell signaling pathways. In RAW 264.7 macrophage-
like cells, sLRP1 was shown to promote tumor necrosis factor-
α (TNF-α), monocyte chemoattractant protein type-1 (MCP-
1)/CCL2 and IL-10 expression through activation of the MAPK
and JNK cellular pathways to regulate the inflammatory response

(85). These results suggest that sLRP1 may modulate regulatory
cytokine expression by macrophages to regulate inflammation or
monocyte chemotaxis.

Furthermore, sLRP1 has been demonstrated to be associated
with inflammation (85, 88, 89), and increased levels of
circulating sLRP1 have been observed shown to be increased
in patients with rheumatoid arthritis (RA) or systemic lupus
erythematosus (SLE) (85). Several studies have also shown
that sLRP1 can mediate Aβ clearance from the brain to the
bloodstream via transcytosis across the BBB (90–92), leading
to the proposal that sLRP1 could also be used as a biomarker
for Alzheimer’s disease (93). In addition, the circulating sLRP1
concentration has been reported to be significantly higher
in patients with severe hypercholesterolemia than in those
with moderate hypercholesterolemia and normocholesterolemic
controls. Moreover, as a robust and direct association between
sLRP1 and lipid parameters, sLRP1 may be useful as a biomarker
for atherosclerosis (94). Another study revealed that sLRP1 is
a novel biomarker for the P2Y12 receptor expression, which
can aggravate atherosclerosis, in atherosclerotic plaques (95).
However, additional studies are needed to confirm the function
of sLRP1 in vivo.

Distribution of LRP1
LRP1 is ubiquitously expressed by multiple cells, including
VSMCs (17, 96, 97), macrophages (17, 96, 97), hepatocytes (30,
67, 97), epithelial cells (18), retinal Müller glial cells (18), neurons
(90, 92, 97), astrocytes (97), fibroblasts (96, 97), adipocytes (54,
98), tumor cells (68), endothelial cells (96, 99), neutrophils (100)
and T cells (101). In this review, we primarily discuss the role of
LRP1 primarily in cells associated with atherosclerosis.

Ligands Binding to LRP1
Through its ECD, LRP1 can bind with high affinity and
internalize more than 75 distinct, structurally and functionally
unrelated ligands, such as proteins involved in lipoprotein
metabolism and transport (30, 31, 59, 102–105), proteins
involved in AD (59, 90, 91, 106), proteases and protease/inhibitor
complexes (27, 31, 34, 57, 107–120), growth factors (121–
123), extracellular matrix proteins (124–126), infection (127–
130), transcription activation (131), chaperones (132–136), blood
coagulation (137, 138) and others (103, 139–157) (Table 1).
In addition, these ligands may compete with each other for
binding, such as the receptor-associated protein (RAP), a 39-
kDa molecular chaperone (77), which can tightly bind to and
arrest the binding to LRP1 of some ligands, including tissue-
type plasminogen activator (t-PA), thrombospondin (TSP),
plasminogen activator inhibitor-1 (PAI-1), midkine (MK), β2-
integrins and connective tissue growth factor (CTGF) (100,
122, 123, 133, 158, 159). LRP1 can regulate the cell surface
abundance of other membrane proteins, some of which have
cell signaling activity, by binding and facilitating their delivery
to lysosomes for subsequent degradation (87, 160, 161). Thus,
based on the broad spectrum of ligands that it recognizes, LRP1
participates in multiple physiological and pathological processes,
including lipid and glucose metabolism, protein degradation,
wound healing and tissue repair, cell differentiation, hepatic
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FIGURE 1 | Structure of mature low-density lipoprotein receptor-related protein-1 (LRP-1). LRP1 is a multifunctional receptor that binds a large spectrum of

extracellular and intracellular ligands. The α chain contains long modular arrays of acidic cysteine-rich complement-type repeats (CRs), along with epidermal growth

factor (EGF)-like domains and β-propeller modules. Also, it consists of four ligand-binding regions (I, II, III, and VI), which are composed of 2, 8, 10, and 11 CRs,

respectively. The cytoplasmic tail contains two NPxY motifs that are required for endocytosis and multiple signaling pathways. LRP1 has an YXXL motif adjacent to the

second NPxY motif, enabling rapid endocytosis. The β chain also interacts with scaffolding proteins such as PSD-95, Dab-1, and FE-65. Regions II and IV bind most

of the currently mapped known ligands of LRP1. β-Secretase (BACE1) cleaves the extracellular domain of LRP1 to form sLRP1 and LRP1-CTF (LRP1-C-terminal

fragment). Both extra- and intracellular chains can act independently of each other when the α chain is shed as a soluble LRP1 and the β chain translocates to the

nucleus and activates gene transcription and signaling cascades. LPL, lipoprotein lipase; ApoE, apolipoprotein E; COOH, carboxy terminal; EGF, epidermal growth

factor; NH2, amino terminal. The image of Figure 1 was modified from the reference (75), adding details to the pictures of the ligands of LRP1.

steatosis, kidney fibrosis, acute respiratory distress syndrome
(ARDS), Alzheimer’s disease, tumor growth and progression,
atherosclerosis, and inflammation (10, 64, 68, 159, 162). The
LRP1 cytoplasmic domain can also interact with numerous
signaling adapter proteins (163–167) (Table 2), including Shc,
disabled protein 1 (Dab1) and Fe65, which are involved in
directing cellular trafficking and in cell signaling events.

THE DUAL ROLES OF LRP1 IN ANIMAL
MODELS OF ATHEROSCLEROSIS

Numerous genetic studies have demonstrated the dual roles
of LRP1 in atherosclerosis-related cells in different animal
models (Table 3). LRP1 gene deletion promotes the progression

of atherosclerosis for progressive plaques, while promotes
the regression of atherosclerosis for established plaques. The
generation and analysis of animal models with receptor
gene deletion have elucidated important functions of LRP1
in lipoprotein metabolism and significantly advanced our
understanding of the pathophysiological process in patients with
lipid disorder.

LRP1 Gene Deletion Facilitates the
Development of Atherosclerotic Lesions
The effect of LRP1 on the progression of atherosclerosis has been
tested in ApoE–/– and LDLR–/– mice, with the results showing
that atherosclerosis development was enhanced in ApoE–/–,
LDLR–/– and ApoE/LDLR double knockout mice harboring LRP
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TABLE 1 | Ligands that binds to extracellular domain of LRP1.

Molecule Function References

Lipoprotein metabolism and transport

Apolipoprotein E-enriched lipoproteins Fat-binding protein produced by astrocytes, essential for the catabolism of lipoproteins and their

transport; main cholesterol carrier in the brain

(59)

Lipoprotein lipase Lipase involved in lipoprotein metabolism and transport (31, 102)

Sphingolipid activator protein Involved in glycosphingolipid catabolism (103)

Saposin (SAP) precursor Glycoprotein precursor of saposins (sphingolipid activator proteins) involved in glycosphingolipid

catabolism

(103)

Hepatic lipase Lipase involved in lipoprotein metabolism and transport (104)

Trigliceride-rich lipoproteins (TLRs) Main carriers of triglycerides in the blood; involved in lipoprotein metabolism and transport (105)

Chylomicron remnants Lipoprotein particles comprising triglycerides, phospholipids, cholesterol, and proteins involved in lipid

transport

(30)

Protein involved in AD

Apolipoprotein E-enriched lipoproteins Fat-binding protein produced by astrocytes, essential for the catabolism of lipoproteins and their

transport; main cholesterol carrier in the brain

(59)

Amyloid β peptide Peptide derived from amyloid precursor protein processing. Main component of amyloid plaques found

in Alzheimer’s patients

(90, 91)

Amyloid precursor protein (APP) Integral membrane protein, during its proteolysis the amyloid β peptide is generated (106)

Proteases and protease/inhibitor complexes

uPA/C inhibitor complexes Serine protease–protease inhibitor complex (27)

Thrombin: protein inhibitor C complexes Serine protease–protease inhibitor complex (27)

uPA/PAI-1 complexes Serine protease–protease inhibitor complex (31)

tPA/PAI-1 complexes Serine protease–protease inhibitor complex (31)

Urokinase-type plasminogen activator

(uPA)

Serine protease, involved in tissue remodeling, wound healing, cell migration (31)

Tissue factor pathway inhibitor (TFPI) Single-chain polypeptide that reversibly inhibits coagulation factor Xa, thereby regulating blood clotting (31)

High-temperature requirement factor

A1 (HtrA1)

Degrade several matrix components including decorin, fibronectin, aggrecan, type II collagen (34)

Proteinase 3 (P3) Regulate cell proliferation (101)

Aprotinin Single-chain globular polypeptide derived from bovine lungs; inhibits serine proteases (107)

Thrombin/anti-thrombin III complex Serine protease–protease inhibitor complex (108)

Thrombin: heparin cofactor II

complexes

Serine protease–protease inhibitor complex (108)

α1-antitrypsin/trypsin complexes Serpin-enzyme complex (108)

Neuroserpin/tPA complexes Serine protease–protease inhibitor complex (109)

uPA/Nexin-1 complexes Serine protease–protease inhibitor complex (110)

Thrombin/protease nexin-1 complex Serine protease–protease inhibitor complex (111)

Thrombin: PAI-1 complexes Serine protease–protease inhibitor complex (112)

Tissue inhibitors of matrix

metalloproteases (TIMPs)

Protease inhibitors of matrix metalloproteinases (113)

Matrix metalloproteinase 2 (MMP-2) Proteinase involved in the degradation of the extracellular matrix, metastasis (113)

Matrix metalloproteinase 9 (MMP-9) Proteinase involved in the degradation of the extracellular matrix, angiogenesis, metastasis (113)

Matrix metalloproteinase 13

(collagenase-3) (MMP-13)

Proteinase involved in the degradation of the extracellular matrix, angiogenesis, metastasis (113)

Plasminogen activator inhibitor (PAI-1) Serpin, Regulator of tPA/uPA activity (31, 113)

α1-antitrypsin (or A1PI) Member of the serpin superfamily, inhibits various proteases, regulates enzymes produced by

inflammatory cells like neutrophil elastase

(114)

Nexin-1 Member of the serine protease inhibitor (Serpin) superfamily (115)

Pro-urokinase Serine protease, urokinase-type plasminogen activator single-chain zymogen with little intrinsic

enzymatic activity

(116)

Coagulation factor Xa/tissue factor

pathway inhibitor (TFPI) complexes

Coagulation factor X is a serine protease that in its active form (Xa) converts prothrombin into thrombin

and plays a role in blood coagulation; TFPI reversibly inhibits factor Xa

(117)

Coagulation factor XIa/protein nexin

complexes

Coagulation factor XI is a serine protease that in its active form (XIa) initiates the intrinsic pathway of

blood coagulation by activating factor IX; complexes with nexin-1 inhibit its function

(118)

Cathepsin D Lysosomal aspartic protease, member of the peptidase A1 family, involved in protein degradation (119)

(Continued)
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TABLE 1 | Continued

Molecule Function References

Pregnancy zone protein (PZP):protease

complexes

PZP is a member of the a-2 globulin family; protease inhibitor and extracellular chaperone; role in

immune regulation during pregnancy

(120)

Growth factors

Platelet-derived growth factor

(PDGF)-BB, PDGF receptor (PDGFR) β

PDGF-BB is a dimeric glycoprotein composed of two B subunits and a major growth factor that binds

with high affinity to the cell surface receptor PDGFR β

(121)

Transforming growth factor-b 1

(TGF-β1)

Multifunctional growth factor, involved in interactions with extracellular proteins, cell growth,

differentiation and vascular remodeling

(121)

Transforming growth factor-b 2

(TGF-β2)

Multifunctional growth factor, involved in interactions with extracellular proteins, cell growth,

differentiation and vascular remodeling

(121)

Connective tissue growth factor (CTGF;

CCN2)

Matricellular protein of the extracellular matrix-associated heparin-binding protein family, involved in cell

adhesion, migration, and angiogenesis

(122)

Midkine (MDK) Heparin-binding growth factor induced during mid-gestation involved in cell migration, survival and

angiogenesis

(123)

Matrix protein

Thrombospondin 1 Extracellular matrix glycoprotein, member of the thrombospondin family, vital for cell-cell and cell-matrix

interactions

(124, 159)

Thrombospondin 2 Extracellular matrix glycoprotein, member of the thrombospondin family, vital for cell-cell and cell-matrix

interactions

(125, 159)

Fibronectin Glycoprotein of the extracellular matrix vital for cell differentiation, migration and adhesion (125)

Infection

C1s/C1q Form the complement component C1 complex that initiates the classical pathway of component

activation

(127)

C4b-binding protein (C4BP) Inhibitor in the complement system (128)

Complement component 3 Plays a role in the activation of the classical and alternative complement activation pathways (130)

β2-integrins Leukocyte adhesion to the vascular wall and subsequent migration to inflammatory sites (100)

Amidoglycosides: gentamicin,

polymixcinB

Antibiotics used to treat various bacterial infections (129)

Transcriptional activation

HIV-Tat protein Transactivator of viral genes in cells infected with HIV (131)

Chaperone

Heat shock protein 90, 96, and 70 Intracellular chaperon proteins assisting in protein folding (132)

Receptor-associated protein (RAP) Endoplasmic reticulum resident chaperone glycoprotein, inhibits binding of some ligands to low density

lipoprotein receptor family members

(133–135)

Calreticulin Calcium-binding chaperone protein, regulates many cellular processes (136)

Blood coagulation

Coagulation factor VIII Blood-clotting protein, participate in blood coagulation (137)

Von Willebrand factor (vWF) Adhesive, glycoprotein involved in blood coagulation and wound healing (138)

Others

Annexin VI Member of the calcium-dependent membrane and phospholipid binding (139)

proteins; co-receptor of Lrp1, involved in endocytosis processes, interacts with a-2-M (140)

CCN1, cysteine-rich angiogenic inducer

61 (CYR61)

Secreted, matrix-associated signaling protein involved in apoptosis, adhesion, migration and vascular

integrity

(141)

Decorin (Dcn) Member of the small leucine-rich proteoglycan family that impacts the activities of growth factors,

regulates extracellular matrix assembly and cell adhesion

(142)

Glypican-3: Hedgehog complexes Glypican-3 is a heparan sulfate proteoglycan that impacts embryonic growth by inhibiting the hedgehog

signaling pathway

(143)

Heparan sulfate proteoglycans (HSPGs) Glycoproteins containing one or more covalently attached heparan sulfate chains; present at the cell

surface and in the extracellular matrix; endocytic and adhesion receptors, regulate cell migration

(144)

Insulin Peptide hormone produced by the pancreas that regulates the metabolism of carbohydrates, fats and

proteins

(145)

Insulin-like growth factor-binding

protein 3 (IGFBP-3)

Protein produced and secreted by the liver, carrier of insulin-like growth factors (146)

Lactoferrin Multifunctional protein of the transferrin family with an antibacterial function (147)

Leptin Hormone produced by adipose cells involved in energy balance and neuronal functioning (148)

(Continued)
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TABLE 1 | Continued

Molecule Function References

Malaria circumsporozoite protein (CSP) Secreted protein of the sporozoite stage of the malaria parasite (149)

Metallothionein II

Minor-group human rhinovirus (HRV2)

Myelin-associated glycoprotein (MAG)

Myelin basic protein (MBP)

Prion protein (PrP)

Pseudomonas exotoxin A

Ricin A

Saporin

TpeL

Cysteine-rich low molecular weight metallothionein family member involved in protection against

oxidative stress and chemotactic signal transduction

Minor group rhinovirus

Cell membrane glycoprotein involved in myelination

Major protein forming the myelin sheath of oligodendrocytes and Schwann cells

Cell-surface glycoprotein that upon conversion can cause prion diseases

Toxin from Pseudomonas aeruginosa

Ribosome-inactivating protein found in the seeds of Ricinus communis; potent toxin

Ribosome-inactivating protein found in the seeds of Saponaria officinalis; potent toxin

Clostridium perfringens toxin

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

TABLE 2 | Adaptor proteins known to bind to the cytoplasmic domain of LRP1.

Adaptor

proteins

Function References

Disabeled-1

(Dab1)

Src activation, neuronal migration (163)

FE65 Actin remodeling, APP processing (164)

Shc Signal transduction by protein-tyrosine

kinases

(164)

PKCα Proliferation, apoptosis, differentiation, and

motility

(165)

Talin-like protein Coupling to actin cytoskeleton (165)

OMP25 Mitochondrial transport (165)

ICAP1 Integrin-mediated signaling (165)

PSD95 synapse stability, Coupling to NMDA

receptors

(165)

SEMCAP-1 Axon guidance, vesicular transport (165)

JIP1, JIP2 Regulation of MAPK and SAPK, including

JNK

(165)

GULP Phagocytosis (166)

Cbl E3 ligase, receptor tyrosine kinase

downregulation

(167)

gene deletions. Hu et al. reported that macrophage-specific LRP-
deficient mice in an ApoE/LDLR double-deficient background
showed a 1.8-fold increase in total atherosclerotic lesion area in
the aortic root that was accompanied by a 1.7-fold increase in
collagen content and a 2.3-fold decrease in the number of CD3+
T cells in lesions (37). Similarly, another study showed that
macrophage LRP deletion in the LDLR-deficient mouse model
enhanced atherosclerosis development and increased monocyte
chemoattractant protein type-1 (MCP-1), TNFα, and matrix
metalloproteinase-9 (MMP-9) levels as well as proximal aorta
macrophage cellularity (36). Another study showed a similar
result that specific deletion of macrophage LRP1 in the ApoE
deficient mice increased atherosclerosis, which is concomitant
with the accumulation of apoptotic cells and proinflammatory
monocytes in lesions (39). Moreover, the inactivation of LRP1
in VSMCs in LDLR–/– mice resulted in disruption of the
elastic layer and marked susceptibility to atherosclerosis together

with platelet-derived growth factor (PDGF) signaling pathway
overactivation (14, 121). Furthermore, LRP1 deficiency in
macrophages led to an increase in cell death and inflammation
and abolished the antiatherosclerotic benefits of the antitumor
necrosis factor-α (TNFα) inhibitor adalimumab (63, 168). A
similar result was observed in adipocytes, where adipocyte-
specific LRP1 knockout (adLRP1–/–) mice fed a western diet
for 16 weeks exhibited a 3-fold increase in atherosclerosis
and enhanced inflammation in adipose tissues compared to
adLRP1+/+mice (98).

LRP1 Gene Deletion Accelerates
Atherosclerosis Regression in Mice
In 2018, Paul et al. reported that macrophages (MΦLRP1–/–)
can promote atherosclerosis regression independent of plasma
lipid levels, increase reverse cholesterol transport (RCT) and
cause selective loss of inflammatory M1 macrophages. In this
study, ApoE–/– mice were fed a high-fat diet for 12 weeks,
and then reconstituted with bone marrow from apoE-producing
wildtype (WT) or MΦLRP1–/– mice, then fed a chow diet for 10
weeks. The results showed that MΦLRP1–/– recipients showed
13% smaller plaques, 1.4-fold higher reverse cholesterol transport
(RCT), 36% fewer M1 macrophages and 2.5-fold more CCR7+
macrophages in the plaques than those of WT recipients (169).

MOLECULAR MECHANISM OF LRP1 IN
ATHEROSCLEROSIS-ASSOCIATED CELLS

LRP1 in VSMCs
VSMCs are the primary cell type in the vessel wall and a major
component of atherosclerotic plaques at all stages (170, 171).
VSMCs can also generate extracellular matrix to form the fibrous
cap and hence stabilize plaques, yet aberrant VSMCs proliferation
promotes atherosclerotic plaque formation (9). The results of
some studies indicated that in VSMCs, LRP1 helps to suppress
atherosclerosis by inhibiting the platelet-derived growth factor
(PDGF) signaling pathway (14, 121). However, the opposite
result has been observed in other studies, indicating that LRP1
mediates aggLDL uptake to induce high intracellular cholesteryl
ester accumulation in VSMCs, causing the formation of VSMC-
derived foam cells and promoting atherosclerosis progression

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 May 2021 | Volume 8 | Article 682389

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


C
h
e
n
e
t
a
l.

T
h
e
D
u
a
lR

o
le
o
f
L
R
P
1
in

A
th
e
ro
sc

le
ro
sis

TABLE 3 | Animal experiments about effects of deletion of LRP1 on atherosclerosis lesions.

Modela Control Number Results (Model vs. Control) References

LDLR−/−/smLRP−/−
+HFD smLRP+/+/LDLR−/− NA Disruption of the elastic layer, SMC proliferation, aneurysm formation, and marked susceptibility to

cholesterol-induced atherosclerosis, no effect on plasma cholesterol or triglyceride levels

(14)

smLRP−/− smLRP+/+ littermates 46 Greater smooth muscle cell proliferation, deficient contractile protein expression, impairment of vascular

contractility, and promotion of denudation-induced neointimal hyperplasia

(33)

LDLR−/−/smLRP−/−
+HFD smLRP+/+/LDLR−/− littermates 44 Disruption of elastic layers, vascular fibrosis, elongation and distension of the aorta, susceptibility to

atherosclerosis

(121)

smLRP−/−
+CD smLRP+/+ littermates NA Increased total cholesterol levels and reduced ABCA1 protein expression in the aorta, increased cellular

lipid accumulation is detected in LRP1-deficient SMCs

(187)

macLRP1−/−LDLR−/−
+WD macLRP1+/+/LDLR−/− NA 40% increase in atherosclerosis in proximal aorta, increase monocyte chemoattractant protein type-1,

tumor necrosis factor-α, and proximal aorta macrophage cellularity and matrix metalloproteinase-9

(36)

macLRP−/−/apoE−/−/LDLR−/−
+CD macLRP1+/+/apoE−/−/LDLR−/−

littermates

48 1.8-fold increase in total atherosclerotic lesion area that contained more collagen and less CD3+ T cells (37)

apoE−/−/macLRP1−/−
+WD

LDLR−/−

apoE−/−/macLRP1−/−
+WD

apoE−/−macLRP1+/+ LDLR−/−

apoE−/−/macLRP1+/+

107 163% more Oil-Red-O and 133% more MOMA-2 staining in the proximal aorta, lesion necrosis

increased by 6 fold, decreased efferocytosis and 3.5-fold increase in apoptotic cells in lesions, the

lesions contained 3.6-fold more Ly6-C positive cells and 2.2-fold more CCR2-positive cells; 88% more

lipid-stainable lesion in the proximal aorta and 138% increase in MOMA-2 stainable intimal macrophages.

(39)

macLRP−/−

LDLR−/−/macLRP−/−

macLRP1+/+

LDLR−/−/macLRP+/+

16 Increase IL-1, IL-6, and tumor necrosis factor expression, impair efferocytosis and promotes necrosis (63)

macLRP1−/−LDLR−/−
+WD+

adalimumab (TNFα inhibitor)

macLRP1+/+/LDLR−/−
+adalimumab 5–7/group Negates the anti-atherosclerotic benefits of anti-TNFα inhibitor adalimumab (168)

ApoE−/−macLRP1−/−
+HFD ApoE−/−macLRP1+/+ 9–11/group Accelerates atherosclerosis regression, enhances RCT, and increases expression of the motility receptor

CCR7 to drive macrophage egress from lesions

(169)

LRP1f/f/Tie2Cre+ LRP1f/f/Tie2Cre-littermates 18 Increase angiogenesis, endothelial cell proliferation and cell cycle progression (205)

LRP1f/f/Tie2Cre+

+CC or HFD

LRP1f/f/Tie2Cre-littermates 44 Regulate global energy homeostasis and alleviate obesity and insulin resistance (209)

adLRP1−/−
+WD adLRP1+/+ NA 3-fold increase in atherosclerosis and the adipocytes were smaller, adipose tissues were more inflamed

with increased monocyte–macrophage infiltration and inflammatory gene expression

(98)

adLRP1−/−
+HFD adLRP1+/+ littermates 49 Delayed postprandial lipid clearance, reduced body weight, smaller fat stores, lipid-depleted brown

adipocytes, improved glucose tolerance and elevated energy expenditure

(213)

smLRP−/−, smooth muscle–specific LRP1 inactivation; macLRP−/−, macrophage–specific LRP1 inactivation; adLRP1−/−, adipocyte-specific LRP1 knockout; LRP1 f/f //Tie2Cre+, endothelial cell-specific LRP1-deficient; HFD, high-fat

diet; WD, western-type diet; CC, control chow; CD, chow diet; RCT, reverse cholesterol transport; CCR7, CC-chemokine receptor 7; NA for not available.
aThe animals used for model are mice.
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(44–46). Thus, in VSMCs, LRP1 may exert two different and
opposing effects on atherosclerosis (Figure 2A).

LRP1 in VSMCs Protects Against Atherosclerosis
VSMCs are induced to proliferate and migrate from the media
to the intima, contributing to the development of atherosclerosis
and restenosis under pathological conditions (9, 32, 172). The
binding of PDGF, a potent mitogen for fibroblasts and VSMCs,
to PDGF receptor β (PDGFRβ) activates a signaling pathway
that promotes VSMs growth and migration, which are crucial
in atherosclerosis and neointima formation and LRP1 has
been proven to suppress this process through incompletely
understood mechanisms (14, 24, 33, 121, 173–175). Studies
have elegantly demonstrated this effect via the generation of
smLRP1–/– mice on a background of LDLR deficiency, showing
that smLRP1–/–/LDLR–/– mice are not only more susceptible to
cholesterol-induced atherosclerosis than LDLR–/– mice but also
exhibit PDGFR overexpression and increased phosphorylation
of Smad2, a downstream component of the TGFβ pathway
(14, 121). Moreover, the PDGF-BB pathway has previously been
described as a target of the TGFβ signaling pathway (176–
178). In addition, LRP1 is identical to TGFβ receptor (V),
which is a member of the TGFβ receptor superfamily and is
expressed on the cell surface together with TGFβ receptors I,
II, and III (179). Therefore, the TGFβ activation pathway in the
absence of LRP1 could further activate the PDGF-BB signaling
pathway by increasing PDGFRβ expression in the arterial wall,
promoting the formation of atherosclerotic lesions. Indeed, the
vascular pathology observed in smLRP1–/–/LDLR–/– mice was
significantly improved by blockade of the PDGF or TGFβ
receptor signaling cascades with the tyrosine kinase inhibitor
Gleevec (121). Overall, the results of these studies reveal that in
VSMCs, LRP1 plays a major role in maintaining the integrity of
the vascular wall and reducing atherosclerosis by suppressing the
PDGFRβ and TGFβ signaling pathways.

The role of the intracellular NPxYxxL motif of the LRP1-
ICD in the development of atherosclerosis has attracted
increasing attention. One study has thoroughly demonstrated
that inactivation of the LRP1 NPxYxxL motif in LDLR–/–
mice showed a significant 1.5-fold increase in the development
of atherosclerosis compared to that observed in LDLR–/–
control mice. MMP2 activity, which could be degraded by
lysosomal proteases after being endocytically taken by LRP1
(113, 180), as well as could facilitate VSMC migration and
plaque rupture by degrading the extracellular matrix (181, 182),
showed a significant 2.7-fold increase in the aortas of NPxYxxL-
inactivated mice. The results of this study also indicated that
there was a significant 2-fold increase in the number of apoptotic
cells relative to the plaque size in mice with the NPxYxxL-
inactivation mice, which was caused by the secretion of the
proapoptotic cytokine TNF-α. Therefore, we can conclude that
the intracellular NPxYxxL motif of the LRP1-ICD is essential for
the atheroprotective role of LRP1 (183). LRP1 can also protect
against atherosclerosis by regulating the expression of ATP-
binding cassette transporter A1 (ABCA1). The results of multiple
studies have indicated that increased mitogenic signaling in the
absence of LRP1 can regulate ERK1/2 activation, leading to

increased cytosolic phospholipase A2 (cPLA2) phosphorylation,
which in turn promotes the production of arachidonic acid
(14, 184, 185), a suppressor of LXR-driven ABCA1 expression
(186). This cascade reduces cholesterol efflux from VSMCs and
promotes the formation of foam cells (187). In summary, LRP1
plays an antiatherosclerotic role in VSMCs, and its absence
promotes atherosclerosis development (Figure 2A).

LRP1 in VSMCs Promotes the Development of

Atherosclerosis
In addition to protecting against atherosclerosis, many studies
have also shown that LRP1 overexpression is associated with
atherosclerosis progression in both animal (188) and human
models of atherosclerosis (17, 97, 189). LRP1 can promote
the formation of VSMC-derived foam cells, leading to the
progression of atherosclerosis. In addition, its expression is
upregulated by lipid accumulation during the progression of
atherosclerotic lesions in humans, and VSMCs derived from
advanced atherosclerotic plaques show higher intracellular lipid
deposition than those from less-advanced plaques due to their
higher LRP1 expression levels (190). In addition, the results
of another study also indicated that the transient receptor
potential vanilloid type-1 (TRPV1) activation-induced decrease
in LRP1 expression reduces lipid uptake by VSMCs (191).
Several studies have shown that LRP1 mediates the uptake
of aggLDL and induces adipose differentiation-related protein
(ADRP) overexpression, leading to an increase in intracellular
lipid deposition in VSMCs. ADRP is localized on the surface
monolayer of lipid droplets and is considered a specific marker of
lipid droplet formation (41, 42, 44–46, 189, 192, 193). Moreover,
aggLDL can further upregulate LRP1 expression in VSMCs in a
time- and dose-dependent manner (48). This positive feedback
mechanism is highly efficient in promoting the formation of
VSMCs foam cells. The formation of VSMC-derived foam cells,
a main proatherogenic mechanism of LRP1, is associated with
atherosclerotic lesion progression. Therefore, in VSMCs, LRP1
can also promote atherosclerosis development by promoting the
formation of foam cells (Figure 2A).

LRP1 in Macrophages
Macrophages are the most abundant type of immune cells in
atherosclerotic lesions, playing an important role in all stages
of atherosclerosis, from the formation of atherosclerotic lesions
to plaque rupture (194). Lipoprotein receptors in macrophages
can accelerate the progression of atherosclerosis by facilitating
the uptake of atherogenic particles, such as oxidized lipoproteins,
and inducing vascular inflammation (172, 195, 196). However,
the role of macrophage LRP1 in atherosclerosis is controversial,
as macrophage LRP1 not only protects against but also promotes
atherosclerosis (Figure 2B).

LRP1 in Macrophages Protects Against the

Development of Atherosclerosis
Macrophage LRP1 has been shown to exert atheroprotective
effects. However, mice macrophage-specific LRP deficiency in
an apoE/LDLR double-deficient background did not exhibit
altered plasma lipid levels or plasma lipoprotein profiles but
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FIGURE 2 | Diagram of the mechanism of regulating atherosclerosis of LRP1 in VSMCs and macrophages. (A) LRP1 in VSMCs could degrade extracellular PDFGBB,

MMPs, t-PA, and FVIII, which are atherogenic factors, in the way of endocytosis to play the role of anti-atherosclerosis. It could inhibit migration and proliferation of

VSMCs to resist atherosclerosis by preventing the activation of TGFβ/Smad2/3/PDGFRβ signaling pathway. Gleevec could also has the effect to inhibit PDGFRβ.

Additionally, LRP1 inhibit the activation of ERK1/2 which could suppresses the expression of ABCA1 by promoting phosphorylation of cPLA2. In contrast, LRP1 in

VSMCs accelerates the development of atherosclerosis by promoting the uptake of aggLDL and the formation of foam cells. (B) The LRP1 can also be cleaved by

γ-secretase to release a 25-kDa β-chain fragment, which translocates to the nucleus to suppress inflammatory gene expression. The phosphorylation of NPxY of

LRP1 ICD promotes the expression of ABCA1. Nevertheless, LRP1 in macrophages accelerates the development of atherosclerosis by promoting the uptake of

aggLDL and the formation of oxidized LDL. AS, atherosclerosis, ABCA1, ATP-binding cassette transporter A1, cPLA2, cytosolic phospholipase A2.

did exhibit an increase in the total atherosclerotic lesion area
(37). Additionally, Overton et al. showed that LDLR–/– mice
transplanted with bone marrow from macLRP1–/– mice were

40% greater in proximal aorta lesions than that observed in high-
fat diet-fed mice transplanted with control bone marrow, and
accompanied by the increase in proinflammatory factors, such as
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monocyte chemoattractant protein type-1 (MCP-1) and TNF-α,
but en face analysis of the distal aorta showed no significant
difference likely attributable to the shor-term experiments (36).
Furthermore, atherosclerotic lesions in mice lacking LRP1
expression in macrophages are characterized by increased
apoptosis, suggesting that LRP1 prevents atherosclerosis by
promoting efferocytosis to remove apoptotic cells from plaques,
which is also manifested as inhibition of the p-AKT survival
pathway and the promotion of inflammation with increased
IL-1, IL-6 and TNF-α expression (63). Furthermore, LDLR–/–
mice that received lethal irradiation and were reconstituted with
bone marrow from MΦLRP1–/– mice fed on a western-type
diet for 10 weeks showed increased necrosis and apoptosis,
defective efferocytosis and increased inflammation in the lesions
(168). Another study showed that the specific deletion of
macrophage LRP1 in ApoE–/– mice promoted atherogenesis and
apoptotic cell accumulation in lesions, partially due to decreased
efferocytosis and increased lesion necrosis compared to ApoE–/–
mice. In this research, the authors also indicated that 88% more
lipid-stainable lesion areas in the proximal aorta and a 138%
increase in MOMA-2 stainable intimal macrophages in LDLR–/–
mice receiving ApoE–/– macLRP1–/– bone marrow compared
with those that receiving ApoE–/– marrow. Aorta en face lesions
were not significantly different between ApoE–/– macLRP1–/–
and ApoE–/– BM-recipient mice, which is consistent with the
previous report in 2007 (39). In addition, LRP-1 can also affect
macrophage polarization and promote polarization toward the
anti-inflammatory M2 functional phenotype (197), leading to an
increase in the number of anti-inflammatory M2macrophages in
lesions. In another study, LRP1 was proposed to inhibit cellular
inflammatory responses in an adipocyte-specific LRP1-deficient
mouse model (98). Another potential mechanism by which
LRP1 affects inflammation in macrophages may be through the
direct regulation of inflammatory gene transcription. In cultured
macrophages, the LRP1-ICD can be cleaved from the plasma
membrane by γ-secretase upon induction by inflammatory
mediators, such as LPS and interferon-γ, and then translocate
into the nucleus, where it promotes the nuclear export and
proteasomal degradation of interferon regulatory factor 3,
thereby limiting the expression of the proinflammatory genes
in cultured fibroblasts and macrophages (73, 85). Apart from
regulating inflammation, a study using a knock-in mouse model
of LRP1Y63F, in which the tyrosine in the distal NPxY motif was
replaced with phenylalanine to prevent NPxY phosphorylation
of LRP1, revealed that LRP1 not only regulates the expression of
ABCA1, the major cholesterol exporter, to maintain cholesterol
efflux but also integrates cellular cholesterol homeostasis with
inflammation and efferocytosis (15). In summary, macrophage
LRP1 may primarily exert an atheroprotective effect mainly
by decreasing inflammation, facilitating efferocytosis and
promoting cholesterol efflux (Figure 2B).

LRP1 in Macrophages Promotes the Development of

Atherosclerosis
Evidence from several in vitro studies shows that LRP1
has proatherogenic properties in macrophages. First, LRP1 is
upregulated during macrophage foam cell formation (198).

Second, macrophage LRP1 has been shown to play a vital
role in the translocation of 12/15-lipoxygenase, promoting the
formation of oxidized LDL (199, 200). Third, LRP1 was shown to
mediate the internalization of aggLDL and apoE-rich atherogenic
lipoproteins, along with LDLR, into macrophages (46, 201,
202). Through the above mechanisms, the accumulation of
lipids and macrophage-derived foam cells increases, leading
to the progression of atherosclerosis. In addition, the results
from an animal study proved that mice with macrophages
lacking LRP1 (MΦLRP1–/– mice) exhibit accelerated regression
of atherosclerosis and enhanced reverse cholesterol transport
(RCT), and drive macrophage egress from lesions by inducing
expression of the motility receptor CCR7 (169). Therefore,
macrophage LRP1 can also lead to atherosclerosis progression by
promoting foam cell formation (Figure 2B).

LRP1 in Endothelial Cells
Atherosclerosis is a chronic process initiated by endothelial
dysfunction and structural changes (203). Although LRP1 is
highly expressed in a variety of cells, its protein expression levels
in endothelial cells are low (96, 204). However, LRP1 expression
is tightly regulated by various physiological conditions in
endothelial cells, reflecting its crucial role in these cells.
An elegant study showed that LRP1 regulates hypoxia-
mediated angiogenesis by inhibiting PARP-1 activity and
suppresses endothelial cell proliferation by preventing cell
cycle progression in an oxygen-induced retinopathy (OIR)
mouse model (205). Another study also showed that LRP1
can mediate bone morphogenetic protein-binding endothelial
regulator (BMPER)-mediated bone morphogenetic protein 4
(BMP4) signaling to regulate endothelial cell migration and
angiogenesis (206). Angiogenesis is the process of growing new
blood vessels from the existing vascular network that occurs
during embryonic development and throughout adulthood,
and begins under wound healing and pathological conditions,
such as retinopathy. Pathological retinal angiogenesis produces
physiologically defective blood vessels, leading to exudation
and hemorrhage that threatens vision (207). Moreover, a study
showed that LRP1-dependent BMPER signaling is required for
LPS-induced nuclear factor of activated T cells 1 (NFATc1)
activation to induce acute inflammatory responses in endothelial
cells (208), which may cause the initiation of atherosclerosis.
Interestingly, LRP1 can also promote peroxisome proliferator-
activated receptor-γ (PPARγ) activity by acting as a coactivator to
regulate lipid and glucose metabolism in endothelial cells (209).
Therefore, it can be used to treat pathological retinal angiogenesis
induced by diabetic retinopathy and atherosclerosis by regulating
the expression and function of LRP1 in endothelial cells.

LRP1 in Adipocytes
Another cell type with high LRP1 expression and associated with
the development of atherosclerosis is adipocytes. An increasing
number of studies have shown that adipose tissues, especially
those in the perivascular area surrounding the vessel wall, such
as the aorta, coronary artery, and carotid artery, also play a vital
role in the pathogenesis of atherosclerosis (210, 211). Perivascular
adipose tissue (PVAT) is a unique conglomerate of various cell
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types, including adipocytes, preadipocytes, and mesenchymal
stem cells that are embedded in a matrix that is invested with
microvessels, and that is important for the maintenance of
the vascular structure and the regulation of vascular function
and homeostasis (210). The interaction between perivascular
adipocytes and vascular wall cells, such as endothelial cells and
VSMCs, is essential for normal vascular function, and may
be disturbed in diseases such as atherosclerosis. In the early
process of hyperlipidemia, atherosclerosis prone animal models
and human arteries, PVAT expansion and the production of
chemokines near the adventitia of large arteries have been
detected, leading to the aggravation of inflammation, which may
play a fundamental role in the pathogenesis of the cardiovascular
disease (CVD) (212). Adipose tissues have been shown to exhibit
increased inflammation with enhanced monocyte–macrophage
infiltration and inflammatory gene expression in mice with
adipocyte-specific LRP1 knockout (adLRP1–/–) in PVAT, and
that mice transplanted with PVAT from adLRP1–/– mice
displayed a 3-fold increase in atherosclerosis compared to those
transplanted with PVAT from adLRP1+/+ mice after a western
diet (98). In addition, mice with LRP1 knocked out in adipocytes
(adLRP1–/–mice) exhibited delayed postprandial lipid clearance,
reduced fat stores, improved glucose tolerance and decreased
body weight compared to wild-type mice (213). Taken together,
the results of these studies have added the adipose tissue to the
list of anatomic sites where LRP1 expression is important for
atheroprotection. Thus, it is possible to prevent the development
of atherosclerosis and relieve associated clinical symptoms by
regulating LRP1 in adipocytes, including through the use of
natural and synthetic LRP1 agonists.

LRP1 in Immune Cells
LRP1 in Neutrophils
LRP1 is also abundantly present in neutrophils, which are
the most abundant type of white blood cell in the human
circulation and the principal cell type during acute inflammatory
reactions (97, 214). The number of circulating neutrophils
is a predictor of future adverse cardiovascular events and
positively correlates with the size of developing lesions in
humans and mice, respectively (215, 216). The expression
of endothelial cell adhesion molecules (e.g., E-selectin, P-
selectin, and intercellular adhesion molecule-1) increases once
the endothelial cell dysfunction is triggered by exposure to
irritative stimuli such as hyperlipidemia and proinflammatory
cytokines, which then triggers the recruitment of neutrophils.
In addition, neutrophils can release chemotactic proteins and
proinflammatory mediators to promote monocyte recruitment
as well as vascular inflammation, promoting atherosclerosis
development. Furthermore, neutrophils can degranulate large
amounts of different proteases including matrix metalloproteases
(MMPs), myeloperoxidase (MPO) and neutrophil elastase or
form neutrophil extracellular traps, leading to a thinner fibrous
cap and subsquent plaque rupture (214, 217). The results of
one study indicated LRP1 blockade could prevent intravascular
adherence and neutrophil recruitment within the ischemic tissue
induced by PAI-1 derived from both leukocytes and non-
leukocytic sources (158). Another similar study showed that

LRP1 synthesized and expressed by neutrophils accounts for
the r-tPA-induced migration and degranulation of neutrophils
(217), which can aggravate tissue damage and inflammation.
Additionally, in a hind limb ischemia model, LRP-1 was observed
to act as the receptor of cytokine midkine (MK) to support
neutrophil adhesion and trafficking by promoting the high-
affinity conformation of β2 integrin, suggesting a role of LRP-
1 in acute inflammation (218). Furthermore, another study
also demonstrated that LRP1 can bind to β2 integrin complex
expressed in neutrophils to regulate the firm adhesion and
subsequent transmigration of neutrophils (100). Taken together,
the result of these studies indicate that LRP1 in neutrophils
primarily plays a role in neutrophil-associated inflammation.

LRP1 in T Cells
T lymphocytes account for another majority of immune cells
in human atherosclerotic plaques obtained from endarterectomy
(219). A large body of evidence from animal studies suggests that
the T-cell response is proatherogenic. Apoe–/– mice crossed with
mice lacking the V(D)J recombination-activating protein 1 Rag1
(Rag1–/–) or mice with a severe combined immunodeficiency
(SCID) mutation (scid/scid mice) are immunodeficient owing
to impaired T-cell and B-cell development and showed reduced
atherosclerosis lesions when fed a chow diet (220). Poor LRP1
expression in T cells led to suppression of T cell adhesion to
fibronectin and ICAM-1 as well as TCR-induced activation,
subsequently suppressing accumulation at sites of inflammation
(221). Nevertheless, another study showed that LRP1 inhibites
the adhesion of T cells to ICAM-1 and fibronectin via JAK
signaling (222). Furthermore, LRP1 on T cells interactes
with membrane-associated proteinase 3 (mP3) on neutrophils
resulting in inhibition of the inflammatory response (101). In
summary, LRP1 on T cells may also play a major role in the
inflammatory response associated with T cells.

CONCLUSIONS

LRP1 is a large, multifunctional type 1 transmembrane receptor
and essential for maintaining basic cellular functions and the
development of organisms. Due to its ability to mediate actions
of a broad range of ligands, LRP1 participates in the development
of multiple degenerative diseases, such as atherosclerosis and
Alzheimer’s disease. In this review, we summarized the dual and
opposing roles of LRP1 in atherosclerosis in vivo and in vitro. The
role of LRP1 in VSMCs and macrophages in the development
of atherosclerosis is different and opposite in vivo and in vitro,
which may be the reason that the complexity of cross-talks
among various signal pathways and different cell types and
organ systems in vivo. Probably more surprising, for established
plaque, the lack of LRP1 expression inmacrophages unexpectedly
promotes atherosclerosis regression. As a result, the opposite
effect of LRP1 involved in the regulation of atherosclerosis
might depend on whether the plaque is growing or shrinking.
The dual role of LRP1 in mediating the effect of TNF-α on
vascular inflammation and in balancing the effects of CD47
on efferocytosis could be involved in this phenomenon (223,
224). However, in endothelial cells and adipocytes, LRP1 may
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promote resistance to atherosclerosis, primarily by inhibiting
inflammation. These results suggest that the functionality of
LRP1 is dependent on the cell type in which this receptor
is expressed.

Therapeutic Considerations
This review may provide a basis for the development of new
therapeutic approaches for atherosclerosis that target LRP1 and
its downstream cellular signaling pathways. For example, the C-
terminal half of the cluster II CR9 domain (Gly1127–Cys1140)
has been reported to be crucial for LRP1-mediated aggLDL
binding and internalization in human VSMCs (hVSMCs) (45).
Moreover, anti-P3 (Gly1127–Cys1140) antibodies (Abs) that
specifically block the LRP1 (CR9) domain have been shown
to efficiently prevent LRP1-mediated aggLDL internalization
and aggLDL-induced LRP1 upregulation to prevent human
macrophages and VSMCs from forming foam cell formation
(45, 225). These findings indicate that this strategy could be used
to prevent the occurrence and progression of atherosclerosis. In
terms of established plaques, inhibiting LRP1 in macrophages
with blocking antibodies could accelerate plaque regression,
potentially alleviating atherosclerosis and related cardiovascular
and cerebrovascular complications. Notably, LRP1 can regulate
the endocytic clearance of several MMPs (113, 226), which
could degrade the extracellular matrix to promote VSMC
migration and thin the fibrous cap, causing plaque rupture and
leading to myocardial infarction and stroke (227). Therefore,
whether the inhibition of LRP1 would disrupt the signaling
pathways involved in the proliferation and migration of
VSMCs and proteolysis activity of MMPs will require a more
comprehensive understanding.

However, some studies have shown that the natural LRP1
agonists SERPINs, such as α-2-macroglobulin (A2MG), α-1-
antitrypsin (AAT), antithrombin III, and synthetic LRP1 agonists
(SP16) can be used to treat myocardial ischemia-reperfusion
injury by inducing cytoprotective signals in cardiomyocytes, such
as the activation of Akt- and ERK1/2-dependent prosurvival as
well as anti-inflammatory signaling pathways. Moreover, AAT

and SP16 are under clinical development, and also there are
no treatment-related serious adverse events or toxicity (228,
229). Thus, the natural and synthetic agonists of LRP1 may
be useful in treating atherosclerosis by inhibiting inflammation
and promoting vascular cell survival, but additional evidence
is needed to elucidate the associated mechanism. Gene therapy
could be used to increase LRP1 expression. For instance,
it may be possible to use adeno-associated virus-2 (AAV-2)
carrying the cDNA of LRP1 or its smaller fragments to increase
LRP1 expression in vascular cells to resist atherosclerosis. In a
mousemodel of Alzheimer’s disease, treatment with recombinant
ligand-binding domain IV of LRP1 by using an in situ arterial
brain perfusion technique for 3 months reduced brain Aβ levels
(90). Therefore, gene therapy and recombinant LRP1 could be
used to treat and prevent atherosclerosis.

In summary, in this review, LRP1 was shown to participate
in a large number of physiological activities as a coreceptor
and to interact with many adaptor proteins through its
cytoplasmic domain. The understanding of the mechanisms
and the further identification of LRP1 partners may open up
new ways to treat metabolic diseases, such as lipid metabolism,
atherosclerosis, inflammation, Alzheimer’s disease and obesity.
Futher investigations will most likely uncover even more
functions of these receptor beyond those considered here.
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