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Sepsis is a syndrome with life-threatening organ dysfunction induced by a dysregulated

host response to infection. The heart is one of the most commonly involved organs

during sepsis, and cardiac dysfunction, which is usually indicative of an extremely

poor clinical outcome, is a leading cause of death in septic cases. Despite substantial

improvements in the understanding of the mechanisms that contribute to the origin

and responses to sepsis, the prognosis of sepsis-induced cardiac dysfunction (SICD)

remains poor and its molecular pathophysiological changes are not well-characterized.

The recently discovered group of mediators known as long non-coding RNAs (lncRNAs)

have presented novel insights and opportunities to explore the mechanisms and

development of SICD and may provide new targets for diagnosis and therapeutic

strategies. LncRNAs are RNA transcripts of more than 200 nucleotides with limited or no

protein-coding potential. Evidence has rapidly accumulated from numerous studies on

how lncRNAs function in associated regulatory circuits during SICD. This review outlines

the direct evidence of the effect of lncRNAs on SICD based on clinical trials and animal

studies. Furthermore, potential functional lncRNAs in SICD that have been identified in

sepsis studies are summarized with a proven biological function in research on other

cardiovascular diseases.

Keywords: long non-coding RNA, sepsis, cardiac dysfunction, biomarker, gene therapy

INTRODUCTION

Sepsis is a syndrome with life-threatening organ dysfunction induced by a dysregulated host
response to infection (1, 2). In-hospital mortality among patients with septic shock is reported to
reach up to 40% (1). Septic shock is a series of circulatory, metabolic, and cellular abnormalities
and is defined by a requirement for vasopressor support and persistent hyperlactatemia in
the absence of hypovolemia (3, 4). Epidemiological studies showed that ∼28.3 to 41% of all
hospitalized sepsis patients died due to multiple organ failure (5), and sepsis-induced cardiac
dysfunction (SICD) was identified as being closely associated with higher mortality rates (6, 7).
Cardiac dysfunction is one of the major complications to sepsis, hence is predictive of a poor
clinical outcome. Due to the pathophysiological changes of sepsis, cardiac lesions might be
induced by a series of factors including myocardial ischemia, myocardial depressant substance,
inflammation, adrenergic pathways deregulation, calcium overload, mitochondrial disorder,
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coronary microvascular dysfunction, and myocardial damages
(4). Animal and cell experiments with lipopolysaccharide
(LPS)-induced sepsis models demonstrated a significantly
higher rate of cardiomyocyte apoptosis, intracellular ROS
accumulation, elevated cytoplasm cytochrome C levels, and
activated inflammatory pathways (8).

The development of genome-wide association studies
(GWAS) and RNA sequencing (RNA-Seq) facilitated the
discovery that a large part of the nucleotide genome presents
limited or no protein-coding capabilities, although these regions
are still effectively transcribed. The RNAs related to these regions
were named non-coding RNA (ncRNA) (9). Long non-coding
RNA (lncRNA) is a type of ncRNA that is composed of more
than 200 nucleotides and contributes to transcriptional and
post-transcriptional regulation of RNA. According to their
molecular function, lncRNAs can be classified as signal, decoy,
guide, scaffold, enhancer, or sponge lncRNAs (especially circular
RNAs) (10, 11) (Figure 1). Whether circular RNAs (circRNAs)
belong to the lncRNAs is a matter of controversy. However, in
consideration of their similarities in function and definition to
lncRNAs, we regard circRNAs as a unique subtype of lncRNA,
and consequently they are included in this review (11–13).

Modulation of lncRNA plays important roles in various stages
of sepsis development and pathophysiological processes, and this
may offer potential novel diagnostic and therapeutic strategies
to reduce the mortality and burden of SICD. Using sequencing
analysis, more than 80% of the primary genetic elements were
observed to change in patients with critical sepsis (14). In
vitro, human umbilical vein endothelial cells (HUVECs) exposed
to LPS showed a 28- to 70-fold increase in the expression
of lncRNAs (15). Differential expression of lncRNAs has been
observed in several other cell types after exposure to the plasma
of septic patients or LPS, including human tubular epithelial
cells, monocytes, and cardiomyocytes, indicating a tissue-specific
biological function of lncRNA (16–18). Therefore, the lncRNAs
involved in SICD regulate both cardiomyocytes and non-
cardiomyocytes. Current evidence indicates a role for lncRNAs
in regulation of cardiomyocyte functions, such as mitochondrial
homeostasis, calcium handling, contraction, and apoptosis.

Activation of inflammatory pathways mediated by Toll-like
receptor (TLR) signaling in response to pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) is an important mechanism of cardiomyocyte
injuries caused by sepsis. These inflammatory pathways include

Abbreviations: ASOs, antisense oligonucleotides; CAD, coronary artery heart

disease; circRNAs, circular RNAs; CLP, cecal ligation and puncture; CMVECs,

cardiac microvascular endothelial cell; CRISPR, clustered regularly interspaced

short palindromic repeats; CVD, cardiovascular disease; DAMPs, damage-

associated molecular patterns; GWAS, genome-wide analyses; HCAECs, human

primary coronary artery endothelial cells; HCASMC, coronary artery smooth

muscle cells; HIF1α, Hypoxia-inducible factors 1α; HUVECs, human umbilical

vein endothelial cells; I/R, Ischemia/Reperfusion; lncRNAs, long non-coding

RNAs; LPS, lipopolysaccharide; MI, myocardial infarction; NF-κB, nuclear

factor κB; PAMPs, pathogen-associated molecular patterns; PBMCs, Peripheral

blood mononuclear cells; RNAi, RNA interference; SICD, sepsis-induced cardiac

dysfunction; XIAP, X-chromosome-linked inhibitor of apoptosis; VSMCs, vascular

smooth muscle cells.

those involving nuclear factor-κB (NF-κB) and mitogen-
activated protein kinase (MAPK), as well as some other pathways
(19). The lncRNAs involved in immune responses are also likely
to contribute to the origins of SICD. However, since lncRNAs
present multiple modalities of action with low conservation in
vertebrates, exploring the individual functions of a particular
lncRNA is challenging and more difficult than similar research
on microRNAs (miRNAs). Hence, several lncRNAs involved
in inflammatory responses in cardiomyocytes lack associated
evidence in SICD (20).

This review summarizes the direct evidence for the
involvement of lncRNAs in SICD based on clinical research
studies of patients with SICD and basic biology explorations
using animal or cell models of SICD. Furthermore, the lncRNAs
involved in both sepsis and cardiovascular diseases (CVD)
among individual studies are described and their potential
associations in SICD are analyzed; these studies were treated as
indirect evidence for the role of lncRNAs in SICD.

THE ASSOCIATION BETWEEN LNCRNAS
AND SICD

A recent study using microarray and whole genomic
transcription sequencing with bioinformatics analyses on blood
samples from patients with sepsis discovered 46 differentially
expressed lncRNAs (DElncRNAs) (21). Additionally, 28
upregulated and 61 downregulated lncRNAs were identified in
the public reported NCBI GEO dataset (22). Similar analyses
based on cardiac tissue frommouse or rat sepsis models reported
74 (23) to 1,275 DElncRNAs, and revealed 14 lncRNAs that were
highly correlated with 11 mitochondria-related differentially
expressed mRNAs (24) and 11 differentially expressed circRNAs
(25). Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis indicated that upregulated lncRNAs were significantly
enriched in the p53, NF-κB, and HIF-1 signaling pathways
(26). Tissue-specific RNA-Seq in artificial induced inflammation
revealed that some LPS-mediated lncRNAs were correlated
to cardiometabolic traits (16). Thus, lncRNAs participate in
regulating mitochondrial function, metabolic homeostasis, and
inflammation signaling in cardiomyocytes during sepsis attacks.

Evidence in the literature linking lncRNAs and SICD can be
divided into two distinct types. The first type of evidence (direct)
presents clear confirmation of the involvement of lncRNAs
in SICD, either from clinical samples or animal models, with
definite molecular function demonstrated. The second type of
evidence (indirect) describes studies where lncRNAs displayed
differentiated expression in sepsis samples and were proven to
have a critical role in maintaining cardiomyocyte function but
lacked convincing evidence in SICD.

LNCRNA INVOLVED IN SICD AMONG
VARIOUS CELL TYPES

Here, direct evidence of the involvement of lncRNAs in SICD is
summarized (Figure 2). This evidence is based on the findings
from basic molecular biological research using animal models
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FIGURE 1 | The schematic diagram describes classification of lncRNA functions. (A) LncRNAs guide ribonucleoprotein complexes to specific location of chromatin.

(B) LncRNAs support assembly of protein complex. (C) lncRNAs serve as molecular signals for tissue and temporary specific activation of transcription. (D) LncRNAs

can alter splicing patterns of mRNA and suppress transcription by sequestering transcription factors. (E) LncRNAs can bind to and take away protein factors, such as

transcription factors and chromatin modifiers, to influence transcriptome. (F) LncRNA can “sponge” miRNA by base pairing with their complementary base sequence

and reduce their effects (G) lncRNAs may interact with a variety of RNA binding proteins (RBPs), leading to alternations of mRNA stability, splicing, protein stability and

subcellular localization.

of hypodynamic septic shock induced by LPS and cecal ligation
and puncture (CLP) (27); cardiac muscle cell lines (primary
culture cardiomyocytes, H9C2, HL-1, and AC-16 cell lines) and
microvascular cell lines exposed to serum from septic patients or
administered with LPS (28); and clinical studies of sepsis patients
subjected to cardiac dysfunction (Table 1).

Cardiomyocytes
LncRNAs participate in cardiomyocyte function through
inflammatory signaling pathways, cytokine release, mitochondria
homeostasis, apoptotic processes, and cell proliferation and
migration during SICD.

Inflammation Signaling
LncRNAs are involved in the inflammatory process by regulating
inflammation signaling, including the NF-κB, JAK/STAT, and
MAPK pathways, and production of cytokines, such as IL-1,

IL-6, IL-10, and TNF-α. The lncRNA MALAT1 is responsible
for the septic inflammatory response under LPS administration
in cardiomyocytes by downregulating miR-150-5p to increase
expression of IL-6, TNF-α and the NF-κB signaling pathway (29),
and TNF-α induction partly relied on serum amyloid antigen 3
(SAA3) (30). MALAT1 also interacts with p38MAPK/NF-kB and
miR-125b to aggravate cardiac inflammation and dysfunction
in sepsis (31). The lncRNA NEAT1 was associated with disease
severity, higher mortality risk, and unfavorable prognosis in
sepsis patients (32). Furthermore, NEAT1 plays an important
role in cardiomyocyte injury and apoptosis associated with
miR-140-5p, miR-193a, miR-27b, miR-181b, miR-129-5p, miR-
495-3p, miR-125a-5p, and their corresponding downstream
regulated genes (33–40). NEAT1 knockdown can improve
the outcome of LPS-induced myocardial injuries in mice by
upregulating miR-144-3p (41) and downregulating expression of
TLR2 and p65 and mRNA levels of inflammatory indicators to
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FIGURE 2 | The schematic diagram describes the involved lncRNAs in sepsis induced cardiac dysfunction (SICD). Generally, current evidences demonstrated some

lncRNAs served as biomarkers for SCID. Then, monocytes, macrophage, and mast cells would be activated with kinds of cytokines secretion. After that, immune

responses of cardiomyocytes would lead to mitochondrial dysfunction, apoptosis and autophagy under the regulation of specific lncRNAs. Besides, lncRNAs also

participates in the regulation of endothelial cells and smooth muscle cells during SICD.

inhibit the TLR2/NF-κB signaling pathway (42). Expression of
lncRNA PTENP1 was upregulated in sepsis models subjected
to LPS administration, while miR-106b-5p expression was
downregulated. Matrine administration could attenuate changes
in expression of these two ncRNAs, and the cardioprotective
effects of matrine were reversed by overexpression of PTENP1
or knockdown of miR-106b-5p (43). The lncRNA MIAT directly
binds to miR-330-5p to activate TRAF6/NF-κB signaling axis
and further promotes inflammatory response as well as oxidative
stress in LPS-induced septic cardiomyopathy (44).

Silencing the lncRNACHRF protected H9c2 cells against LPS-
induced injury via upregulation of miR-221 and modulation of
NF-κB and JNK pathways (45). In addition, silencing HOTAIR
lncRNA reduced secretion of TNF-α into the circulation by
inhibition of NF-κB signaling through dephosphorization of
NF-κB p65 subunit, and helped preserve cardiac function in
septic mice (18). Moreover, knockdown of circHIPK3 effectively
alleviated LPS-induced myocarditis (46).

Beyond the lncRNAs that contribute to triggering
inflammation, there is a series of lncRNAs that present a
protective value of SICD. LncRNA CRNDE attenuates miRNA-
29a to enhance expression of Sirt1, which contributes to
inhibition of NF-κB and STAT3 inflammation signaling in
myocardial tissue under septic attack (47). LncRNA Mirt2
silenced miR-101 and attenuated the myocardial inflammatory
response in sepsis rats through the PI3K/AKT signaling pathway,

and this improved cardiac remodeling and function (48).
However, no human homologs of Mirt1 and Mirt2 have been
described to date.

In an in vitro model established on cardiomyocytes subjected
to LPS, there was a negative relationship between lncRNA
H19 and miR-874, and a positive correlation between H19
and Aquaporin 1 (AQP1). H19 could act as AQP1 competing
endogenous RNA (ceRNA) by regulating miR-874 and restoring
LPS over-activated inflammatory responses and myocardial
dysfunction (49, 50).

Mitochondria
Mitochondria are one of the most important organelles of
cardiomyocytes, but they are quite sensitive to external and
internal stimulations, resulting in mitochondrial dysfunction
and leading to metabolic disorder with accumulation of
reactive oxygen species (ROS). Mitochondrial dysfunction is
associated with DNA damage and apoptosis. In experimental
models of sepsis attacks, reduced mitochondrial membrane
potential (MMP), elevated mitochondrial cytochrome C,
and downregulated ROS scavenging were identified (8).
LncRNAs make significant contributions to maintaining cardiac
mitochondria homeostasis, hence these studies revealed a critical
role of lncRNAs in response to sepsis attack.

Zhang et al. (45) demonstrated that silencing the lncRNA
CHRF prevented LPS-triggered mitochondrial apoptosis
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TABLE 1 | Direct evidence of lncRNAs in SICD.

LncRNA Bindings Downstream factors Molecular function Sepsis Models (in vitro +

in vivo)

Outcomes

MALAT1↑ miR-150-

5p↓

– miRNA sponge H9C2 + LPS IL-6↑ TNF-α↑

NF-κB signaling pathway↑

↑§ – SAA3↑ – HL-1 + LPS

Mice + LPS

TNF-α↑

↑ miR-125b↓* – – H9c2 + LPS

Rat +CLP

p38 MAPK/ NF-κB↑

NEAT1↓ϕ miRNAs of

inflammatory

indicators

TLR2 and p-p65↓ – Mice + LPS Myocardial Pathological ↓

Injury Myocardial Apoptosis↓

Oxidative Stress↓

Inflammation↓

TLR2/NF-κB signaling pathway↓

↓ miR-144-

3p↓

p-IκBα and p-p65↓ miRNA sponge HL-1 + LPS Myocardial Cell Injury↓

NF-κB Signaling Pathway↓

PTENP1↓ miR-106b-

5p↑

– miRNA sponge H9c2 + LPS

Mice + CLP

Cell viability↑

IL-6↓and TNF-α↓

Inflammation↓

MIAT↑ miR-330-

5p↓

TRAF6↑ miRNA sponge HL-1 cells + LPS

Mice + LPS

TRAF6/NF-κB signaling axis↑

CHRF↓ miR-221↑ P65↓ miRNA sponge

Protein localization

H9c2 + LPS Mitochondrial apoptosis↓

Cell viability↓

Apoptosis rate↓

IL-6 and TNF-α↓

NF-κB↓ and

JNK pathways↓

circANKRD36z↓ miR-138↑ – miRNA sponge H9c2 + LPS Apoptosis↓ and inflammatory injury↓

p38MAPK/NF-κB↓

HOTAIR↑$ – – – HL-1 + LPS

Mice + LPS

TNF-α↑

phosphorylation of NF-κB p65 subunit↑

CRNDE↑§ miR-29a↓ SIRT1↑ miRNA sponge H9c2 + LPS

Rat + LPS

Cardiomyocyte apoptosis↓ Oxidative

stress↓ phosphorylated NF-κB p65↓ and

Cleaved PARP1↓ NF- κB/PARP1

signaling↓

Mirt2↑ miR-101↓ – miRNA sponge Rat + CLP IL-1β↓, IL-6↓, TNF-α↓, MPO↓

IL-10↑

PI3K/AKT Signaling

Pathway↓

rPVT1↓ϕ Irak-2↓ c-Myc↓ Myd88↑ Protein stabilization H9C2 + LPS Myocardial Depression↑

Cell Apoptosis↑

Xist↓ mir-7a-5p# PGC-1α↑ Tfam↓ – Mouse cardiomyocytes MCM

cells + LPS

Cardiomyocyte ATP levels↑

Cardiomyocyte apoptosis↓

CYTOR↑ miR-24↓ XIAP↑ miRNA sponge H9c2 + LPS

Mice + LPS

viability↑

Apoptotic↓

TNF-α↓and IL-1β↓

LDH↓

KCNQ1OT1↑ miR-192-

5p↓

XIAP↑ miRNA sponge H9c2 + LPS

Rat + LPS

Proliferation↑

Apoptosis↓

TNF-a↓, IL-1b↓, and IL-6↓

CircHIPK3↓ – – miRNA sponge? H9c2 + LPS

Mice + CLP

Heart damage markers↓

And myocardial apoptosis↓

Oxidative stress↓ and

Inflammation↓

MEG3↓ P53‡ – – AC16 + LPS

Plasma from sepsis patients

Apoptosis↓

GAS5↑ϕ miR-124↓ – miRNA Methylation AC16+LPS Apoptosis↓

H19↓ miR-93-5p↑ SORBS2↓ miRNA sponge H9C2 + LPS

Sepsis patients

Cell growth inhibition↑

Mitochondrial damage↑

(Continued)
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TABLE 1 | Continued

LncRNA Bindings Downstream factors Molecular function Sepsis Models (in vitro +

in vivo)

Outcomes

↓ miR-874↑ AQP1↓ miRNA sponge UL-1 + LPS

Serum from peripheral blood

samples of sepsis patients

TNF-α, IL-6, and IL-1β↑

CHRF↓ miR-221↑ P65↓ miRNA sponge

Protein localization

H9c2 + LPS Mitochondrial apoptosis↓cell

viability↓apoptosis rate↓

IL-6 and TNF-α↓

NF-κB↓ and

JNK pathways↓

RMRP↑ miR-1-5p↓ HSPA4↑ miRNA sponge HL-1 + LPS

Mice + LPS

Apoptosis↓

MMP↑

Mitochondrial damage↓

SOX2OT↓$ SOX2↑ – Transcriptional suppression H9c2 + LPS

Mice + LPS

MMP↑

Mitochondrial reactive oxygen species↓

Mitochondrial dysfunction↓

ZSAF1↓$ miR-590–

3p↑

– Base paring Mice + CLP Pyroptosis↓

Autophagy↑

AMPK/mTOR signaling↓

MALAT1↓∧ EZH2 EZH2 Histone modification CMVECs isolated from rats +

LPS

Rat +CLP

CMVEC cell hyperpermeability and

apoptosis ↓

LUAD1↑ miR-195† Pim-1↑ Base paring Plasma from sepsis patients

HCAECs

Apoptosis of HCAECs↓

Downstream factors included proteins which are reported to be directly modulated by lncRNAs or their binding molecules and gene locus.

Rising arrow or a falling arrows of lncRNAs depend on the regulation of included studies, not on their expression change after sepsis. Direction of arrow of downstream factors and

outcome relies on direction of arrows of lncRNAs.

*MiR-125b was proved to modulate MALAT1 as a upstream regulator.
∧MALAT1 was downregulated by ulinastatin.

& PVT1 upregulates Myd88 by protein stabilization but it’s unknown how PVT1 downregulate c-Myc.

# Database analyses found that Xist has a binding site of miR-7a-5p, but there is no direct modulatory relationship between these two non-coding RNAs.

$ Evidences of studies were acquired based on transgenic mouse.

§ Researchers of included studies screened lncRNAs by microarray.

ϕ Researchers of included studies screened lncRNAs by RNA-sequencing.
† LUADT1 and miR-195 demonstrate strong base paring between each other, but overexpression of LUADT1 and miR-195 did not significantly alter the expression of each other.
‡ lncRNA MEG3 may interact with p53 to regulate cancer cell apoptosis and it may be involved in the pathogenesis of sepsis by a similar mechanism.

? Included study did not mention mechanism of this lncRNA, but other study reported its mechanism.

and inflammation of cardiomyocytes. LncRNA SOX2
overlapping transcript (SOX2OT) is a proven mitochondrial
damage factor in sepsis and contributes to mitochondrial
dysfunction progression by inhibiting SOX2 expression in septic
cardiomyopathy. Knockdown of SOX2OT could restore the
MMP, along with reduction of ROS production induced by
LPS, while overexpression of SOX2OT enhanced mitochondrial
damage (51).

LncRNA RMRP acts as a sponge for miR-1-5p and provides
a protective effect to mitochondria via the RMRP-miR-1-5p-
HSPA4 network, which is known to play crucial roles in
inflammation (8). LncRNA H19 and SORBS2 (Sorbin and SH3
domain-containing protein 2) were downregulated in H9C2
cells following administration of LPS, and miR-93-5p was
simultaneously upregulated. LncRNA Xist is instrumental in
X-chromosome inactivation and inhibits apoptosis in acute
myocardial infarction (MI) (52). Peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α) and adenosine
triphosphate (ATP) expression was markedly reduced in
sepsis leading to mitochondrial dysfunction, but mitochondrial

function was restored after the inhibition of Xist and mir-
7a-5p, which reduced apoptosis in response to LPS (53).
Inhibition of lnc-HOTAIR aggravates oxidative stress-induced
damage of H9c2 cells through the HOTAIR/miR-125/MMP2
axis (54).

LncRNA H19 is an important regulator of mammalian
development and disease in that it inhibits cell proliferation (55).
H19 is normally highly expressed during in utero development
and then downregulated at birth (56), while re-expression
occurs in some cardiovascular disease settings (57–59). In
accordance with its inhibition function of cell proliferation,
H19 was proved as precursor of miR-675, which inhibits
cardiomyocyte hypertrophy and contributes to cardiac fibroblast
proliferation and fibrosis through repression of DUSP5/ERK1/2
(60). Furthermore, H19 is involved in myocardial ischemic
preconditioning via increasing the stability of nucleolin protein,
which mitigates the damage caused by MI (61). Human GWASs
demonstrated significant associations between the H19 locus and
systolic or mean arterial blood pressure (9). LPS-induced cell
growth inhibition and mitochondrial damage was significantly
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reversed by overexpression of H19, which sponged miR-93-5p to
promote SORBS2 expression (62).

Apoptosis
Cardiomyocyte apoptosis, which is a key parameter for SICD and
leads to long-term myocardial dysfunction, has been proposed
to occur as a result of a sequence of cellular damages (63).
Several signaling pathways are involved in apoptosis regulation
via nuclear and mitochondrial approaches. However, crosstalk
between lncRNAs and signaling pathways has been identified,
and several lncRNAs regulate the process of apoptosis.

Overexpression of lncRNA MEG3 is associated with high
mortality rates in patients with sepsis, thus is indicative of
poor clinical outcomes and is believed to be associated with
LPS-induced renal epithelial cell and cardiomyocyte apoptosis
(64). LncRNA Xist promoted apoptosis of cardiomyocytes and
inhibited proliferation of these cells by downregulating miR-
130a-3p and upregulating PDE4D, which is a direct target of
miR-130a-3p (52).

LncRNA PVT1 also showed significant upregulation and a
vital functional role in maintaining the myocardial contractile
function in rat models of hypodynamic septic shock induced by
LPS. Knockdown of PVT1 induced cell apoptosis in LPS-induced
cardiomyocytes through increasing the expression of c-Myc, Bid,
Bax, and Caspase-3 and decreasing expression ofMyd88 and Bcl-
2 (23). LncRNA CYTOR was markedly downregulated during
sepsis. This lncRNA negatively regulated expression of miR-24
and apoptosis-related proteins that were regulated by miR-24.
MiR-24 directly targeted the 3′UTR of X-chromosome-linked
inhibitor of apoptosis (XIAP) and suppressed its expression.
Downregulation of CYTOR aggravated sepsis-induced cardiac
injury via regulation of miR-24/XIAP (65). The lncRNA
KCNQ1OT1 is similar in mechanism to CYTOR. It was
considerably downregulated in myocardial tissues of septic rats,
whereas miR-192-5p was increased in these tissues. CYTOR
regulates XIAP through miR-192-5p, which pairs with the 3′UTR
of XIAP, and represses its protein translation. These findings
show that downregulation of KCNQ1OT1 aggravates cardiac
injury through the miR-192-5p/XIAP axis during sepsis (66).
LncRNA GAS5 may upregulate miR-214 through a methylation
pathway to inhibit cardiomyocyte apoptosis in sepsis (67).

Fan et al. (46) demonstrated that circHIPK3 expression was
significantly upregulated when exposed to LPS in vivo and
in vitro, and that knockdown of circHIPK3 effectively alleviated
LPS-induced myocarditis by attenuating inflammation-
induced apoptosis of cardiomyocytes. Furthermore, silencing
circANKRD36 exerted an anti-inflammatory and anti-apoptosis
function in LPS-exposed H9c2 cells via the p38-MAPK/NF-
κB pathway and upregulation of miR-138 (68). Another
study confirmed an association between circANKRD36 and
miR-15/MyD in regulating apoptosis due to inflammation
damage (69).

Autophagy
Autophagy is an important biological process for regulating
cellular homeostasis. However, there is currently limited data
demonstrating the involvement of lncRNAs in regulating

cardiomyocyte autophagy. One study revealed that lncRNA
ZFAS1 was an endogenous SERCA2a inhibitor and induces
mitochondria-mediated apoptosis via cytosolic Ca2+ overload
(70). ZFAS1 is activated by the transcription factor SP1 and
aggravates the progression of sepsis-induced cardiac dysfunction
via miR-590–3p/AMPK/mTOR signaling-mediated autophagy
and pyroptosis of cardiomyocytes (71, 72).

Immune Cells
During sepsis, the immune system is the frontier responding
to harmful stimulations, and monocytes, macrophages, and
neutrophils all make significant contributions to targeting organ
damage. The innate immune response induces strong activation
of the cytokine system, which has plethoric effects on various
organs and the vasculature, leading to changes in vascular
permeability, endothelial function, and activation of further
mediators such as bradykinin, histamine, and the complement
and coagulation systems.

The lnc-MALAT1/miR-125a axis presents excellent value
in differentiating sepsis patients from healthy controls using
peripheral blood samples (73). In another study using clinical
blood samples, lnc-CRNDE was found to trigger inflammation
through the TLR3-NF-κB-cytokine signaling pathway and the
downstream release of inflammatory cytokines (74). As a major
protein related to innate immune and inflammatory responses,
TLR3 is known to cause cardiac dysfunction and other organ
damage during sepsis (74, 75). Low expression of lnc-MEG3
might also serve as a potential biomarker for the development,
progression, and prognosis prediction of sepsis (76–78).
Furthermore, overexpression of MEG3 prevented LPS-induced
macrophage apoptosis and secretion of inflammatory factors by
inhibiting activation of the NF-κB signaling pathway (77).

Lnc-MALAT1 plays multiple roles in inflammatory
stimulation in the macrophage cell line RAW264.7 (79).
This lncRNA could inhibit the proliferation of LPS-
stimulated RAW264.7 cells by inducing SMAD3 expression
via downregulation of hsa-miR-346 (79). Lnc-MALAT1 also
promotes inflammation in septic mice by binding to miR-
23a to upregulate mast cell-expressed membrane protein 1
(MCEMP1) (80).

High expression of NEAT1 in peripheral blood mononuclear
cells (PBMCs) can be considered as an additive marker for
the diagnosis of sepsis (81), while another study confirmed
that monocyte-enriched NEAT1 was suppressed in post-MI
patients (82). Data from experiments with NEAT1-knockout
(NEAT1-KO) mice identified NEAT1 as a novel lncRNA-type
immunoregulator affectingmonocyte-macrophage functions and
T cell differentiation. NEAT1-KO marrow-derived macrophages
(BMDMs) responded to LPS with increased ROS production and
disturbed phagocytic activity (82).

Endothelial Cells
Cardiomyocytes are the dominant type of cells in the heart.
However, various cell types comprise functional heart tissue.
Endothelial cells contribute to form microvascular circulation
in myocardia. Endothelial cell dysfunction impairs the micro-
circulation function, inducing ischemic cardiac lesions. In
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sepsis attacks, endothelial cells are also major targeted sites.
However, few studies have drawn correlations between lncRNAs
and endothelial cell damage. The lncRNA LUADT1 was
downregulated in patients with sepsis and in cultured human
primary coronary artery endothelial cells (HCAECs) exposed
to LPS. Overexpression of LUADT1 upregulated the expression
of PIM1, a target of miR-195. These findings indicated that
overexpression of either LUADT1 or PIM1 would reduce
the damage effects of miR-195 on LPS-induced apoptosis of
cardiac endothelial cells (83). Yu et al. (84) demonstrated
that the drug Ulinastatin protected against LPS-induced cell
hyperpermeability and apoptosis of cardiac microvascular
endothelial cell (CMVECs) via downregulation of lncRNA
MALAT1 and EZH2. Moreover, Liu et al. (85) reported that
miR-150 could induce sepsis-induced endothelial injury by
regulating endoplasmic reticulum (ER) stress and inflammation
via the MALAT1-mediated NF-κB pathway. Lnc-NEAT1 also
participates in the viability and survival of coronary endothelial
cells (86, 87).

Smooth Muscle Cells
Smooth muscle cells also significantly contribute to maintenance
of coronary vessel circulation. However, smooth muscle cells
were the targets of inflammation damage due to sepsis
attacks. Ahmed et al. (88) demonstrated a role of NEAT1 in
regulating phenotypic switching by repressing smooth muscle-
contractile gene expression through an epigenetic regulatory
mechanism. Silencing lnc-NEAT1 in vascular smooth muscle
cells (VSMCs) enhanced expression of smooth muscle-specific
genes while attenuating proliferation and migration of the
VSMCs. The lncRNA MEG3 could modulate the balance
of proliferation/apoptosis in VSMCs by regulating the miR-
26a/SMAD1 axis (89). In addition, the lncRNAGAS5 exacerbates
hypertensive arterial remodeling by regulating VSMCphenotypic
conversion, which leads to microvascular dysfunction (90).
However, there is lacking convinced evidence of GAS5
on SICD.

PREDICTED LNCRNAS BASED ON
AVAILABLE EVIDENCE

In addition to the above-mentioned lncRNAs with direct
evidence in SICD, some other lncRNAs were reported to be
involved both in sepsis and some types of CVD by other
mechanisms. In view of the molecular functions of lncRNAs
in regulating cardiomyocyte homeostasis and their expression
during sepsis but without convincing evidence presented in a
single study focusing on SICD, the most reported lncRNAs
and associated mechanisms are summarized in this review
to demonstrate their comprehensive impacts. Table 2 lists the
lncRNAs that we predicted might play a role in SICD although
no direct evidence is available from biological experiments or
clinical trials. These lncRNAs were found to express differentially
or function in sepsis and participate in CVD or other cardiac
psychopathological processes in individual studies.

LncRNAs That Present Similar Functions in
Sepsis and CVD
The mechanisms of lncRNAs in regulating downstream signaling
is complicated, although research on ncRNAs is growing.
However, direct evidence of lncRNAs on SICD remain limited.
Moreover, sepsis is considered as a type of syndrome that
damages various organs. Hence, research on sepsis includes
investigations on various damages beyond cardiac dysfunction,
such as lung injuries, kidney disorders, and other damages.
Based on this predicament, we selected to review the lncRNAs
involved in sepsis without evidence based on SICD but which
had been confirmed as having similar protective or adverse roles
in other types of CVD. The lncRNAs outlined in this part of the
review are highly likely to have their capabilities proven in future
SICD studies.

ANRIL
Several studies demonstrated that the lnc-ANRIL/miR-125a
axis could serve as a predictor for prognosis, severity, and
inflammation among sepsis patients (91–93). LncRNA ANRIL is
the prime candidate gene at Chr9p21 and widely recognized as
a critical part of endothelial inflammation and cell proliferation
(91, 94–97). Single nucleotide polymorphisms (SNPs) and splice
variants of ANRIL were reported to regulate endothelial cell
activities involved in coronary artery heart disease (CAD) and
MI (98–103). Abnormal expression of ANRIL is associated with
vascular endothelium injury and proliferation, migration, and
apoptosis of VSMCs; which also contribute to mononuclear
cell adhesion and proliferation (104, 105). ANRIL knockdown
induced cardiomyocyte apoptosis in acute MI by regulating
IL-33/ST2 or Akt (106, 107). Enhanced expression of ANRIL
and suppressed expression of miR-181b, which was inhibited
by ANRIL, were recorded in CAD populations and confirmed
ANRIL as an independent risk factor (108).

DC
Lnc-DC, also known as whey acidic protein/four-disulfide core
domain 21 (Wfdc21), was reported to be correlated with immune
responses. Knockdown of lnc-DC downregulated expression
of pro-inflammatory factors, such as IL-1β and TNF-α, in
LPS-treated macrophages through the STAT3/TLR4 signaling
pathway (109). Alikhah et al. (110) found significant correlations
between expression of lnc-DC with SOCS1 and STAT3 in
CAD patients.

THRIL
LncRNA THRIL is upregulated during sepsis and may serve as
a sponge of miR-19a to upregulate TNF-α (111). This lncRNA
is considered to play important roles in the innate immune
response and inflammatory diseases in humans (112). THRIL
mediates autophagy of endothelial progenitor cells via the AKT
pathway and FUS (113). Knockdown of THRIL protected H9C2
cells against hypoxia-induced injuries by regulating miR-99a
(114). This mechanism was further demonstrated by Sheng et al.
(115) with the observation that Geniposide alleviated hypoxia-
induced injury through downregulation of THRIL in H9c2 cells.
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TABLE 2 | Summary of potential lncRNAs in SICD based on available evidence.

LncRNA Disease Expression Samples or tissue/cell

source

Downstream factors Molecular

function

Function

ANRIL Sepsis Up Plasma from patients of

sepsis

miR-125a↓ – Biomarker of severity,

inflammation, and prognosis

AMI Up Mice myocardial tissue

HL-1

Deubiquitinase

USP17

IL-33

ST2

– Apoptosis↑

MI Up Ischemic hearts

HUVECs

Akt phosphorylation↑ – Cell migrations↑ and

Tubulogenesis↑

Ischemia-induced Angiogenesis↑

Inflammation-relevant

CAD

Up CAD patients

HCAECs

HUVECs

CAD mice

miR-181b↓

EMT-specific

Proteins

– Inflammatory factors↓ and

Vascular-protective factors↓

UCA1 Sepsis Up HMECs – – Pre-inflammatory mediators↑

Up WI-38 cells miR-499b-5p↓

TLR4↓

decoy Inflammatory injury ↑apoptosis↑

I/R§ Up H9C2 cells – – ER stress↓ and

Cell apoptosis↓

Mitochondria

Dysfunction↓ and

Oxidative stress↓

Lnc-DC Sepsis Up kidneys and liver Stat3↑

Toll-Like Receptor 4↑

– Pro-inflammatory factors↑

CAD Up PBMCs STAT3↑ – JAK/STAT pathway↑

THRIL Sepsis Up Blood extraction from

sepsis patients

HBEpCs

miR-19a↓ miRNA sponge TNF-α↑

CAD Up CAD blood samples

EPC

FUS Protein binding Cell viability↓ cell autophagy↑

Cell proliferation↓

AKT pathway↑

MI Up H9C2 miR-99a↓

Brg1↓

miRNA sponge Cell injuries↑

PI3K/AKT and mTOR

Signaling pathways↓

HULC Sepsis Up HMECs – – Pre-inflammatory mediators↑

TNF-α↑ Down HUVECs miR-9↓ DNA

methyltransferases

Apoptosis↓

I/Rϕ Down Rat myocardial tissue

H9C2

miR- 377-5p↓ miRNA sponge Cardiomyocyte apoptosis↓

Lnc-P21 Sepsis* Up – – – Macrophage activation

Septic shock susceptibility

autophagy

Cardiomyocyte adherens junctions

CAD Down HA-VSMC

RAW264.7

Carotid arteries

MDM2↑ Enhancer Cell proliferation↓

Apoptosis↑

Neointima Formation↓

TUG1 Sepsis Down Serum samples from

urosepsis patients

RMC

miR-142-3p↓

sirtuin 1↑

miRNA sponge Cell viability↑

Apoptosis↓

Cytokines production↓

Autophagy↓

Hypertension Up Rat isolated VSMCs miR-145-5p↓

FGF10↑

miRNA sponge Proliferation↑

Migration of VSMCs↑

Atherosclerosis Up RAW264.7

MOVAS

Mice aorta and aortic

sinuses

miR-133a ↓

FGF1↑

miRNA sponge Cell growth↑

Inflammation↑

Apoptosis↓

(Continued)
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TABLE 2 | Continued

LncRNA Disease Expression Samples or tissue/cell

source

Downstream factors Molecular

function

Function

SNHG16 Sepsis§ Down Blood sample from sepsis

or respiratory

infection/pneumonia

RAW264.7

miR-15a/16↓

TLR4↑

binding miRNAs Inflammatory pathway↓

CAD Up Peripheral blood from

sepsis patients

HCASMC

miR-218-5p↓ Decoy Proliferation and migration of

HCASMC cells↑

Apoptosis↓

Cardiac hypertrophy Up H9c2 miR-182-5p↓

IGF1↑

miRNA sponge Cardiac hypertrophy↑

aHIF Sepsis* – – – –
Expression Profiling

Golgi stress

Acute lung injury

End-stage heart failure Up Human heart tissues HIF↓ Antisense transcript –

MI Up Peripheral blood cells – – –

* These lncRNAs are involved in pathophysiologic process of sepsis or CVD but there is no direct evidence involved in SICD.

§ Researchers of included studies screened lncRNAs by microarray.

ϕ Researchers of included studies screened lncRNAs by RNA-sequencing.

The direction of arrow of downstream factors indicates function of lncRNAs, not their change in status of diseases.

The direction of arrow of function indicates outcome of restored or upregulated lncRNAs.

In addition, THRIL was increased in CAD patients and proved as
a biomarker to evaluate CAD risk (116).

SNHG16
The lncRNA SNHG16 can act as a ceRNA to downregulate
the miR-15a/16 cluster, reducing LPS-induced inflammatory
signaling (117). SNHG16 also helps regulate miR-218-5p and
promotes the proliferation and migration of coronary artery
VSMCs via the Wnt/β-catenin pathway, protecting against the
injuries from MI (118). Furthermore, silencing of SNHG16
repressed Ang II-imposed cardiac hypertrophy by targeting the
miR-182-5p/IGF1 axis (119).

lncRNAs That Present Opposite Roles in
Sepsis and CVD
Selection of potential lncRNAs involved in SICD is difficult,
even with meticulous attention. Some findings from different
individual studies demonstrated opposing functions of lncRNAs
between sepsis and CVD, either in a protective or adverse
direction. However, it is possible that there may be a shared
intermediate target. Here, such lncRNAs are briefly described,
but further analysis is required in relation to these lncRNAs
and SICD. Moreover, the long-term effects of lncRNAs on CVD
also lacks convincing data and this is another area that requires
further research.

UCA1
Upregulation of lncRNA UCA1 is necessary for the response
of pro-inflammatory immune cells during LPS-induced sepsis
(120, 121). However, UCA1 inhibits ischemia/reperfusion (I/R)-
induced oxidative stress and mitochondria dysfunction via
suppression of ER stress (122).

HULC
HULC could induce pro-inflammatory mediators in response
to LPS exposure in endothelial cells (120). Overexpression of
HULC in HUVECs promoted angiogenesis by increasing cell
viability, proliferation, and tube-like structure formation through
downregulation of miR-29b (123). HULC also participated in
TNF-α- (124) and I/R- (125) induced cardiomyocyte apoptosis
through regulation of miR-9 and miR-377-5p expression.

P21
LncRNA-p21 serves as a repressor in p53-dependent
transcriptional responses (126). This lncRNA regulates
neointima formation, VSMC apoptosis, and atherosclerosis
by enhancing p53 activity (127). Expression of lncRNA-p21 was
significantly increased in a septic model and it predominantly
functioned in cis to activate expression of p21, its neighboring
gene (128). P21 itself is involved in regulation of macrophage
activation, septic shock susceptibility (129), autophagy in LPS-
induced cardiac dysfunction (130), and cardiomyocyte adheres
junctions in endotoxemia (131).

TUG1
The lncRNA TUG1 promoted proliferation and migration
of VSMCs in the hypertensive state by activating the miR-
145-5p/FGF10 axis and the Wnt/β-catenin pathway to
aggregate vascular remodeling (132). Another study reported
that knockdown of TUG1 ameliorated atherosclerosis
via upregulation of miR-133a expression following its
target gene FGF1 (133). TUG1 expression was also
reported to help alleviate acute lung injuries by targeting
miR-34b-5p/GAB1 (134).
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Another Strategy in Searching for lncRNAs
It is theoretically possible to regulate typical molecules of signal
pathways by interfering with their corresponding lncRNAs.
However, in terms of the extensive functions of those pathways,
this train of thought is a low priority. For example, lncRNAHIFa-
AS is a natural antisense transcript of Hypoxia-inducible factor
1-α (HIF1α) and is overexpressed in the failing heart. HIFa-
AS destabilizes the mRNA producing HIF1α, which regulates
transcription of cellular responses to hypoxia, especially in post-
ischemic angiogenesis (135). HIFa-AS was also discovered to
play a role in MI (98). Huang et al. reported that lncRNAs
upregulated in sepsis were significantly enriched in the HIF-
1 signaling pathway via KEGG analyses (26), and two studies
found that HIF-1α participated in acute lung injury after sepsis
(136, 137). Nevertheless, there are no studies reporting the role
of lncRNA HIFa-AS in sepsis.

lncRNAs AS BIOMARKERS AND
THERAPEUTIC TARGETS

SICD is more like a functional disorder than a biochemical
phenomenon. There is uncertainty as to whether SICD itself
is pathogenic or is simply a reflection of the severity of the
underlying disease process of sepsis. Diagnosis of SICD largely
relies on ultrasonography imaging and troponin measurement.
Increasing ultrasonic measurement indicators of left ventricular
systolic and diastolic performances, and right ventricular
dysfunction are applied to clinical practice and scientific
research (4). Similar to troponin, the elevation of hormones
B-type natriuretic peptide (BNP) and N-terminal pro-BNP
(NT-proBNP) are determined mainly by the severity of sepsis
other than specific abnormalities in cardiac function (138).
To date, no ultrasonic prognostication has been demonstrated
in patients with septic cardiomyopathy (139–142). Apart
from lacking reliable biomarkers, the degree to which cardiac
dysfunction represents cardiac structure damage and heart
failure instead of a protective hibernation-type mechanism
remain difficult to resolve (143). Current therapy for sepsis
is predominantly focused on restoring cardiac output by
inotropic agents and fluid resuscitation. The Surviving
Sepsis Campaign guidelines recommend inotropic therapy
in patients with persistent hypoperfusion despite adequate
fluid loading (144). Limited and underperforming inotropic
agent options, including dobutamine, catecholamines, and
levosimendan, also contribute to SICD-related deaths (145–
147). Therefore, novel biomarkers and therapeutic targets
are urgently needed to improve the diagnosis and treatment
of SICD.

LncRNAs as Predictive Biomarkers
As previously discussed, numerous lncRNAs are aberrantly
expressed in SICD compared with normal cardiac tissue or cell
lines, and this is useful to distinguish SICD patients from healthy
cohorts. Although nearly all lncRNAs with direct evidence of
their involvement in SICD were declared as potential biomarkers
of SICD, those lncRNAs also show aberrant expression patterns

in sepsis without cardiac dysfunction, especially critical patients,
and in other non-sepsis situations such as MI, I/R, and acute
kidney injury (21, 22, 24, 26, 110, 114, 148). This reduces the
reliability of using these lncRNAs as potential biomarkers of
SICD. To date, there is no study reporting the sensitivity and
specificity of the diagnostic efficiency of these lncRNAs.

Compared with myocardial biopsy, blood sampling is largely
non-invasive and thus is an ideal diagnostic approach. Several
SICD-related lncRNAs can be present in the blood, as are
the aforementioned cases. However, the circulating lncRNA
differential expression profile is heterogeneous among different
studies, partly due to severity, genetic background, and the
pathogenic microorganism involved (149). One challenge with
the clinical application of these lncRNAs is how to develop a
convenient and rapid technique to detect the target lncRNAs in
sepsis and thus bring the advantage of being less time-consuming
than microbial culture into full play.

LncRNAs as Therapeutic Targets
To date, many studies have confirmed that lncRNAs are essential
contributors to SICD progression due to the diversity of
actions and cellular processes implicated. However, few practical
examples of therapeutic applications of lncRNAs have been
reported. The prognosis of SICD in general is poor, and this
is in part due to the lack of therapeutic targets. The critical
roles of lncRNAs in SICD make them promising targets for
novel therapeutic interventions, and the base-pairing principle
is much more straightforward than designing a specific protein-
binding inhibitor. Multiple different approaches can be used
in perturbing specific lncRNAs, including RNA interference
(RNAi), antisense oligonucleotides (ASOs), clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas, CRISPR-
Display, and the λN –Gal4 system.

Some lncRNAs, which regulate transcriptional outputs in
cis, do not function in exogenous overexpression studies.
Therefore, the λN –Gal4 system has been used to overcome
this constraint by enhancing the overexpression of lncRNA in
cis (150, 151). As duplex RNAs that have to be loaded into
AGO2 protein to form an RNA-induced silencing complex
(RISC) and interact with target lncRNA, RNAi is a reliable
approach for targeting lncRNAs in the cytoplasm and inhibiting
gene expression (152). Compared with RNAi, ASOs, as single-
stranded DNAs, are more reliable gene silencing agents than
duplex RNAs for the RNAs that are localized to cell nuclei
(153, 154). ASOs with appropriate modifications have become
readily available (155) and newer generation ASOs allow spatial
control of target delivery (156). However, unlike RNAi (42,
53), no study to date has reported the application of ASOs
in SICD. With higher efficiency, specificity, and the ability to
modulate gene expression (157), the CRISPR/Cas method has
dominated in recent years (158, 159) and CRISPR Display,
which allows the insertion of RNA domains into DNA loci,
was specially developed to modulate the expression of lncRNAs
(160). Except for cell and animal models, ASOs and RNAi
have already been applied in clinical trials for treatment of
HBV (161).
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CONCLUSION

Sepsis-induced cardiac dysfunction is challenged by a lack of
uniformity in its definition of incidence, prognosis, and clinical
importance. Two other core problems are whether cardiac
dysfunction definitely contributes to poor outcome or prognosis,
or is simply a reflection of organ failure in general, and the
degree to which sepsis-induced cardiac dysfunction is adaptive
or pathological (4). Construction of an ideal SICD animal
model is difficult and existing research on this condition has
only utilized sepsis models to investigate cardiac dysfunction,
which partly accounts for the ambiguous mechanisms of SICD.
The development and widespread use of GWAS and RNA-
Seq has facilitated more discoveries and deeper understanding
of lncRNAs, which in turn has helped exploration of SICD
regulatory circuits and molecular mechanisms to make a
comprehensive and clear definition of this condition, rather than
it simply being based on observation of clinical patients.

Several limitations and challenges need to be solved before
lncRNAs can reach clinical application. A primary concern is
how to specifically target certain tissues or cell populations. As
previously mentioned, nearly all identified lncRNAs in SICD or
sepsis exhibit functions in other organisms or display multiple
mechanisms of action. Second, it is well-established that unlike
protein-coding genes, the majority of human long non-coding
RNAs (lncRNAs) are considered non-conserved, suggesting
variable evolutionary pressure between mRNA and lncRNAs
(162). LncRNA conservation includes four dimensions: the
sequence, structure, function, and expression from syntenic loci
(163). However, several lncRNAs, such asHOTAIR (164) andXist
(165), exhibit clear functional roles in variousmammalian species
with poor sequence conservation (166). This phenomenon may
be due to conserved secondary structures that do not alter with
mutations in the sequence outside of structural regions (167,
168). Lnc-H19 and MALAT1 has been proved to be promising
targets for cancer therapy (169, 170). Most of published studies
of homolog lncRNAs were related to cancers, and now, more

than forty clinical trials associated with lncRNA, including a
study of lnc-NBR2 in sepsis, are in process in clinicaltrials.gov.
Moreover, owing to unique secondary structure, circRNAs resist
degradation by exoribonucleases, resulting in more abundant
expression. Long-read sequencing technologies promise to
improve current annotations and provide a novel perspective to
locate homologs in human (171). However, secondary structures
are more difficult to intervene in by conventional means than
sequence mutation based on existing knowledge and technology.
This leads to difficulties in constructing lncRNA knockout animal
models. In addition, Joung et al. (172) reported that ∼50% of
lncRNAs influence the expression of neighboring protein-coding
genes and many lncRNAs overlap with protein-coding genes,
making it difficult to specifically knockout a lncRNA without
affecting neighboring genes. RNA modification, especially m6A
modification, also influences lncRNA function, for example in
the case of m6A of Xist (173). Furthermore, the finding that
micropeptides are encoded by lncRNAs (174) means research
on lncRNAs has become more complicated and confusing.
Overall, lncRNA of SICD is a promising field and remains
largely undiscovered.
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