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Ischemic heart disease remains one of the leading causes of death worldwide.

Despite intensive research on the treatment of acute myocardial infarction, no effective

therapy has shown clinical success. Therefore, novel therapeutic strategies are required

to protect the heart from reperfusion injury. Interestingly, despite physical inactivity

during hibernation, brown bears (Ursus arctos) cope with cardiovascular physiological

conditions that would be detrimental to humans. We hypothesized that bear serummight

contain circulating factors that could provide protection against cell injury. In this study,

we sought to determine whether addition of bear serum might improve cardiomyocyte

survival following hypoxia–reoxygenation. Isolated mouse cardiomyocytes underwent

45min of hypoxia followed by reoxygenation. At the onset of reoxygenation, cells received

fetal bovine serum (FBS; positive control), summer (SBS) or winter bear serum (WBS), or

adult serums of other species, as indicated. After 2 h of reoxygenation, propidium iodide

staining was used to evaluate cell viability by flow cytometry. Whereas, 0.5% SBS tended

to decrease reperfusion injury, 0.5% WBS significantly reduced cell death, averaging

74.04 ± 7.06% vs. 79.20 ± 6.53% in the FBS group. This cardioprotective effect was

lost at 0.1%, became toxic above 5%, and was specific to the bear. Our results showed

that bear serum exerts a therapeutic effect with an efficacy threshold, an optimal dose,

and a toxic effect on cardiomyocyte viability after hypoxia–reoxygenation. Therefore, the

bear serum may be a potential source for identifying new therapeutic molecules to fight

against myocardial reperfusion injury and cell death in general.
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INTRODUCTION

Despite significant advances in the ability to reperfuse ischemic
myocardium and save heart tissue from reperfusion injury,
ischemic heart disease remains one of the leading causes of death

worldwide. Many therapeutic strategies have been studied, in
particular methods of maintaining post-ischemic cell survival,
the so-called cardioprotective interventions. However, although

much has been learned about the methods and mechanisms
of cardioprotection, no effective therapy has shown success in
clinical translation.

Over the last decade of research in this area, most

cardioprotective strategies have been designed to either target
and inhibit a crucial cell death pathway or to activate
a specific endogenous cardioprotective pathway (1, 2). We
believe that the best strategy to improve both survival
and quality of life in patients suffering from myocardial
infarction is to minimize myocardial death that occurs due to
reperfusion injury. It is also becoming clear that in addition
to cardiomyocytes, cardioprotection should also target other
cardiac or circulating cell types, and blood-cell-free circulating
factors including globulins, micro-RNA, cytokines, receptors
and adhesion molecules, which may provide direct or paracrine
benefits. As such, there is a need to discover and investigate novel
therapeutic targets for cardioprotection.

Many species of mammals, birds, and reptiles have evolved
a strategy of reduced metabolic rate and energy conservation
for prolonged periods by hibernating. During 4–6 months of
hibernation, bears (Ursus spp.) do not eat, drink, or urinate;
and they show minimal activity, yet they appear to retain
normal organ function. Moreover, hibernating bears differ
from hibernating rodents in that they maintain a higher body
temperature [33–35◦C (3) vs.<10◦C], and they are reported to be
shallow hibernators (4); however, they do not periodically arouse
during the entire duration of their hibernation period. Such
characteristics therefore make hibernating bears good models in
a biomedical context.

To conserve energy during hibernation, the bear’s oxygen
demand is reduced to∼25% of the active state (5). Cardiovascular
adaptations must occur for the myocardium to remain healthy
and efficient during a period of extremely low heart rates and
cardiac output (5–7). The cardiac adaptations during hibernation
are characterized by a profound bradycardia with extreme
respiration sinus arrhythmia and a preserved left ventricular
ejection fraction, associated with a decrease in left ventricle
mass/volume ratio indicating some degree of cardiac remodeling
to adapt to the altered hemodynamic state (8–10). Interestingly,
when they emerge from their dens in the spring, bears are free
from cardiovascular diseases (11, 12), kidney failure (13–15),
sarcopenia (16–18), osteoporosis (19, 20), and other deleterious
conditions (21, 22). The contrast with physically inactive humans
could not be greater (23–29).

Thus, the hibernation phenomenon is more than biologically
interesting because understanding how organs cope with the
stresses of hibernation could have direct clinical relevance (30)
and especially for cardiovascular disease, such as myocardial
infarction. Although we cannot rule out the possible role

of parasympathetic and sympathetic nervous systems in the
regulation of the cardiac function in bears entering or coming
out of hibernation (3, 8), it is likely that circulating compounds
may contribute to cardioprotection in vivo. Indeed, many blood
components have already been proposed to be involved in a
humoral mechanism of cardioprotection (31). Moreover, this
hypothesis is reinforced by our recent demonstration that
hibernating bear serum contains circulating components that can
inhibit protein catabolism in cultured human muscle cells, with
myosin accumulation in myotubes (32). Therefore, as a way to
validate if hibernating bear serum actually contains circulating
factors that could provide protection against cell death during
hypoxia–reoxygenation (HR) injury, the objective of the present
study was to evaluate the effectiveness of an acute treatment with
bear serum at reoxygenation on the viability of post-ischemic
primary mouse cardiomyocytes.

In this study, cardiomyocytes isolated from adult mice
were exposed to HR sequence with brown bear (Ursus arctos)
serum collected in winter and summer periods (WBS and SBS,
respectively); and the therapeutic index of bear serum treatment
was evaluated by flow cytometry. Our results showed that the
addition of WBS was protective against reperfusion injury at
the optimal dose of 0.5%. This effect was lost when the dose
was reduced to 0.1% and became toxic above 5% of bear serum
addition. Importantly, our results highlight that this profile effect
seems to be specific to the serum from bear species.

Our study suggests that bear serum seems to be a potential
source for identifying new therapeutic molecules to fight against
human myocardial reperfusion injury and cell death in general.

MATERIALS AND METHODS

Bear Serum
During the winters and summers of 2016 and 2019, blood
samples were collected from the jugular vein of anesthetized
free-ranging subadult (2- to 3-year-old) brown bears (nine
females and four males) within 20min after darting, as described
previously (32, 33). Serum samples were prepared (3,000 g,
20min) within 1 h after sampling and then stored at−80◦C until
the experiment. Both summer and winter mixes were obtained by
pooling the same volume of serum for all bears [see ref. (32)].

Hypoxia–Reoxygenation Model
As previously described (34, 35), adult cardiomyocytes were
isolated from 8- to 12-week-old C57Bl/6J male and female mice
(Charles River, L’Arbresle, France). Rod-shaped calcium-tolerant
mouse cardiomyocytes were then subjected to a suspension-
simulated hypoxia in a controlled hypoxic chamber (Eppendorf
Galaxy 48R; Eppendorf, Hamburg, Germany), induced by
nitrogen flushing up to 1% partial O2 pressure for 45min, in 1ml
of a Tyrode solution (140mM of NaCl, 5mM of KCl, 10mM of
HEPES, 1mM of MgCl2, and 1.8mM of CaCl2 at pH 7.4 at 37◦C)
(36). Reoxygenation was induced at 37◦C by the addition of 1ml
of normal culture medium [MEM #21575022 Gibco R©, 10% fetal
bovine serum (FBS), 10mM of BDM, 100 U/ml of penicillin,
2mM of glutamine, and 2mM of ATP] supplemented with
different serum concentrations. Control groups consisted of cell
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suspensions without hypoxic stress in a normal culture medium
supplemented with different concentrations of each serum.

Cell Death by Flow Cytometry
At the end of the HR protocol, cardiomyocytes were collected
for flow cytometry analysis. Propidium iodide (PI; P4864 Sigma-
Aldrich, St. Louis, MO, USA), a cell viability probe, was
added extemporaneously before acquisition at 1µg/ml. Flow
cytometry experiments were conducted blindly using Fortessa X-
20 (BD Biosciences, San Jose, CA, USA). In total, 1,000 events
were acquired per tube. PI was excited at 561 nm, and the
emission band-pass filter was collected at 620 nm. Cell death was
represented by the percentage of positive cells for PI staining.

Statistical Analysis
The data were analyzed with DIVA Software (BD Biosciences)
and were quantified and expressed as mean ± SD, where
indicated. Differences in means among multiple groups were
analyzed using a two-way ANOVA followed by a Tukey’s post-
hoc test (two variables: experimental groups and experimental
days). Statistical significance was set to a threshold of p ≤

0.05. No data/animals were excluded from the study. Statistics
were computed using GraphPad Prism 6.1 software (GraphPad
Software, San Diego, CA, USA).

RESULTS

Hypoxic Cardiomyocytes Treated With
Bear Serum Exhibit Reduced Cell Death at
Reoxygenation
To determine whether bear serum might provide beneficial
effects against reperfusion injury, we first mimicked the bear
serum dose published by Chanon et al. (32). As shown in
Figure 1A, control and hypoxic groups were supplemented at
the onset of the reperfusion period with 5% of bear or FBS.
Our results showed that, in control groups, the addition of 5%
bear serum significantly increased cell death averaging 87.31 ±

11.31% and 75.23± 17.76% in SBS andWBS groups, respectively,
as compared with 40.29 ± 5.77% in the FBS group (p < 0.05;
Figure 1B). After HR, whereas cell death increased up to 76
± 5.46% in the FBS group, most cardiomyocytes were dead in
both SBS and WBS groups, reaching 95.50 ± 5.23% and 92.76
± 9.01%, respectively. These surprising results suggest that bear
serum treatment seems to be toxic for adult cardiomyocytes at a
dose of 5%. Next, we chose to establish the dose–response effects
of bear serum by reducing its concentration at reperfusion up
to 0.1%.

Interestingly, at a dose of 2.5%, the toxicity of bear
serum disappeared in control groups averaging 40.40 ±

4.9%, 42.91 ± 7.02%, and 39.90 ± 6.50% cell death in
FBS, SBS (p = 0.958), and WBS (p > 0.999) groups,
respectively (Figure 1C). However, after HR, although the
cell death was not different between the WBS and FBS
groups, averaging 84 ± 66% and 77.42% respectively, the
addition of 2.5% of SBS still remained toxic, with a cell

death averaging 88.96 ± 12.48% as compared with the FBS
group (Figure 1C).

Our results showed that the addition of 1% bear serum
provided no additional effect on cell death, neither in control
groups, averaging 38.87 ± 4.17% in SBS (p = 0.97) and 40.48 ±

5.58% inWBS (p= 0.98) groups, nor in HR groups, averaging 74
± 8.14% (p= 0.64) and 78.6.20% (p= 0.71), respectively, vs. FBS
(Figure 1D). This suggests no advantage or disadvantage of bear
serum treatment to the fate of cardiomyocytes in controls or after
HR at this dose.

Treatment of control groups with 0.5% bear serum did not
modify cell death, with 40 ± 5.56% in SBS group and 39.03
± 4.68% in WBS vs. 40 ± 5.81% in the FBS group (p = ns;
Figure 1E). On the other hand, whereas SBS tended to decrease
cell death after HR (p = 0.09 vs. FBS), a treatment of 0.5% of
WBS at reoxygenation significantly reduced cell death, averaging
74.04 ± 7.06% vs. 79.20 ± 6.53% in the FBS group (p < 0.05;
Figure 1D). To rule out a possible imbalance in the protein
content between summer and winter serums, we measured
the total protein content of each serum mix. As reported in
Supplementary Table 1, the total protein content was similar
in each bear serum mix ranging from 15.95 ± 1.02 to 18.13
± 1.29 mg/ml (p = ns). Bear serum collected during summer
may nevertheless contain substances in concentrations that may
provide protection against cell death and that this phenomenon
is amplified with the serum collected in hibernating bears. By
continuing to reduce the bear serum dose to 0.1%, our results
showed no effect on survival of control cardiomyocytes, with
death rates ranging from 36.97 ± 6.08% to 38.95 ± 7.60%
(Figure 1F). The potential cardioprotective effect of bear serum
was lost after HR with death rates of 77.54 ± 2.98% in the SBS
group, 77.38 ± 6.68% in the WBS group, and 77.94 ± 5.98% in
the FBS group (p > 0.99; Figure 1F).

Altogether, these results suggest that the efficiency of
the bear serum against cell death was dependent on both
the dose and the phenotype of sampled bears. Thus, our
results highlight a potential cardioprotective role of WBS
at 0.5%.

The Therapeutic Effect of Serum Treatment
on Cardiomyocyte Viability Is Specific of
the Serum From Ursid Species
According to the literature, including cardiomyocyte isolation
and maintenance (35, 36), FBS is the most used serum in
cell culture. To check whether the serum from other animal
species could exert the same effects, we repeated the previous
experimental protocol with the addition of two different species
of adult serum from horse (#H1138, Sigma) and rabbit (#R4505,
Sigma). Similar to the bear samples, horse and rabbit adult
serums were not decomplemented. Our results showed that the
addition of horse or rabbit serum (5, 2.5, 1, 0.5, and 0.1%)
did not influence cardiomyocyte viability in control conditions
(Figure 2). Moreover, it is interesting to note that the absence of
FBS also did not affect cell viability in control group averaging
34.09 ± 4.10%, ruling out the possibility that specific growth
factors from the serum of subadult bears are involved in the
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FIGURE 1 | Dose–response effects of bear serum treatment on cardiomyocyte viability: (A) Experimental design. Isolated mouse cardiomyocytes underwent 45-min

hypoxia followed by 2-h reoxygenation. At the onset of reoxygenation, normoxic and hypoxic cardiomyocytes received serum concentrations as indicated. The

percentage of cell death was measured in both normoxic (CTRL) and hypoxic (HR) cells treated with (B) 5%, (C) 2.5%, (D) 1%, (E) 0.5%, and (F) 0.1% of fetal bovine

serum (FBS), summer bear serum (SBS), and winter bear serum (WBS). Mean of propidium iodide (PI) positive cells ± SD, n = 9–10 different experimental days with

1,000 events/assay (*p < 0.05). Differences in means among multiple groups were analyzed using two-way ANOVA with a Tukey’s post-hoc test (ns: non significant).

observed effects. Altogether, these results show that, as was the
case of fetal serum, the addition of adult horse or rabbit serum
did not influence cell viability in our experimental conditions.
Although HR stress significantly increased cell death in each HR
groups (p < 0.05 vs. respecting control group), the addition of

different concentrations of adult serums from horse and rabbit
did not influence cell death rate (p = ns vs. HR FBS groups)
(Figure 2). Altogether, these results suggested that the presence
of horse or rabbit adult serum in the reoxygenation medium had
no impact on the viability of cardiomyocytes after HR. Their use
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FIGURE 2 | Dose–response effects of adult serum treatment on cardiomyocyte viability: percentage of cell death measured in both normoxic (CTRL) and hypoxic (HR)

cells treated with (A) 5%, (B) 2.5%, (C) 1%, (D) 0.5%, and (E) 0.1% of fetal bovine serum (FBS), horse serum (HS), and/or rabbit serum (RS). Mean of propidium

iodide (PI) positive cells ± SD, n = 9 different experimental days with 1,000 events/assay. Differences in means among multiple groups were analyzed using two-way

ANOVA with a Tukey’s post-hoc test (ns: non significant).

does not seem more advantageous than that of FBS. Moreover,
without any dose–effect relationship of horse and rabbit adult
serum on cell viability, our results did not show any threshold,
toxic, or efficient effect on cell death. These results reinforced
the conclusion that the efficacy profile we have observed in the
presence of bear serum is specific to ursid species.

DISCUSSION

In this study, we described that bear serum presented a
therapeutic profile from an efficacy threshold to a toxic
effect on cardiomyocyte viability after HR. Although 0.5%
SBS tended to decrease reperfusion injury, 0.5% WBS
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significantly reduced cell death after HR. This cardioprotective
effect was lost at 0.1% and became adverse at 5%, which
suggests a therapeutic window between 0.1 and 1% of
bear serum. Moreover, our results demonstrated that
this therapeutic profile was specific to the serum from
brown bears, in contrast to horse or rabbit serum. As a
new approach to overcome the lack of efficient treatment
in clinical cardioprotection, our results suggest that
hibernating bear serum might be a source for identifying
new cardioprotective molecules.

Accordingly, these data reinforce previous research showing
that treatment with serum could provide beneficial effects
against some pathologies (37, 38). Indeed, it has been
demonstrated that treatment of cells with serum from
patients with myocardial infarction prevents inflammation
in cardiomyocytes, thereby protecting healthy tissue (37).
Others have demonstrated that human serum albumin
treatment reduces ischemia–reperfusion injury in skeletal
muscle in a rabbit model (38). Altogether, our results
add to this that bear serum might contain molecules
that confer cardioprotection against cell death during
reperfusion injury.

Our data further demonstrated that, although SBS and
WBS seem to induce similar responses to cardiomyocyte
viability, WBS was more favorable than SBS. Indeed, when
mimicking experimental protocols from our group on human
myotubes, we were surprised to measure a toxic effect
with 5% bear serum treatment, but it is worth noticing
that the toxic effect was always lower in the hibernating
serum, compared with the summer serum. According to
the literature (39–45), the potential cytotoxicity of serum
for in vitro cells culture involves mainly the activation
of the complement, and several hormones and inhibitory
growth factors, as well as the toxic effects of polyamines,
exosomes, and potential molecules that cause oxidative stress
and stimulate pro-inflammatory cytokine release known to
trigger apoptosis. We cannot also exclude that high serum
concentration may affect cell metabolism in our model.
Such mechanisms remain to be investigated in depth in
the future.

On the other hand, both serums tended to reduce cell death
at reperfusion, but only WBS provided a significant reduction
of 6% of cell death, compared with FBS positive controls. We
are aware that this decrease is modest, but it is an encouraging
result for the development of a new cardioprotection strategy.
Moreover, it remains to be determined whether the promising
effects that were observed may be affected by the anesthetic
agents used to immobilize the bears. Now, we must optimize the
protocol and the analysis to decipher the optimal dose between
0.1 and 1% serum treatment, the optimized temperature (because
hibernating body bear temperature is reduced to 33–35◦C), and
to decipher which active molecules are similarly present in SBS
and WBS and which molecules are not active to explain the
efficacy gap between the seasons.

Several reports, including those of Kim et al. (46), provided
the evidence that the composition of serum itself could influence
myocardial mRNA, which may provide beneficial or deleterious

effects in ischemia–reperfusion models. Among the circulating
components that are known to show seasonal regulation in
bears (47), fatty acids, whose composition are changed due
to prolonged fasting, could play a role (32). Moreover, as
described by Zolla (48), future studies are required to identify
the therapeutic small molecules that confer cardioprotection via
bear serum treatment. Finally, it is worth to notice that this novel
therapeutic strategy was specific to the serum of Ursidae family
origin, since supplementation with adult horse or rabbit serums
did not impact cell viability as compared with respective controls.

CONCLUSION

Our results demonstrate that although active molecules have
not yet been identified, bear serum and more especially,
hibernating bear serum provide specific cardioprotection
against reperfusion injury. Our demonstration of the protective
effect of serum molecules coming from hibernating animals in
non-hibernating animals opens a new therapeutic avenue for
identifying cardioprotective molecules with future applications
in humans.
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