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A pathophysiological consequence of both type 1 and 2 diabetes is remodelling of the

myocardium leading to the loss of left ventricular pump function and ultimately heart

failure (HF). Abnormal cardiac bioenergetics associated with mitochondrial dysfunction

occurs in the early stages of HF. Key factors influencing mitochondrial function are

the shape, size and organisation of mitochondria within cardiomyocytes, with reports

identifying small, fragmented mitochondria in the myocardium of diabetic patients.

Cardiac mitochondria are now known to be dynamic organelles (with various functions

beyond energy production); however, the mechanisms that underpin their dynamism

are complex and links to motility are yet to be fully understood, particularly within

the context of HF. This review will consider how the outer mitochondrial membrane

protein Miro1 (Rhot1) mediates mitochondrial movement alongmicrotubules via crosstalk

with kinesin motors and explore the evidence for molecular level changes in the

setting of diabetic cardiomyopathy. As HF and diabetes are recognised inflammatory

conditions, with reports of enhanced activation of the NLRP3 inflammasome, we will also

consider evidence linking microtubule organisation, inflammation and the association to

mitochondrial motility. Diabetes is a global pandemic but with limited treatment options

for diabetic cardiomyopathy, therefore we also discuss potential therapeutic approaches

to target the mitochondrial-microtubule-inflammatory axis.

Keywords: diabetic cardiomyopathy, heart failure, Miro1, microtubules, HDAC6, NLRP3, mitochondrial

dysfunction, mitochondrial movement

INTRODUCTION

Diabetic Mellitus (DM) remains a global epidemic, with an estimated 463 million cases worldwide
in 2019, and is associated with marked morbidity and mortality rates (1). Diabetes is a major
risk factor for heart failure (HF), with a three-fold higher prevalence for developing coronary
artery disease, CAD (2, 3). Although, approximately 50 years ago, it was revealed that myocardial
remodelling and dysfunction can also occur in diabetic patients in the absence of CAD, a condition
termed diabetic cardiomyopathy (DCM) which commonly advances to HF (4, 5). Recently it has
emerged that in addition to HF with reduced ejection fraction (HFrEF) roughly half of all HF cases
can be classified as HF with preserved ejection fraction (HFpEF), which is less well-understood
in comparison. Further, treatments developed to manage HFrEF have limited efficacy in HFpEF
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patients; highlighting the need for a more detailed understanding
of the disease mechanisms. Significantly, over a third of patients
withHFpEF have type 2 diabetes (6, 7) indicating that the diabetic
insult leads, at least initially, to the development of a distinct
myocardial phenotype.

Mitochondrial dysfunction is a hallmark of HF (8) and
more recently identified as a feature of HFpEF (9) and DCM
(10). While mitochondrial dysfunction is a broad term a
recurring feature of HF both in the presence and absence
of diabetes, is morphological remodelling of mitochondria,
with reports of both swelling and fragmentation [for a review
see (11)]. Mitochondrial size, shape and distribution (factors
dictating function) are regulated by mechanisms grouped
under the umbrella term “mitochondrial dynamics,” which also
encompasses mitochondrial turnover, mitophagy and biogenesis,
as reviewed by (12). Mitochondrial movement, although less
well-studied, particularly in the heart, is driven by the outer
mitochondrial membrane protein Miro1 (also termed RHOT1)
and is also believed to be important for regulating and
maintaining a healthy mitochondrial network (13).

DCM is a chronic low grade inflammatory condition, with
inflammation associated with the pathogenesis of HF and linked
to the development of mitochondrial dysfunction [as reviewed
recently (14)]. Kaludercic and Di Lisa (15) provided an overview
of a number of studies indicating that excessive ROS production
due to mitochondrial dysfunction is a causative agent of
increased expression and activity of the inflammasome, NLRP3.
NLRP3 is a multimeric complex formed from NOD-like receptor
3, the apoptosis-associated speck-like protein containing (ASC)
adaptor protein, and caspase-1, (16, 17). Although, details are
somewhat sparse (and not within the setting of the heart or
DCM) an association between proteins mediating mitochondrial
dynamics and NLRP3 inflammasome assembly is also emerging
(18, 19).

This review will summarise evidence for the emerging role
of dysregulated mitochondrial movement in HF/DCM, the
intersection with aberrant mitochondrial dynamics and NLRP3
activity focusing on the involvement of Miro1; as well as
considering the putative mechanisms involved.

MITOCHONDRIAL DYNAMICS IN
CARDIOVASCULAR HEALTH AND DISEASE

Previously perceived as “static” organelles within
cardiomyocytes, mitochondria are now known to be highly
dynamic undergoing restructuring via an equilibrium of fission
and fusion (12). In brief, fission, mediated by the GTPase
dynamin-related protein 1 (Drp1) and receptors Mitochondrial
fission 1 protein (Fis1), Mitochondrial fission factor (MFF),
and MiD49/51, leads to the division of a single mitochondrion
into two, allowing removal of damaged mitochondria from
the network. Whereas fusion, is the amalgamation of two
mitochondria into one larger mitochondrion orchestrated
by the outer mitochondrial membrane (OMM) proteins
Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2). Fusion of the inner
mitochondrial membrane (IMM) next occurs and is regulated by
Optic atrophy 1 (Opa1).

The dynamic nature of mitochondria underpins
mitochondrial quality control that is, mitochondrial biogenesis
(replacement with healthy mitochondria), maintenance
and degradation (mitophagy). Over time mitochondria can
accumulate damage as a result of multiple mutations in nuclear-
encoded mitochondrial genes or oxidative damage via ROS
formation as a by-product of OXPHOS. In brief, mitophagy,
the removal of damaged mitochondria, is regulated by PTEN-
induced kinase protein 1 (PINK1) which upon activation (via
phosphorylation) recruits cytosolic Parkin (20, 21). Parkin
selectively phospho-ubiquitinates the OMM proteins (including
Mfn1/2) and facilitates the selective binding and extension
of autophagosomes around damaged mitochondria, although
details of the exact mechanisms involved remain incomplete (22).

Recently another method of “fusion” has been identified in
cardiomyocytes via the formation of tubular protrusions known
as nanotunnels, visualised by live-cell confocal imaging and
electron microscopy (23, 24). Nanotunnels serve as a form of
direct intercommunication between cardiac mitochondria over
micron distances, which allows the exchange of matrix contents
between non-adjacent mitochondria. Whether the frequency of
nanotunnels is correlated to cell stress is not yet clear, although
links to an imbalance in Ca2+ cycling has been implicated (25).

There is a plethora of studies, both clinical and preclinical,
identifying decreased expression of fusion proteins and increased
levels of fission proteins in the context of cardiovascular disease
(26). For example, depressed levels of Mfn1/2 are a feature
of human and rodent hearts with impaired contractility and
mitochondrial dysfunction (27, 28). Ablation of Mfn1 and
Mfn2 results in dilated cardiomyopathy, impaired mitochondrial
respiration and mitochondrial fragmentation (29). Opa1 is
also depressed in HF patients (30). Whereas, increased
fission, fragmented mitochondria and cell death associated
with Drp1 expression has been reported as a feature of HF
(31). Consequently, research has focused upon developing
pharmacological inhibitors of Drp1, for example, treatment of
HL-1 cardiomyocytes with mitochondrial division inhibitor-1 is
shown to be cardioprotective against ischemia/reperfusion injury
(32). However, the Janus nature of Drp1-mediated pathways
should not be ignored as in some conditions promotion of
these pathways can be cardioprotective (33). Similarly, reduced
levels of PINK1 and Parkin in the heart are also associated
with ventricular hypertrophy, mitochondrial swelling (34) and
disorganised mitochondria (35). Andres et al. (36) also reported
how simvastatin provides cardioprotection by triggering Parkin-
dependent mitophagy. A balance between mitochondrial fusion,
fission and mitophagy is crucial for maintaining a healthy
population of mitochondria.

MIRO1 PLAYS A CENTRAL ROLE
GOVERNING MITOCHONDRIAL
MOVEMENT

While Mfn1, Mfn2, Opa1 and Drp1 (and receptors) are essential
for regulating mitochondrial size and shape, important for
mitochondrial “quality control,” the movement of mitochondria
within the cell is also a crucial factor with distribution
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tightly linked to cellular energy requirements. An elegant
study from Bers and colleagues not only captured, using live
imaging, fusion and fission events within cardiomyocytes but
also tracked mitochondrial movement (37). Interestingly, the
study showed that over a 1 h period the net movement of
mitochondria between the sarcomeres (interfibrillar, IFM) was
<0.3µm compared to those adjacent to the nucleus (peri-
nuclear, PNM) which traversed 2.8µm; this difference in motility
may be due to the IFM being more spatially restricted by the
sarcomeric organisation.

Miro1 localised to the OMM, has been firmly established
in neurons as central for regulating mitochondrial movement
in response to temporal and spatial metabolic demands (13),
with impaired mitochondrial trafficking associated with several
neurodegenerative diseases (38). Miro1 is also highly expressed
in the heart (39) and although less well-studied, knock-down
of Miro1 in H9c2 cardiomyoblasts revealed a similar effect
upon mitochondrial movement in a Ca2+ dependent manner
(40). Interestingly, studies exploring mitochondrial transfer via
transplantation of human induced pluripotent mesenchymal
stem cells (iPSC-MSCs) for tissue regeneration in models of
anthracycline-induced cardiomyopathy identify the intrinsically
high Miro1 content of iPSC-MSCs as essential for facilitating
mitochondrial relocation and improved cardiac bioenergetics
(41). In contrast, a recent study suggested that knockdown of
Miro1 in cultured neonatal cardiomyocytes (NRCMs) could be
protective against phenylephrine-induced hypertrophy through
attenuating mitochondrial fission (42). Whilst different cardiac
pathologies likely require different approaches in terms of
therapeutic targeting, NRCMs as a model system may not
always be directly translatable to the mature cardiomyocyte in
which mitochondria show a substrate preference for free fatty
acids rather than pyruvate (product of glycolysis); Dorn et al.
have proposed that after birth there is cell-wide replacement
with “adult” mitochondria (43). It is noteworthy that Miro1
is also decreased in pancreatic cells of patients with type 2
diabetes, with a mouse model of islet Miro1 ablation developing
insulin resistance, increased production of ROS, inflammation
and dysregulated mitophagy (44). Evidence, mainly from studies
of neuronal tissue (38), indicates that loss of Miro1 is a
decisive factor leading to “arrested” motility and linked to the
accumulation of damaged mitochondria.

A MIRO1-MACROMOLECULAR COMPLEX
MOBILISES MITOCHONDRIA ALONG
MICROTUBULES

Miro proteins bind to kinesin-1/KIF5 and Milton (also known
as trafficking kinesin-binding protein 1, TRAK1 or OIP106) (39);
interactions proposed to link mitochondria to the microtubule
trafficking apparatus (45, 46). Miro1 also directly interacts with
Mfn2 in neuronal cells, an association that is proposed as an
essential step mediating mitochondrial movement (47) as shown
in Figure 1; although, the molecular basis of this interaction
remains unknown as is whether this association occurs in
cardiomyocytes. Significantly, as discussed above, cardiac Mfn2

levels are reported to be down-regulated in models of DCM (48).
How the loss ofMfn2 (which presumably leads to reducedMiro1-
Mfn2 interactions) impacts mitochondrial movement and DCM
linked phenotypic changes has yet to be clarified.

Ca2+ binding to Miro1, via two EF-hands within the primary
sequence, elicits a conformational change, mediating the
association and dissociation of the Miro1-complex assembly
from the microtubules, MTs, (with detachment halting
mitochondrial motility). This process underpins mitochondrial
moment (Figure 1) (49). Aberrant Ca2+ homeostasis is a
hallmark of HF in patients (50) and associated with DCM (51).
Mitochondria play a central role in regulating cytosolic [Ca2+]
and maintaining the cellular redox status (52). Organisation
of mitochondria straddling either side of the dyad (formed by
t-tubules, specialised regions of the sarcolemma, and junctional
sarcoplasmic reticulum) is essential for Ca2+ uptake into the
mitochondria for driving bioenergetics (52, 53). While HF
is associated with displacement of mitochondria (54), how
impaired Ca2+ cycling influences mitochondrial movement
along microtubules has yet to be examined in detail. Importantly,
the Bers group have shown in isolated cardiomyocytes that
under stress conditions, causing mitochondrial damage, there is
migration of IFM (fission products) via MTs to the perinuclear
region where they undergo mitophagy (37).

MICROTUBULE ORGANISATION AND
CARDIOVASCULAR FUNCTION AND
DISEASE

The presence of MTs in cardiomyocytes has been known for
many years (55). MTs are formed by the polymerisation of
α/β-tubulin dimers assembling into rods roughly ∼ 25 nm
in diameter which can extend up to tens of microns in
length (56). Similar to mitochondria, MTs are organised into
spatially distinct populations; (i) interfibrillar (55), (ii) those
surrounding the nuclear envelope (57), and (iii) cortical MTs
perpendicular to myofibrils (58). These differing populations
of MTs are commonly believed to explain, in part, the diverse
physiological roles of MTs in cardiomyocytes, for example, ion
channel trafficking, mechanical signalling pathways fundamental
for cardiac contractility and inter-organelle communication, as
reviewed by Caporizzo et al. (59).

As also discussed in (59) there are numerous studies linking
changes to MT properties to the development and progression
of cardiovascular diseases. MT remodelling has been identified
as the source of increased mechanical stiffness occurring in the
early stages of diastolic dysfunction. Accordingly, there has been
interest in the use of reagents that depolymeriseMTs. Specifically,
post-translational modification (PTM) (detyrosination) of MTs
is associated with increased viscoelastic resistance in human
failing hearts (60). Stiffening of the myocardium due to MT
remodelling in the failing heart is also reported to displace
mitochondria adjacent to the sarcolemma (subsarcolemmal
mitochondria, SSM) triggering the propagation of abnormal
Ca2+ transients, leading to arrhythmogenesis (8). However,
since mitochondria have been demonstrated to provide a bridge

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 July 2021 | Volume 8 | Article 689101

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Kassab et al. Mitochondria-Microtubule-Inflammatory Axis and DCM

FIGURE 1 | Putative molecular mechanisms of mitochondrial movement. (A) In the absence of cytosolic Ca2+ (nM) Miro1 (bound to the outer mitochondrial

membrane) coordinates mitochondrial movement along microtubules via KIF5A, TRAK1 and Mfn2. According to literature Ca2+ binding leads to two possible

scenarios; (B) Conformational changes to Miro1, and subsequent detachment from Mfn2 and release of KIF5A from the microtubule trafficking apparatus, or (C)

Detachment of Miro1 from Mfn2 and a disruption between TRAK1 and KIF5A interactions. Both scenarios result in halted mitochondrial movement.

between calcium cycling (and contractility) andmechano-electric
and chemical MT-mediated inter-organelle tethering (61) the
impact of disrupting the MT network upon mitochondrial
motility and function needs further investigation.

PROTEIN POST-TRANSLATIONAL
MODIFICATIONS (PTMS) AND ROLE IN
MITOCHONDRIAL MOTILITY

In addition to Ca2+ homeostasis, regulatory mechanisms
mediating mitochondrial motility include the cellular redox

balance (62), as well PTMs of mitochondrial (63) and
MT proteins (64). Miro1 is also regulated by PTMs being
ubiquitinated after phosphorylation via PINK1, triggering
Parkin and proteasomal pathways leading to Miro1 degradation
(65). Given that the PINK1-Parkin pathway is activated in
response to depolarisation of the mitochondrial membrane
it is generally considered, in this context, that prevention
of mitochondrial movement through Miro1 phosphorylation-
degradation is important for preserving mitochondrial quality by
segregating those damaged mitochondria for removal from the
cell (66). How removal of damaged mitochondria is linked to
the transport of mitochondria viaMiro1 is not clear, particularly
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FIGURE 2 | Schematic overview of proposed mechanism of action of HDAC6

and associated deacetylation; linking mitochondrial motility, inflammation and

the putative involvement of post-translational modifications in DCM.

Inflammation/diabetic insult triggers HDAC6 activity which directly interacts

with NLRP3 via ubiquitin binding domains (although it is unknown whether this

activates/inactivates NLRP3 and inflammasome assembly in the heart). The

combination of microtubule (alpha-tubulin) destabilisation and reduced

acetylation (important for microtubule stability), contributes to disengagement

of the mitochondria from the microtubule apparatus and halts mitochondrial

movement. With mitochondrial motility linked to mitophagy, the removal of

damaged mitochondria (potentially ROS producing) is impaired, leading to

subsequent mitochondrial dysfunction, and oxidative stress further

exacerbating inflammation via NLRP3. Inhibition of HDAC6 activity is also

reported as cardioprotective.

within cardiomyocytes; although the Bers study (37) would
suggest that mitochondrial transport of IFM precedes mitophagy.
The relationship between mitophagy and Miro1 also appears to
be cell-type dependent with Miro1 loss-of-function mutations
preventing the induction of mitophagy in neurons (67) but
activating mitophagy in fibroblasts (68). Miro1 is also a substrate
of the class II histone deacetylase, HDAC6, with acetylation
of K105 (murine and rat) corresponding to K92 in human

Miro1, involving different lysine residues than those targeted
for ubiquitination, indicative of two different processes (69).
HDAC6 co-immunopreciptates with Miro1 supporting a direct
interaction between the two proteins. Importantly, Kalinski et al.
(69) also demonstrated that deactetylation of Miro1 leads to
stalled mitochondrial movement with detrimental effects upon
axon growth, with pharmacological inhibition or deletion of
HDAC6 protecting mitochondria against damage and abnormal
mitochondrial clustering.

Notably, one of the main components of MTs, α-tubulin,
is also an HDAC6 substrate. Acetylation is important for
MT stability, as well-inducing conformationally directed MT
organisation for the recruitment of kinesin motor proteins (70).
Inhibition of HDAC6 in hippocampal neurons is shown to
lead to higher levels of α-tubulin and enhanced mitochondrial
motility (71). While the role of MT acetylation remains to
be fully understood it is intriguing that HDAC6 separately
regulates both Miro1 and MT engagement and disengagement
and consequently mitochondrial motility.

Significantly, inhibition of HDAC6 activity is also reported
as cardioprotective (72) preventing the development of
hypertrophy and fibrosis (73). Further, in the context of DCM,
HDAC6 inhibition using tubastatin A (TBA) is shown to be
beneficial in a rat model of type 1 diabetes for improving
outcomes from ischaemia/reperfusion (I/R) injury (74).
Moreover, recently, pan-inhibitors of HDACs have been
proposed as novel treatments for treating HFpEF, preserving
cardiac function in a small animal model (rat) of hypertension
induced LV-dysfunction (75) and a larger animal (feline) model
of pressure overload (76).

Increased HDAC6 activity in the failing heart has been
known for the past decade (77) but a key question that
remains to be fully answered is how is HDAC6 activated?
Chen and colleagues demonstrated, using an atrial cell line
(HL-1), that mitochondrial dysfunction (impaired OXPHOS)
induced by treatment with TNF-α, could be rescued using an
inhibitor of HDAC6 (78) indicating a mechanistic link between
inflammation, mitochondrial function and HDAC6 activity.
Further, HDAC6 inhibition in SH-SY5Y cells (a model for
Parkinson’s disease) is reported to lead to reduced activation of
the inflammasome, NLRP3, inflammatory response concomitant
with attenuation of dopaminergic neuronal degeneration (79);
although the pathways involved were not described.

MICROTUBULES PLAY A CRITICAL ROLE
FOR NLRP3 ACTIVATION

Activation of NLRP3 modulates the release of inflammatory
cytokines, IL-1β and IL-18, cell death and fibrosis associated
with the pathogenesis of DCM (80). The acetylation of α-
tubulin, whilst linked to mitochondrial transport, is also shown
to play a role in the movement of NLRP3 inflammasome
components along microtubules leading to the subsequent
apposition of NLRP3 to mitochondrion-associated ASC
(81). Multiple studies have established the link between
microtubule dynamics and NLRP3 inflammasome activity, for
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example (82). Significantly NLRP3 activation is a feature of
several cardiac pathologies as reviewed in (83). For example,
colchicine (a microtubule polymerisation inhibitor) disrupts
microtubule/tubulin dynamics suppressing the activation of the
NLRP3 inflammasome. Animal models of myocardial infarction
treated with colchicine have improved cardiac performance,
improved survival rates and attenuated HF development and
inflammatory response (84).

Since the acetylation of α-tubulin/NLRP3 is under the control
of HDAC6 it is perhaps not surprising that beneficial effects
of using HDAC6 inhibitors in preventing IL-1β generation
have been demonstrated (85). Although, one macrophage study
concluded that HDAC6 is a negative regulator of NLRP3,
due to a direct interaction mediated by the ubiquitin binding
domains (86); with this mechanism suggested to mediate NLRP3
transport into aggresomes via the microtubule network. More
recently, Magupalli et al. also demonstrated in macrophages that
specific regions of MTs, the microtubule-organising centre (the
centrosome), are the sites for NLRP3 assembly and HDAC6
knockout (and loss of ubiquitin-binding) leads to impaired
inflammasome assembly and activation (87). Clearly, there is a
complex association between NLRP3 assembly, activation and
MTs, which may also be tissue/cell type specific.

An indirect link between Miro1 and NLRP3 has also been
identified in a rat pancreatic cells using high-fat and high
glucose stressors to mimic T2DM conditions (88). Specifically,
cells exhibited dysregulated Ca2+ homeostasis, which was
suggested to lead to the dissociation of Miro1 frommitochondria
and subsequent impaired mitochondrial movement, stalled
mitophagy and accumulation of damaged ROS producing
mitochondria that in turn triggered activation of NLRP3.

CONCLUDING REMARKS

Here we have highlighted evidence for the physio-pathological
role of Miro1-mediated movement of mitochondria along MTs

and while the majority of data is from the study of neurons

evidence is emerging to support a similar role for Miro1 in
the heart (40). Therefore, in addition to studies focussing upon
strategies to prevent fission (89, 90) an emerging area for
future studies is the delineation of the mechanisms surrounding
mitophagy, mitochondrial movement, and role of the Miro1-
macromolecular complex. For example, it remains unclear as to
whetherMiro1 expression and activity influences the processes of
fission and fusion and is essential for mitophagy in the heart.

Additionally, we have highlighted a potential link between
mitochondrial motility and inflammation and the involvement
of deacetylation and HDAC6 (Figure 2). Although technically
there remain significant challenges around studying PTMs (91)
a better understanding of the functional effects of PTMs on the
proteins underpinning mitochondrial motility will provide new
avenues for future research. In conclusion, this review article
summarises some of the current evidence, and areas where
knowledge is lacking, for mitochondrial motility in the heart,
and suggests a possible unifying mechanism linking impaired
mitophagy, the MT network and the inflammatory response to
arrested mitochondrial movement. As the causative agents and
mechanisms of mitochondrial dysfunction and impaired motility
are discovered, then new promising treatment therapies may
emerge for promoting better cardiac outcomes in DCM/HF.
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