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Cardiac remodeling occurs after the heart is exposed to stress, which is manifested

by pathological processes such as cardiomyocyte hypertrophy and apoptosis, dendritic

cells activation and cytokine secretion, proliferation and activation of fibroblasts, and

finally leads to heart failure. Circular RNAs (circRNAs) are recently recognized as a

specific type of non-coding RNAs that are expressed in different species, in different

stages of development, and in different pathological conditions. Growing evidences

have implicated that circRNAs play important regulatory roles in the pathogenesis

of a variety of cardiovascular diseases. In this review, we summarize the biological

origin, characteristics, functional classification of circRNAs and their regulatory functions

in cardiomyocytes, endothelial cells, fibroblasts, immune cells, and exosomes in the

pathogenesis of cardiac remodeling.

Keywords: cardiac remodeling, non-coding RNA, circular RNA, heart disease, gene regulation

INTRODUCTION

The heart is made up of a variety of cells, including cardiomyocytes and non-cardiomyocytes
(fibroblasts, smooth muscle cells, endothelial cells, and immune cells etc.,). These cells
communicate with each other in both physiological and pathological conditions through direct
cell-cell interaction and paracrine signaling. Fibroblasts, the major component of connective tissue,
produce the extracellular matrix (ECM) scaffold that organizes different cellular components
of the heart (1). Endothelial cells (ECs) are located on the inner surface of blood vessels
and lymphatics, controlling vasomotor tension and regulating angiogenesis (2, 3). Resident
and recruited immune cells regulate cardiac microenvironmental homeostasis and inflammation
during maladaptive remodeling (4). Pathological conditions, such as hypertension or myocardial
infarction (MI), induce maladaptive reactions in cardiomyocytes and non-cardiomyocytes, leading
to the deterioration of cardiac function and eventually heart failure. However, molecular and
cellular mechanisms of cardiac remodeling have not been fully understood.

Other than linear splicing, the sequence of primary transcripts from gene loci is also found to
be processed by back-splicing to generate circular RNAs (circRNAs). CircRNAs can be classified
as reverse spliced exons (5–7) or intron-derived RNAs (8, 9). Back-splicing is generally thought
as a rare event, although, mammalian circRNAs have been reported decades ago (7). The recent
deep sequencing data showed evidences that an unexpectedly large number of circRNAs are in fact
expressed (5, 6). And thousands of circRNAs have been identified from different cells and tissues
(10–13). More importantly, emerging evidences indicated that circRNAs regulate different cellular
behaviors, including proliferation, differentiation, apoptosis, and migration (12, 14).
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Early report demonstrated the altered expression of circRNAs
in human failing heart (15), indicating the participation of
circRNAs in the regulation of the pathogenesis of cardiac
diseases. Recent studies have further shown that circRNAs
are involved in a variety of cardiovascular diseases, including
cardiac remodeling, by regulating the pathophysiology of
cardiomyocytes, fibroblasts, endothelial cells, and immune
cells (16–19). However, the underlying mechanisms of
circRNAs’ regulatory functions are not fully understood. A
more comprehensive understanding of circRNAs will promote
the development of circRNA-based diagnosis and therapeutic
interventions in cardiovascular disease. In this review, we will
focus on the nature of circRNA and how these circular molecules
regulate the pathogenesis of cardiac remodeling.

THE IDENTIFICATION, PROCESSING, AND
CHARACTERIZATION OF CIRCRNAS

Identification of circRNA
In 1976, Sanger used the term “circRNA” for the first time to
describe viroids, which was his identification of a single stranded,
covalently closed RNA molecules that are infectious (20). Early
detection of circRNA was rare and its function was poorly
understood. They were believed as by-products of linear RNA
and thought as “junk RNA” (21). Three decades ago, circRNAs
were accidentally discovered in mammals (22, 23). More and
more circRNAs have recently been identified by taking the
advantage of the breakthrough of high-throughput sequencing,
and the biological functions of these emerging molecules have
been investigated and uncovered rapidly (6). circRNAs are
currently considered as a special type of non-coding RNAs,
although, some studies have suggested that circRNAs may have
protein-coding capability in vivo.

General Characteristics of circRNAs
Most circRNAs are exonic and have some important
characteristics: (I) CircRNAs are expressed in large quantities in
many species, from plants to mammals (5). Multiple circRNA
isoforms are often processed from a single host gene by selective
splicing. Notably, more than 100 circRNA isoforms of the
Ryanodine receptor 2 (RyR2) gene are expressed in human
hearts (24). (II) CircRNAs are usually expressed in a cell type-
and/or developmental stage-specific manner (6, 25, 26). The
expression profiles of circRNAs are different in four stages of
cardiac differentiation: undifferentiated stage, mesoderm stage,
cardiac progenitor cell stage, and final cardiomyocyte stage (26).
(III) CircRNAs are not easily degraded by RNA exonuclease
because of their covalently closed circular structure. CircRNAs
are more stable and have a longer half-lives than linear RNAs
(27, 28). These features of circRNAs make these molecules
potential candidates for disease diagnosis and prognosis
biomarkers, especially the presence of circRNAs in plasma.

Categorization of circRNA
CircRNAs can be divided into three subtypes according to the
mode of biogenesis: circRNA, Exon-intron circRNAs (EIciRNA),
and ciRNAs. Most circRNAs are derived from exons in linear

transcripts, lacking introns, and mainly present in the cytoplasm.
In contrast, ciRNAs lack exon sequences, are present in the
nucleus and have no obvious enrichment of miRNA binding sites
(8, 29). EIciRNA sequences contain exons and introns, which are
mainly located in the nucleus and form a protein-RNA complex
with U1 snRNP and Polymerase II to regulate the transcription
of their parent genes (30, 31). CircRNAs can also be classified
as intragenic circRNAs and intergenic circRNAs based on the
position of circRNA-originated locus in the genome.

Mechanisms of circRNA Formation
CircRNAs are produced by a unique splicing mechanism called
backsplicing (5, 32). Classical splicing events include a typical
donor (GU) at the 5 “end of the intron and an receptor (AG) at
the 3” end of the intron (33). The circRNAs are formed because
the splicing does not finish in the linear manner between intronic
donor splicing site next to an exon to the receptor splicing site
before the downstream exon, but to the receptor splicing site
before the upstream exon. This process produces a covalently
closed RNA molecule with or without exons. Three models
have been proposed for the formation of circRNAs: (I) intron
pairing-driven circularization, (II) RNA binding protein-driven
circularization, and (III) lariat-driven circularization (Figure 1).

Intron Pairing-Driven Circularization
Compared with linear splicing, the reverse complementary
sequences between introns bracketing circRNAs were
significantly more abundant (9). In intron-pairing-driven
circularization, cis-acting elements, hairpin structures, or
complementary sequences located in the flanking introns of
an exon are often used for direct base pairing (5, 9, 34). The
minimal intron region required for circRNA circularization
has been identified (35): even if the intron is <100 nucleotides
and contains a typical splicing site sequence and a short reverse
repeat sequence, it is sufficient for exon cyclization. This process
appears to be more complicated than canonical base pairing,
since not all reverse repeats lead to exon cyclization. It is worth
noting that multiple exon cyclization events can occur in one
gene locus, and exon cyclization efficiency can be modulated
by RNA pairing within flanking introns or by competition for
RNA pairing within a single intron (36). Alternative formation
of reverse repeats of introns, such as repeated ALU pairs,
and the competition between them often result in alternative
circularization, which leads to the occurrence of producing
multiple circRNA transcripts from a gene locus (36). However,
how base pairing between introns affects the assembly of the
spliceosome during back-splicing is still not fully understood
and warrants further investigation.

RBP-Driven Circularization
The protein-protein interaction between RNA binding proteins
(RBPs) makes the splicing sites of pre-mRNA come closer, which
further facilitates the spliceosome to participate in the back-
splicing reaction. Multiple RBPs have been shown to regulate
the generation of circRNAs. Both the RNA-binding motif protein
20 (RBM20) (37) and splicing factor muscleblind (MBL) (38)
were shown to increase the generation of circRNAs by binding
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FIGURE 1 | Mechanisms of circRNA formation.

to specific intron motifs. RBM20 was identified as an important
splicing factor in the heart with the function of regulating the
formation of circRNAs in TTN gene locus (37).

A further study suggested that the RBP-driven circularization
and the intron-pairing-driven circularization may work together
to regulate the formation of circRNAs (39). Intronic repeats
in flanking introns are believed to provide an opportunity for
RBM20 to facilitate the circularization event. After that, a subset
of proteins are recruited, which further regulate the formation
of circRNA by modulating the activity of spliceosomes. Each
gene locus may require a different set of protein factors for the
generation of multiple circRNAs.

Lariat-Driven Circularization
Interestingly, a circRNA can also be produced during linear
splicing by lariat-driven circularization, in which circRNAs
may be generated during exon-skipping events (40) or intron
removal in pre-mRNA splicing (8). TTN gene is an example
of generating circRNAs through exon-skipping events with
more than 80 circRNAs generated through this mechanism in
the heart (37). Lariat RNAs are the intermediate product of
splicing of pre-mRNA. Under normal circumstances, lariat RNAs

released in canonical splicing undergo debranching at the 2′-5′

phosphodiester bond, and are then degraded by exonucleases
(41). However, the specific structure of 7 nt GU-rich near
the 5′ splice site and 11 nt C-rich near the branching site of
lariats prevent the debranching event, and therefore, these RNA
molecules remain circular (8, 42). These type of circular RNAs
become mature after the 3′ tail of the lariat is degraded up to the
branching point (43).

THE REGULATORY MECHANISMS OF
CIRCRNAS

Accumulating data have shown that circRNAs exert their
regulatory function through the following mechanisms: (1)
functioning as miRNA sponges to sequester miRNAs and
de-repress their targets; (2) functioning as scaffolds to bind
RNA binding proteins and regulate the activity of downstream
signaling; (3) binding to snRNP and polymerase II to regulate
transcriptional activity; (4) functioning as competitors for
parental gene splicing and expression; (5) functioning as
templates for protein synthesis (Figure 2).
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FIGURE 2 | Molecular mechanisms of regulatory function of circRNAs.

MicroRNA Sponge
MiRNAs repress gene expression post-transcriptionally by
binding to the 3′ UTR of target mRNAs. CircRNAs have
been demonstrated to possess multiple miRNA binding sites
by both computational prediction and experimental assays. The
interaction between circRNA and miRNA leads to miRNA
retention and then lowering their bioactivity, which is referred to
the “sponge effect.” For example, a CDR1 locus-derived circRNA,
CDR1as, has 63 highly conserved miR-7 binding sites (6, 44).
Since no linear transcript of CDR1as were detected, the knockout
strategy is simple and the removal of DNA sequence for circRNA
from the genome will not affect the expression of any linear
transcript from the same DNA locus. The high expression level
of CDR1as and the presence of large amount miR-7 binding
sites per molecules makes the circRNA a competitive inhibitor
of endogenous miR-7.

Scaffold for Protein Interaction
Some circRNAs possess protein binding motifs. Therefore,
these circRNAs interact with selected proteins and regulate
their activity or localization. For example, the interaction
between circPABPN1 and HuR prevents HuR from binding to
PABPN1 mRNA and reduces its translation (45). In another
example, circMBL, a circRNA derived from MBL gene locus and
containing the conserved binding site of MBL, binds to MBL
and regulates the splicing of its own pre-mRNA (38). However,

computational analysis predicted that the density of RBP binding
sites is lower in circRNAs than in 3′ UTR regions of protein-
coding genes (46).

Transcriptional Regulation
Most circRNAs are presented in the cytoplasm and act as either
miRNA sponges or scaffolds. However, ciRNA and EIciRNA,
such as circEIF3J and circPAIP2, remain in the nucleus and
interact with U1 snRNA and RNA polymerase II complex to
enhance the transcriptional activity of their parent gene (31).
However, the underlying mechanism of the regulatory function
of EIciRNA remains unclear.

Competitors of Linear Splicing and Gene
Expression
The process of circRNA formation also affects the expression
of host gene. Some evidences indicated that circRNA formation
competes strongly with the linear splicing of pre-mRNA, and
therefore, regulates host gene expression (38, 47). For example,
an increase in linear splicing efficiency in Drosophila S2 cells led
to a decrease in circRNA expression (38). In another example, a
decrease in spliceosome components in drosophila cells resulted
in an increase in circRNA levels and a decrease in its associated
linear mRNA expression (47). Since linear- and back-splicing use
the same typical splicing receptor and donor, it is not surprising
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that the level of circRNAs is negatively associated with the level
of their linear mRNA isoforms.

Templates for Protein Synthesis
Although, circRNAs were first identified as non-coding RNAs,
some of these circular RNA molecules were found to have
the protein/peptide coding capability. Given that circRNAs
are mostly localized in the cytoplasm and contain protein-
coding exons, people wonder whether they can be loaded into
ribosomes and serve as a template for protein/peptide synthesis.
Interestingly, studies showed the initiation of translation of
circRNAs can occur either at the internal ribosomal entry
site (IRES) or at nucleotides with m6A modification in 5′

untranslated region (UTR) (48, 49), although, they lack the cap-
dependent translation elements. So far, only a few endogenous
circRNAs, such as circFBXW7, circMBL, and circ-ZnF609,
have been shown to possess the effective open reading frame
for protein/peptide translation (50–55). The function of most
circRNA-derived peptides is unknown. It is worthy to note that
circRNA-derived peptides were found to be expressed under
different stress conditions, such as the translation of circ-ZnF609
in response to heat shock (50, 51). Although, translation of
circRNAs does not appear to be a common function of circRNAs,
the next important task in this field is to determine the regulatory
function of circRNA-derived proteins/peptides.

PARTICIPATION OF CIRCRNAS IN THE
PATHOGENESIS OF CARDIAC
REMODELING

Due to the limited regenerative capacity of myocardial tissue,
the heart undergoes extensive remodeling to compensate the loss
of cells or response to stress. During remodeling, hypertrophic
growth and limited proliferation occur in cardiomyocytes.
In addition, non-cardiomyocytes such as cardiac fibroblasts,
endothelial cells, smooth muscle cells and immune cells, are
all shown to actively participate in this disease progress. For
example, the dying cardiomyocytes secret cytokines to activate
the proliferation and differentiation of cardiac fibroblast, and
to recruit immune cells to clean up the dead cardiomyocytes;
ischemic and oxidative stress also trigger the proliferation
of endothelial cells and angiogenesis for re-establishment of
blood supply. Different cell types are tightly act together and
communicate with each other either through cell-cell junction or
cytokines, or even through exosomes during this process.

More and more evidences demonstrated that non-coding
RNAs constitute a regulatory network in almost all forms
of human diseases, including cardiac remodeling and heart
failure. These RNA molecules incorporate into the known
protein regulatory network to orchestrate a highly complicated
gene regulatory network in human diseases. Cracking the
“code” of this network will provide us a roadmap to fully
understandmechanisms beneath disease phenotype we observed,
and eventually lead us to a better and more effective therapy.
Previous studies have demonstrated that some non-coding
RNAs, such as microRNAs and long non-coding RNAs, have

altered expression and play important regulatory roles in
cardiac remodeling (14, 56, 57). Due to the different structure
of circular RNAs, this type of non-coding RNAs have not
been broadly studied until recently (58). Studies showed that
circular RNAs are widely presented in different mammalian
cell types (5). Growing evidence shows that circRNAs play
important roles in cell proliferation, apoptosis, migration, and
differentiation (43, 50, 59). Importantly, RNA-sequencing data
showed that a subset of circular RNAs are dysregulated in
diseased heart (37), supporting the idea of circular RNAs
possessing regulatory functions in cardiac remodeling. Here,
we systematically review the recent study progress of circRNAs
in cardiac remodeling (Table 1 and Figure 3) and discuss the
function of some representative circRNAs in cardiomyocytes,
fibroblasts, endothelial cells, immune cells, and exosomes
in detail.

Circular RNAs in Cardiomyocyte
As the main contractile cells in the beating heart, the alteration
of cardiomyocytes is the central of cardiac remodeling in
various disease status. In adult heart, cardiomyocytes occupied
around 75% of left ventricular volume (101). Cardiomyocytes
undergo hypertrophic growth, apoptosis/necrosis, and limited
proliferation during cardiac remodeling. Non-coding RNAs,
such as microRNAs and long non-coding RNAs, have
been demonstrated to regulate the pathophysiology of
cardiomyocytes in diseased heart (102). Here, we discussed
some emerging examples of circRNAs in cardiomyocytes during
cardiac remodeling.

HRCR
HRCR was identified as the first circRNA regulating cardiac
hypertrophy (16). The expression of circRNA HRCR was
shown substantially decreased in mice in response to ISO
or TAC treatment. HRCR has a protective function on
cardiac hypertrophy and heart failure. Forced expression
of HRCR mediated with adenoviral constructs in mouse
heart decreases cardiomyocyte hypertrophic growth, interstitial
fibrosis and preserves the cardiac function upon ISO treatment.
Mechanistically, six target sites for miR-223 were identified in
HRCR. HRCR sequesters and decreases the activity of miR-223,
and upregulates the expression of target of miR-223, apoptosis
repressor with CARD domain (ARC), which is a known regulator
of cardiomyocyte hypertrophy and apoptosis (16).

CircSLC8A1
CircSLC8A1 (also named CircNCX1, or named circSlc8a1-1 in
mouse), which is enriched in cardiomyocytes, was identified
as the most abundant circRNA in human and mouse heart
(103), whose host gene encodes the protein of sodium-calcium
exchanger (NCX). CircSLC8A1 is generated from the 2nd exon of
the host gene SLC8A1. Although, the expression of CircSLC8A1
remains unaltered under some disease conditions such as cardiac
hypertrophy in mouse and failing heart in human, it has
been confirmed to be involved in regulation of hypertrophic
growth of cardiomyocytes as an endogenous sponge for miR-
133a (24, 37, 60, 104). Of note, inhibition of circSLC8A1
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TABLE 1 | A list of reported regulatory circRNAs in cardiac remodeling.

CircRNAs Host gene Target Mechanism Function References

CircRNAs in cardiomyocytes

HRCR HRCR miR-223 miRNA sponge Promoting cardiac hypertrophy and heart failure (16)

CircSLC8A1 NCX miR-133a-3p miRNA sponge Promoting cardiomyocytes apoptosis and

hypertrophy

(60, 61)

Cdr1as Cdr1as miR-7 miRNA sponge Promoting cardiomyocyte apoptosis (62)

CircNfix Nfix miR-214/interaction

between Ybx1 with Nedd4l

miRNA sponge/Scaffolds

for protein interaction

Inhibiting cardiomyocyte proliferation and

angiogenesis

(63)

ACR ACR Dnmt3B Transcriptional regulation Inhibiting autophagy and cell death (64)

CircHipk3 Hipk3 N1ICD, miR-185-3p,

miR-17-3p

Scaffold for protein

interaction/miRNA

sponge

Promoting cardiomyocyte proliferation (65)

CircHIPK2 Hipk2 miR-485-5p miRNA sponge Promoting autophagy and apoptosis (66)

CircITCH

(hsa_circ_0001141)

ITCH miR-330-5p miRNA sponge Inhibiting cardiomyocyte apoptosis (67)

CircPan3 Pan3 Undetermined Undetermined Inhibiting cardiomyocyte apoptosis (68)

CircFoxo3 Foxo3 Foxo3 Scaffold for protein

interaction

Promoting cell apoptosis/death (69)

CircRNA_000203 Myo9a miR-26b-5p, miR-140-3p miRNA sponge Promoting cardiac hypertrophy (70)

CircTtc3 Ttc3 miR-15b-5p miRNA sponge Inhibiting ATP depletion and apoptotic death (71)

Circ_0010729 Undetermined miR-27a-3p, miR-145-5p,

miR-370-3p

miRNA sponge Inhibiting apoptosis and glycolysis (72–74)

MFACR MFACR miR-652-3p miRNA sponge Promoting mitochondrial fission and the

apoptosis of cardiomyocytes

(75)

CircMACF1 MACF miR-500b-5p miRNA sponge promoting cardiomyocyte apoptosis (76)

Hsa_circ_0097435 Undetermined Undetermined Undetermined Promoting cardiomyocyte apoptosis (77)

Circ_0062389 PI4KA Undetermined Undetermined Promoting cardiomyocyte apoptosis (78, 79)

CircPostn Postn miR-96-5p miRNA sponge Promoting cardiomyocyte apoptosis (80)

CircRNAs in cardiac fibroblasts

CircRNA_000203 Myo9a miR-26b-5p miRNA sponge Promoting fibrotic phenotype of CFs (81)

Circ_0060745 Undetermined Undetermined Undetermined Increasing myocardial infarct size and

worsening cardiac functions after AMI and

contributes to activation of NF-κB under

hypoxia

(82)

CircNFIB Nfib miR-433 miRNA sponge Inhibiting CFs proliferation (17)

Circ_LAS1L LAS1L miR-125b miRNA sponge Inhibiting the activation, proliferation, migration

and promotes apoptosis of CFs

(83)

CircPAN3 PAN3 miR-221 miRNA sponge Promoting fibrotic phenotype of CFs and

activation of autophagy

(84)

CircHIPK3 HIPK3 miR-29b-3p miRNA sponge Promoting proliferation, migration of CFs and

development of cardiac fibrosis

(85, 86)

miR-152-3p miRNA sponge Promoting proliferation, migration and

phenotypic transformation of CFs

(87)

CircRNA_010567 Undetermined miR-141 miRNA sponge Promoting fibrotic phenotype of CFs (88)

CircYap YAP TPM4 and ACTG Scaffold for protein

interaction

Inhibiting fibrotic phenotype and migration of

CFs

(89)

Circ-Foxo3 Foxo3 ID-1, E2F1, FAK and HIF1α Scaffold for protein

interaction

Promoting senescence of CFs (90)

CircRNAs in endothelial cells

Circ-CCAC1 ERBB2 EZH2 Scaffold for protein

interaction

Disrupting endothelial barrier integrity and

promoting angiogenesis

(91)

Circ_0003204 USP36 miR-370-3p miRNA sponge Inhibiting proliferation, migration and tube

formation of endothelial cell

(92)

CircDLPAG4 DLGAP4 miR-143 miRNA sponge Inhibiting endothelial cell migration, without

affecting cell viability, and apoptosis

(93)

(Continued)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 June 2021 | Volume 8 | Article 702586

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Yang et al. circRNAs in Cardiac Remodeling

TABLE 1 | Continued

CircRNAs Host gene Target Mechanism Function References

CircVEGFC VEGFC miR-338-3p miRNA sponge Promoting vascular endothelial cells apoptosis (94)

Circ-RELL1 RELL1 miR-6873-3p miRNA sponge Promoting inflammation in ECs (95)

CiRS-7 LINC00632 miR-26a-5p miRNA sponge Promoting tube formation in microvascular

endothelial cells

(96)

Circ_0003645 chr16:19656207-

19663412

Undetermined Undetermined Promoting endothelial cell inflammation and

apoptosis after silencing

(97)

CZBTB44 chro11: 130130750-

130131824

miR-578 miRNA sponge Promoting cell viability, proliferation, migration

and tube formation

(98)

Hsa_circ_0030042 FOXO1 eIF4A3 Scaffold for protein

interaction

Inhibiting abnormal autophagy (99)

CircRNAs in immunocytes

CircSnx5 Snx5 miR-544/SOCS1 miRNA sponge Inducing immunological tolerance (19)

CircRNAs in exosomes

CircHIPK3 HIPK3 miR-29a miRNA sponge Inhibiting endothelial cell apoptosis (100)

promotes TAC-induced hypertrophy and HF in mouse (60).
Cardiac-specific overexpression of circSlc8a1 in vivo mediated
by the AAV9 increases heart weight and results in cardiac
dilatation. Different from the expression in hypertrophy, the
expression of circSLC8A1 have been demonstrated abnormally
increased in dilated cardiomyopathy (105, 106), and upregulated
in ischemic rat cardiac cells and mouse heart (61). Through
a similar mechanism of acting as miR-133a-3p sponge, the
NCX-derived circRNA increased the levels of CDIP1, a target
for miR-133a-3p, which promotes cardiomyocyte apoptosis.
Therefore, circSLC8A1 could exert different regulatory function
in cardiomyocytes depending on the type of stress. Interestingly,
circSLC8A1 interacts with the mouse ribosome or rat Argonaute
2 protein, which indicates circSLC8A1 is likely involved in the
regulation of mRNA translation (106). Interesting, the expression
level of circSLC8A1 is increased and positively correlated with the
expression of CK-MB in the pericardial fluid of acute ischemic
heart disease patients, which shows the potential of using this
circRNA as an auxiliary diagnostic marker for clinical acute
coronary syndromes (107).

CircNfix
CircNfix was identified as a super enhancer-associated circRNA
by an integrated analysis with RNA-seq data and super enhancer
catalogs (63). CircNfix was shown to regulate cardiomyocyte
proliferation and angiogenesis. In vivo knockdown of circNfix
mediated by cTNT-driven shRNA expression through AAV9
viral delivery system promotes cardiomyocyte proliferation
evidenced by the increased the expression of the proliferation
markers and the total cardiomyocyte number in infarcted mouse
hearts, which leads to an improved cardiac function after MI.
Although, CircNfix functions as a miRNA sponge to decrease the
promotive function of miR-214 on cardiomyocyte proliferation,
unexpectedly, it also promotes Ybx1 degradation through
ubiquitination by enhancing the stability of the interaction
between Ybx1 with Nedd4l, an E3 ubiquitin ligase. This
observation indicates that CircNfix also functions as a scaffold for
protein docking. Since transcriptional factor Ybx1 activates the

expression of Ccna2 and Ccnb1 (108), CircNfix further decreases
the proliferation of cardiomyocyte during myocardial infarction.

ACR
A recent study demonstrated that a circRNA ARC (autophagy-
related circular RNA) plays an important role in cardiomyocyte
autophagy (64). The expression of circRNA ACR is markedly
decreased after the heart subjected to ischemia/reperfusion.
ACR attenuates the increased autophagy level upon
ischemia/reperfusion injury and plays a protective role in
cardiomyocytes in vivo. Mice with overexpression of ACR
in the heart had a less cardiomyocyte death in ventricular
tissue and a smaller infarction. Mechanistically, instead of
a miRNA sponge, ACR acts as a regulator of chromatin
modification by binding to Dnmt3B and inhibiting Dnmt3B-
mediated DNA methylation of Pink1 promoter. Since Pink1
targets and phosphorylates FAM65B, which was shown
to have a regulatory role in autophagy, ARC mediates
cardiomyocyte autophagy through a Dnmt3B/Pink1/FAM65B
signaling cascade.

CircHipk3
Similar to ACR, some of circRNAs have been demonstrated
to serve as a signaling regulator by binding with protein in
cardiomyocytes. A recent study found an increased expression
level of circHipk3 in the fetal or neonatal mouse heart (65).
AAV9-mediated overexpression of circHipk3 attenuated cardiac
dysfunction and fibrosis in a mouse model of myocardial
infarction. CircHipk3 was shown to interact with N1ICD protein
to increase N1ICD acetylation level and stability, which was
partially responsible for the beneficial effect of circHipk3 in
cardiomyocytes. On the contrary, silencing circHIPK3 has a
protective effect in a variety of heart diseases. The hypertrophic
growth of cardiomyocytes was markedly inhibited by the
knockdown of circHIPK3 in a TAC-induced cardiac hypertrophy
model (109). Since CircHIPK3 is a sponge of miR-185-3p,
decreased level of CircHIPK3 in the knockdown increases
the inhibitory effect of miR-185-3p on CaSR. In addition,
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FIGURE 3 | Regulatory roles of circRNAs in cardiac remodeling. The regulatory role of summarized circRNAs is indicated by colored ovals. CircRNAs are labeled in

different colors to indicate the promotive or repressive function.

knockdown of circHIPK3 benefits the heart after myocardial
infarction through a circ-HIPK3/miR-17-3p/ADCY6 signaling
cascade in cardiomyocytes (110). While in a model of LPS-
induced myocarditis, knockdown of circHIPK3 significantly
represses cardiomyocyte apoptosis and alleviates oxidative stress
and inflammation in cardiac tissue (111). Interestingly, it was
reported that circHIPK2, originated from the second exon of
another HIPK family member HIPK2, facilitated autophagy in
H2O2-caused myocardial injury via sponging miR-485-5p and
de-repressing miR-485-5p target, ATG101 (66, 112).

Other circRNAs in Cardiomyocytes
Doxorubicin is widely used in tumor chemotherapy, however,
with the dose-dependent cardiotoxicity. Doxorubicin-induced
cardiotoxicity involves many molecular mechanisms, including
induction of reactive oxygen species (113), inhibition of the
activity of topoisomerase II (114), interruption of calcium
homeostasis, induction of mitochondrial dysfunction, and
destruction of sarcomere function (115). Recent studies
showed that circRNAs are involved in doxorubicin-induced
cardiomyopathy. A previous study identified 356 differentially
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expressed circRNAs in doxorubicin-treated human hearts
(67). CircITCH, a circRNA highly conserved between human
and mice, was significantly downregulated in DOX-induced
cardiomyopathy. AAV9-mediated overexpression of circITCH
ameliorates oxidative stress and DNA damage, cell death,
contractile dysfunction, and calcium handling defects in DOX-
induced cardiomyopathy in a mouse model by acting as a
miR-330-5p sponge to de-repress the expression of SIRT6,
BIRC5, and ATP2A2. In another recent study, overexpression of
circPan3 was shown to attenuate DOX-induced cardiomyocyte
apoptosis with unknown mechanism (68). In another example,
circ-Foxo3 interacts with the anti-senescence proteins ID1
and E2F1, and anti-stress proteins FAK and HIF1α to prevent
their nuclear translocation for transcription (90). Therefore,
silencing of circ-Foxo3 relieved the cardiac injury induced by
doxorubicin. In addition, circFoxo3 levels were significantly
higher in I/R injury resulted from 24 h of cold storage and
reperfusion in heart transplantation (69). In vivo and in
vitro experiments demonstrates that knockdown of circFoxo3
improves heart graft function and reduced cell apoptosis/death
and mitochondrial damage.

Circular RNAs in the Activation of Cardiac
Fibroblasts
Cardiac fibrosis, generally referred to an aberrant accumulation
of extracellular matrix (ECM) proteins in the interstitial space
of heart tissue, is closely associated with pathological cardiac
remodeling. It manifests as deposition of scar, increasing stiffness,
decreasing contraction and impaired heart function, which
ultimately resulting in heart failure (116). Although, cardiac
fibrosis is a complex process and involves many types of cells
in the heart, such as cardiomyocytes, fibroblasts, lymphocytes,
and pericytes (117–119), extensive studies have proved that
cardiac fibroblasts (CFs) play a pivotal role in this process
(120). When suffered cardiac injury, the proliferation and
migration of CFs are increased. Moreover, cytokines, especially
the transforming growth factor-β (TGF-β), and growth factors
are also secreted, which contributes to fibroblast activation and
ultimately transform CFs into myofibroblasts (121). In this
situation, myofibroblasts begin to express α-smooth muscle actin
(α-SMA) and enhance the secretion of ECM proteins, such
as collagen type I and collagen type III, which results in the
formation of scar and eventually leads to cardiac fibrosis (122).
Recent studies have shown circRNAs actively participate in the
pathogenesis of cardiac fibrosis, especially in the activation of
cardiac fibroblasts.

CircRNA_000203
CircRNA_000203, derived from Myo9a, is upregulated in the
myocardium of diabetic mouse and Ang-II-treated cardiac
fibroblasts. Overexpression of circRNA_000203 in mouse CFs in
vitro increased the expression of Col1a2, Col3a1, and α-SMA,
indicating the activation of CFs and the accumulation of ECM.
Moreover, RNA pull-down confirmed that circRNA_000203
is a sponge of miR-26b-5p. The targeting of CTGF and
Col1a2 by miR-26b was experimentally confirmed, which was
interfered by the overexpression of circRNA_000203 (81).

Interestingly, circRNA_000203 is also upregulated in Ang-II-
treated cardiomyocytes. Forced expression of circRNA_000203
promotes the hypertrophic growth of cardiomyocytes and
transgenic mice with cardiac-specific overexpression of
circRNA_000203 have an advanced phenotype in a model of
Ang-II-induced cardiac hypertrophy (70).

CircNFIB
CircNFIB (mmu_circ_0011794), generated from the exon
regions of Nfib, was identified as a candidate circRNA to
sponge miR-433, a miRNA promoting cardiac fibrosis (123).
CircNFIB has a decreased expression in both 3-week post-MI
mice hearts and TGF-β-treated CFs. The proliferation of CFs,
induced by TGF-β treatment, was significantly inhibited by
the overexpression of circNFIB in vitro (17). Mechanistically,
circNFIB de-represses AZIN1 and JNK1, which are targeted by
miR-433. Overexpression of circNFIB increased the expression of
AZIN1 and JNK1 and impaired the activation p38/ERK/Smad3,
thus confirming the pivotal role of circNFIB as a competing
endogenous RNA (ceRNA) in cardiac fibrosis. However, the role
of circNFIB in vivo in cardiac remodeling is still unclear and
requires for further investigation.

Circ_LAS1L
CircRNAs have been found to be involved in acute myocardial
infarction (AMI) in recent years (124). Bie et al. (125)
demonstrated the crucial function of miR-125b/SFRP5 axis in
CF growth and activation in previous report. Further, analysis
showed that miR-125b targets circ_LAS1L with two binding
sites, which was confirmed by RIP and RNA Pull-down. The
expression level of circ_LAS1L is significantly downregulated
while miR-125b expression is increased in AMI patients. Forced
expression of circ_LAS1L upregulates the expression of SFRP5
and downregulates the expression of α-SMA, collagen I, and
collagen III in CFs. Interestingly, gain function of miR-125b
together with overexpression of circ_LAS1L appears not to
modulate CFs proliferation, apoptosis, and migration. However,
SFRP5 siRNA, instead of miR-125b mimics, bypassed the
counter effect of circ_LAS1L on CF proliferation and migration,
indicating that circ_LAS1L functions as a sponge of miR-125b to
modulate CFs proliferation and migration in vitro (83). Whether
circ_LAS1L has a repressive function on cardiac fibrosis upon
cardiac injury in vivo warrant investigation in the future.

CircRNA_PAN3
CircPAN3, a circRNA generated from the PAN3 locus, has been
found to maintain the self-renewal of intestinal stem cells (126),
to modulate drug resistance in acute myeloid leukemia (AML)
(127, 128), and to recede myocardial ischaemia/reperfusion
injury (129). Recently, Li et al. reported circPAN3 as a new
profibrotic factor in cardiac fibrosis (84). The expression
of circPAN3 increases significantly in fibrotic regions of rat
heart induced by myocardial infarction (MI). Silencing of
circPAN3 in MI hearts reduces the level of fibrosis, including
decreased expression of fibrotic markers, and inhibits cardiac
myocyte apoptosis and autophagy. Consistently, knockdown of
circPAN3 represses TGF-β induced proliferation, migration and
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autophagy of CFs in vitro. In the molecular level, circPAN3 was
demonstrated to interact with miR-221 and sequester miR-221
from regulate its targets, FoxO3, as a sponge. Gain function
of miR-221 decreases the expression of FoxO3 and ATG7, two
known targets for miR-221 and have been proved crucial in
autophagy in previous studies (130). These data indicate that
circPAN3 promotes fibrosis via miR-221/FoxO3/ATG7 cascade-
mediated autophagy.

Circ_0060745
A recent study reported that circ_0060745 expression level in
CFs is increased dramatically in the myocardium of AMI mice
(82). Knockdown and overexpression of circ_0060745 improved
and deteriorated the cardiac function, respectively. In addition,
the silencing of circ_0060745 leads to less cell apoptosis in
the infarcted areas while circ_0060745 overexpression had the
opposite effect. Further, analysis found that the expression of
inflammatory cytokines, including IL-6, IL-12, IL-1β, and TNF-
α, are decreased upon knockdown of circ_0060745, which could
suppress peritoneal macrophage migration. The downregulation
of the inflammatory cytokines is induced by the inhibition of
NF-κB activation in the circ_0060745 knockdown.

CircHIPK3
CircHIPK3 (mmu_circ_0001052), originated from exon 2
of HIPK3, has been reported to play an important role in
cancers (131). Recent studies suggested it also regulates
cardiac fibrosis via different signaling cascades. Ni et al.
found circHIPK3 promoted CF proliferation, migration and
activation by modulating the activity of a known fibrosis-related
microRNA, miR-29b-3p, through sponging (85). Similarly,
another study showed circHIPK3 induced cardiac fibrosis
through a circHIPK3/miR-29b-3p/Col1a1/Col3a1 signaling
cascade in mouse diabetic cardiomyopathy model (86).
Interestingly, circHIPK3 modulates CFs function in a hypoxia
condition in a similar sponge manner, but through a different
signaling cascade, the circHIPK3/miR-152-3p/TGF-β2 axis (87).
Therefore, circHIPK3 is likely to be an important upstream node
of the miRNA-mediated posttranscriptional gene regulation
network in cardiac fibrosis.

CircYap
CircYap hsa_circ_0002320, generated from exons 5 and exon 6 of
YAP pre-mRNA, is the highest expressed isoforms derived from
Yap gene locus in human hearts. The expression level of circYap
decreases significantly in hypertrophic patient hearts of patients
and in pressure-overloaded mouse hearts. The forced expression
of circYap alleviates the declined heart function and increased
cardiac fibrosis in a TAC-induced mouse cardiac hypertrophy
model. Overexpression of circYap in cardiac fibroblasts (MCF) in
vitro suppresses the expression of fibrotic markers and migration
of cardiac fibroblasts. Mechanistically, circYap interacts with
both tropomyosin-4 (TMP4) and gamma-actin (ACTG), and
enhances the interaction between TMP4 and ACTG, which
subsequently inhibits the actin polymerization and cardiac
fibrosis (89).

Circular RNAs in Endothelial Cells
Endothelial cells (ECs) play a central role in cardiac remodeling,
regeneration, as well as angiogenesis in the treatment of
cardiovascular diseases (132, 133). Therefore, it is of great
significance to identify factors that promoting and inhibiting
angiogenesis and their underlying molecular mechanisms. To
date, many studies have confirmed that circRNAs are involved
in regulating the proliferation, migration, apoptosis, and tubule
formation of ECs, which further mediates the dynamics of ECs
and regulates angiogenesis.

Circ-ZnF609
The level of circ-ZNF609 in peripheral blood leukocytes
of coronary artery disease patients is significantly decreased
(134). In another study of circRNAs in retinal vascular
dysfunction, Circ-ZnF609 was found significantly upregulated
under conditions of high glucose and hypoxia stress in vivo and
in vitro (18). Silence of circ-ZnF609 increased endothelial cell
migration and tube formation, and protected endothelial cells
against oxidative stress and hypoxia stress in vitro. Circ-ZnF609
acts as an endogenous miR-615-5p sponge to sequester miR-615-
5p and inhibit its function, leading to the increased expression of
MEF2A. Overexpression of MEF2A rescues the endothelial cell
migration, tube formation, and apoptosis mediated by the silence
of circ-ZnF609, which further demonstrates the regulatory
mechanism of circ-ZnF609 on ECs via circ-ZnF609/miR-615-
5p/MEF-2A signaling cascade.

Interestingly, circ-ZnF609 was also identified as a circRNA
regulating muscle differentiation in mice and humans, and
its expression is altered in Duchenne muscular dystrophy
(DMD) myoblasts (50). Circ-ZnF609 specifically controls the
proliferation of myoblasts. It was demonstrated that circ-ZnF609
is associated with heavy polysomes and translated into a protein
in a splicing-dependent and cap-independent manner, providing
an example of protein encoding circRNA in eukaryotes. Whether
circ-ZnF609 functions as a miRNA sponge or protein-coding
circRNA, or both, or it has a preferable manner depended on cell
type, needs to be studied in the future. Furthermore, the role of
endothelial circ-ZnF609 in the heart upon ischemia/reperfusion
in vivo warrants investigation.

CircFndc3b
CircFndc3b is differentially expressed in the mouse hearts
after myocardial infarction (MI) and in the heart tissues of
patients with ischemic cardiomyopathy (135). Overexpression of
circFndc3b in cardiac endothelial cells increases the expression
of vascular endothelial growth factor-A, enhances angiogenesis,
and reduces the apoptosis of cardiomyocytes and endothelial
cells. In post-MI hearts, adeno-associated virus-mediated
overexpression of circFndc3b reduces myocardial apoptosis,
enhances neovascularization, and improves left ventricular
function. CircFndc3b interacts with the RNA-binding protein
FUS in sarcoma to regulate VEGF expression and signal
transduction. These findings highlight the physiological role
of circRNA in heart repair and suggest that regulating the
expression of CircFndc3b is a potential therapeutic strategy for
protecting the heart from myocardial infarction.
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CZNF292
Hypoxia condition is introduced in the ischemic region of
the diseased heart. To identify hypoxia-related circRNAs,
endothelial circRNAs were screened from human umbilical vein
endothelial cells cultured under normal or hypoxia conditions
(136). CZNF292 is one of candidates identified in the screen.
In vitro, target-specific depletion of CZNF292 with siRNAs
inhibits angiogenic germination and spherical germination of
endothelial cells, suggesting that CZNF292 has pro-angiogenic
function. The overexpression of CZNF292 further confirms
its pro-proliferation effect. Interestingly, the circRNA appears
not associate with Argonaute, indicating it unlikely functions
as a microRNA sponge. These data suggest that endothelial
circRNAs could mediate angiogenesis under hypoxia condition
with undetermined mechanism. Although, the in vivo function
of CZNF292 in the heart is still unknown, it is interesting to
investigate whetherCZNF292 promotes angiogenesis in vivo and
benefit the heart after ischemia/reperfusion injury.

Circular RNAs in the Dynamics of Cardiac
Immunocytes
Inflammation and fibrosis are two key factors in cardiac
remodeling. Inflammatory response is generally caused by acute
cell death, for instance, the sudden loss of cardiomyocytes
after myocardial infarction. Necrotic cardiomyocytes crack and
release cellular contents, which activates the inflammation
reaction for cleaning dead cells and matrix debris (137,
138). During the cardiac inflammatory process, immunocytes
accumulate in myocardium, infiltrate surrounding tissue and
further regulate inflammatory reaction (139, 140). Among
immunocytes, dendritic cells (DCs), derived from bone marrow,
are antigen-presenting cells and crucial in immune response.
Moreover, cardiac DCs has been reported to have heart-
protective effects in acute myocardial infarction (AMI), such
as the deletion of DCs in mice deteriorates the cardiac
remodeling (141). In addition, cardiac specific tDCs (tolerogenic
dendritic cells) can evoke the generation of Tregs, which
can promote a macrophage-specific repair program after
AMI (142).

Recently, Yu et al. reported a novel DC-expressed circRNA,
named circSnx5, has a vital function in maintaining cardiac
immune homeostasis. CircSnx5, generated from the snx5 gene
locus, represses the maturation of DCs when its expression
is upregulated in DCs. Knockdown of circSnx5 results in
an inflammatory phenotype of dendritic cells. Mechanistically,
circSnx5 sponges miR-544 and de-represses the downstream
target of miR-544, the suppressor of cytokine signaling 1
(SOCS1). On the other hand, circSnx5 directly influences the
nuclear translocation of PU.1 to regulate the expression of
downstream MHC class II, which is critical to DC’s function.
In addition, the injury and inflammation of cardiac tissue is
decreased, and the cardiac function is improved after introducing
circSnx5-overexpressing DCs into experimental autoimmune
myocarditis (EAM) mice. Thus, all these results confirm that
circSnx5 has a protective effect on AMI (19).

Circular RNA Messenger in Exosomes
It is well-known that exosomes are involved in the intercellular
communication. Correct communication between cells has been
shown critical in preserving body homeostasis and health
(102). Cell-cell communication via exosomes is involved in
the pathological processes of some chronic diseases such as
cancer and heart diseases (143, 144), but the disease progression
regulated by circRNAs from the shuttling exosomes in the heart
were less studied (145).

A recent study has provided evidence supporting the role
of exosomal circRNAs in multiple physiological processes
including the regulation of the heart function. Wang et al.
found that exosomal circHIPK3 is highly expressed in hypoxic
exosomes secreted from cardiomyocytes. Silencing of circHIPK3
is associated with increased levels of apoptosis, ROS, MDA, and
proapoptotic proteins in cardiac microvascular endothelial cells
(CMVECs) (100). The upregulated circHIPK3 sponges miR-29a,
an apoptosis-suppressing miRNA, to de-repress the expression
of IGF-1, and subsequently regulates the oxidative damage
in CMVECs.

CONCLUSION

In conclusion, circRNAs are identified as new players to
participate in the process of human diseases. Although, the
biogenesis and molecular mechanism of circRNAs are still
not fully understood, emerging evidences have demonstrated
that these circular RNA molecules are broadly present in
mammalian cells with different regulatory functions. The heart
is composed of a variety of cell types that interact with each
other through direct contact or paracrine signaling. More and
more studies have proved that circRNAs are involved in the
process of cardiac remodeling and have important regulatory
functions in cardiomyocytes, endothelial cells, fibroblasts and
immune cells during this disease process. The regulation of
circRNAs in different cell types of the heart adds a new
layer of regulation to the known gene regulation network of
cardiovascular disease. Currently, we are still facing challenges
in the study of circRNAs. For example, most of circRNAs can
not be knocked out for the loss-of-function study since targeting
circRNAs using CRISPR–Cas9 or DNA recombination strategy
is likely to affect the splicing or expression of linear host genes.
Although, the expression of circRNAs could be knocked down
by specific siRNAs, the narrow junction of back-splicing limits
the design of siRNA for a portion of circRNAs. Therefore,
approaches for circRNA study are urged to be improved, which
will lead us to better understand the function of circRNAs in
human diseases.

Overall, roles of circRNAs in the pathogenesis of
cardiovascular disease still remains largely unknown.
Unlike linear RNA molecules, the stability of circRNAs
grants the advantage of these circular RNA molecules in
therapeutic applications, such as disease diagnosis and
transgene delivery in gene therapy. Given that extracellular
vesicles or exosomes contain circRNAs, capturing tissue-
specific and disease-specific vesicles or exosomes for
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circRNAs profiling could be a good strategy to identify
biomarkers for disease diagnosis. Therefore, deeper and
systematic studies of circRNAs in the content of different
diseases, such as cardiac hypertrophy and heart failure,
is the prerequisite of moving the knowledge of circRNAs
into the therapeutic applications against the deadly
cardiovascular disease.
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