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Aortic stiffness (AoS) is a maladaptive response to hemodynamic stress and both

modifiable and non-modifiable risk factors, and elevated AoS increases afterload for the

heart. AoS is a non-invasive marker of cardiovascular health and metabolic dysfunction.

Implementing AoS as a diagnostic tool is challenging as it increases with age and varies

amongst races. AoS is associated with lifestyle factors such as alcohol and smoking,

as well as hypertension and comorbid conditions including metabolic syndrome and

its components. Multiple studies have investigated various biomarkers associated with

increased AoS, and this area is of particular interest given that these markers can

highlight pathophysiologic pathways and specific therapeutic targets in the future. These

biomarkers include those involved in the inflammatory cascade, anti-aging genes, and

the renin-angiotensin aldosterone system. In the future, targeting AoS rather than blood

pressure itself may be the key to improving vascular health and outcomes. In this

review, we will discuss the current understanding of AoS, measurement of AoS and the

challenges in interpretation, associated biomarkers, and possible therapeutic avenues

for modulation of AoS.

Keywords: aortic stiffness, pulse wave velocity, cardiovascular health, risk factors, biomarkers

INTRODUCTION

Aortic stiffness (AoS) is a measure of the elasticity of the blood vessel wall, and elevated AoS may
result from and contribute to increased stress on the vessel walls. It is a non-invasive method of
measuring maladaptive change and remodeling to aortic properties and is a promising marker
of subclinical disease. Its measurement is based on principles of physics. The arterial tree has
varying mechanical properties along its length, primarily determined by different contributions
of collagen and elastin to its structure, in addition to varying degrees of modulation by smooth
muscle. Pulse waves generated from pulsatile hemodynamics of the cardiac cycle travel down
the large conduit arteries to the mid-sized arteries where they incur increased resistance due to
branch points and increased arterial tone. The incident waves are then reflected back toward
the central arteries from the periphery. The stiffness of the central conduit arteries determines
the velocity with which the reflected waves return, with increased AoS resulting in more rapid
propagation of reflected waves, determining the measured pulse wave velocity (PWV) (1).
Pathologically increased AoS allows waves reflected from the periphery to return in phase with
cardiac systole, augmenting central systolic pressure and increasing hemodynamic load on the
left ventricle. AoS is able to capture a unique measure of central hemodynamics not reflected by
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simply the blood pressure alone, likely explaining the ability
of carotid-femoral PWV (cfPWV) to serve as an independent
predictor of cardiovascular outcomes. Further, the processes
implicated in AoS, which include activation of oxidative stress
pathways and inflammation may be reflective of underlying
vascular risk (2).

The purpose of this review is to discuss the clinical
implications of AoS, its measurements including PWV and
augmentation index (AI), and the factors that contribute to
and alter AoS. We will also review AoS involvement in disease
processes as well as biomarkers involved in AoS. The goal is to
gain a better understanding of AoS as a subclinical marker of
chronic disease.

CLINICAL SIGNIFICANCE

Stiffening of the aorta is a marker of subclinical disease and
has been demonstrated to precede the onset of hypertension
in a longitudinally followed cohort (3). Earlier studies first
implicated elevated PWV to be associated with atherosclerosis
(4) and as a predictor of worse cardiovascular outcomes and
mortality in high-risk conditions such as diabetes mellitus (DM),
chronic kidney disease, and hypertension, as well as coronary
artery disease post-myocardial infarction (5–7). AoS was later
demonstrated in healthy community dwelling individuals to
predict incident events including coronary disease, heart failure,
stroke, and cardiovascularmortality independently of adjustment
for cardiovascular risk factors (8–11). Further, there is evidence
that AoS reflects the presence of composite end-organ damage
and has been shown to have superior prognostic value to
measurements of office and ambulatory systolic blood pressures
in patients with advanced kidney disease (12).

The adverse outcomes related to elevated AoS suggested by
the prior studies have been corroborated and further evaluated
through meta-analyses. In such a 2010 study by Vlachopoulos
et al. an increase in PWV of 1 m/s conferred an increased
risk of cardiovascular events, cardiovascular mortality, and all-
cause mortality (13). Moreover, a meta-analysis of over 17,000
participants showed that a 1-standard deviation difference in
log-transformed cfPWV was associated with an increased risk
of future cardiovascular events over 5 years even after adjusting
for more traditional risk factors; furthermore, this same meta-
analysis showed that using cfPWV in addition to traditional
risk factors was able to reclassify patient risk for cardiovascular
disease (CVD) for those who had an intermediate 10 year
CVD risk (14). Therefore, by measuring AoS in patients,
practitioners may be able to detect patients at risk for CVD
at an early, subclinical stage. This early detection may provide
the opportunity for early intervention, patient education on
risk factors, and potentially help to decrease the incidence of
overt disease.

MEASUREMENT

Several modalities are available to measure AoS by PWV
including recording the pulse waves by a tonometer transducer,
standard blood pressure cuff, doppler ultrasound, and magnetic

resonance imaging (MRI) (15). The transducer methods consist
of placing a tonometer over the carotid and femoral arteries and
monitoring an ECG signal for timing of the pressure waveforms.
These methods have historically been the gold standard but
can be a challenging learning curve for the operator. Thus,
there has been increased interest in comparing the various AoS
measurement methods to determine which is most accurate
and easiest to implement. Pulse wave doppler ultrasound allows
measurement of AoSwithout the need for a specificmeasurement
device, is quicker, and has been shown to be comparable to
transducer methods (16, 17).While blood pressure cuffmeasured
cfPWV may be easier to acquire than the doppler approach, it
often requires correction (18). MRI based techniques also offer
promise due to their ability to directly and accurately visualize
path-length and ability to quantify AoS in more proximal aortic
segments but lack practicality (19).

cfPWV is the gold standard measure of aortic wall stiffness
(2). cfPWV is obtained via transcutaneous measurement of
the pressure waveform at the common carotid artery and at
the femoral artery by either probes or blood pressure cuffs;
alternatively, this can be measured from Doppler or MRI flow
waveforms (20). The distance between the two surface sites and
the time delay between the waveforms is used to determine
the velocity component (2). Figure 1 depicts how the cfPWV
is calculated. It is important to note that blood pressure and
PWV are closely intertwined with higher mean arterial pressures
correlated with increased AoS (15, 22).

However, there are additional challenges to measuring
cfPWV. The surface distance between carotid and femoral
sites of measurement may not represent true arterial path-
length, especially in patients with obesity. Therefore, proposed
correction factor equations account for these systematic
inaccuracies such as multiplying the distance from the carotid
artery to the femoral artery by 0.8 (23). In addition, there are
challenges with measuring pressure waveforms in obese patients
and in controlling for existing atherosclerotic disease in vessels.
Furthermore, conditions during time of measurements such
as patient positioning, temperature in the room, and white
coat hypertension can all confound the results (2). Brachial
PWV methods also exist, but because of PWV amplification in
peripheral arteries, it is considered a less reliable measure of
central artery stiffness (24).

Augmentation index (AI) is another measurement of AoS
(Figure 1). It is measured by dividing the augmentation pressure
by the pulse pressure andmultiplying by 100 to provide a number
(percentage). AI is a stronger predictor of left ventricular mass
reduction in response to lowering the blood pressure compared
to other more conventional measures such as brachial blood
pressure (25), and increased AI is independently associated
with increased cardiovascular events in those undergoing
percutaneous coronary interventions (26). Furthermore, more
recent data has shown that higher augmentation index is
associated with poor exercise capacity after heart transplant (27).
However, AI is impacted by other factors such as age, systolic
blood pressure, heart rate, left ventricular ejection time, and
height to a greater extent than PWV (28, 29). Therefore, PWV,
and in particular cfPWV, is used more often in trials.
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FIGURE 1 | Measurement of augmentation index and cfPWV. On the left panel, the central augmentation index is calculated as the ratio of the augmentation pressure

over the pulse pressure. On the right panel, the cfPWV is measured by evaluating waveforms at the common carotid and femoral artery. This is the foot-to-foot

method as it measures the beginning of the waveform at each site. The velocity component is then calculated by measuring the distance between the two sites

divided by the time it takes for the waveform to travel from site to site. AP, augmentation pressure; PP, pulse pressure; cAIx, central augmentation index; PWV, pulse

wave velocity; SBP, systolic blood pressure; DBP, diastolic blood pressure. Reproduced from (21).

NORMATIVE VALUES AND IMPACT OF
DEMOGRAPHICS

Despite having known prognostic implications distinct from
traditional cardiovascular risk factors, the clinical use of
cfPWV has been limited due to lack of widespread use
of population specific reference ranges. The 2007 ESC/ESH
guidelines proposed a cut-off value of 12 m/s for elevated AoS
based on clinical outcome data (30). Furthermore, multiple
studies have sought to establish reference ranges for PWV. The
Reference Values for Arterial Stiffness Collaboration Database
was one of the first large-scale efforts to establish reference
ranges for cfPWV in 16,867 European individuals across 13
centers (31). A subset of 11,092 individuals without prevalent
CVD or use of anti-hypertensive or lipid-lowering medications
were used to draw reference values presented in Table 1.
However, a challenge with creating normative values is that
experienced laboratories are needed for cfPWV measurement,
and disparate measurement devices and methodologies can

produce a variance in PWV affecting generalizability even within
the same patient (32).

AGE, SEX, AND RACE

Age
A rise in AoS with age has been well-described in large,
diverse groups free of clinical CVD (31, 33–35). Central artery
stiffness results in a reduced arterial reservoir effect, augmenting
pressure during systole and diminishing it during diastole
(36). This is thought to be one mechanism for the observed
age-related increase in systolic blood pressure and decline in
diastolic blood pressure, which lead to adverse ventricular and
vascular hemodynamics, poor cardiac perfusion, and cardiac
remodeling (37, 38).

Several mechanisms may contribute to age-related
arteriosclerosis. Intrinsic remodeling of arteries has been
demonstrated with increasing intima media thickness with age
(39). Changes in the mechanical properties of the vascular
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TABLE 1 | Distribution of pulse wave velocity (PWV) values (m/s) in the reference value population (11,092 subject) according to age and blood pressure category.

Age category (years) Blood pressure category

Optimal Normal High Normal Grade I HTN Grade II/III HTN

PWV as mean

(±2SD)

<30 6.1 (4.6–7.5) 6.6 (4.9–8.2) 6.8 (5.1–8.5) 7.4 (4.6–10.1) 7.7 (4.4–11.0)

30–39 6.6 (4.4–8.9) 6.8 (4.2–9.4) 7.1 (4.5–9.7) 7.3 (4.0–10.7) 8.2 (3.3–13.0)

40–49 7.0 (4.5–9.6) 7.5 (5.1–10.0) 7.9 (5.2–10.7) 8.6 (5.1–12.0) 9.8 (3.8–15.7)

50–59 7.6 (4.8–10.5) 8.4 (5.1–11.7) 8.8 (4.8–12.8) 9.6 (4.9–14.3) 10.5 (4.1–16.8)

60–69 9.1 (5.2–12.9) 9.7 (5.7–13.6) 10.3 (5.5–15.1) 11.1 (6.1–16.2) 12.2 (5.7–18.6)

≥70 10.4 (5.2–15.6) 11.7 (6.0–17.5) 11.8 (5.7–17.9) 12.9 (6.9–18.9) 14.0 (7.4–20.6)

PWV as median

(10th−90th percentile)

<30 6.0 (5.2–7.0) 6.4 (5.7–7.5) 6.7 (5.8–7.9) 7.2 (5.7–9.3) 7.6 (5.9–9.9)

30–39 6.5 (5.4–7.9) 6.7 (5.3–8.2) 7.0 (5.5–8.8) 7.2 (5.5–9.3) 7.6 (5.8–11.2)

40–49 6.8 (5.8–8.5) 7.4 (5.3–8.2) 7.7 (6.5–9.5) 8.1 (6.8–10.8) 9.2 (7.1–13.2)

50–59 7.5 (6.2–9.2) 8.1 (6.7–10.4) 8.4 (7.0–11.3) 9.2 (7.2–12.5) 9.7 (7.4–14.9)

60–69 8.7 (7.0–11.4) 9.3 (7.6–12.2) 9.8 (7.9–13.2) 10.7 (8.4–14.1) 12.0 (8.5–16.5)

≥70 10.1 (7.6–13.8) 11.1 (8.6–15.5) 11.2 (8.6–15.8) 12.7 (9.3–16.7) 13.5 (10.3–18.2)

Modified from Reference Values for Arterial Stiffness (31).

HTN, hypertension; SD, standard deviation.

media are also observed, with maladaptive remodeling
with increased deposition of collagen (40). Age related
arteriosclerosis that is independent of atherosclerosis is
supported by the strong independent association between
age and cfPWV that persists in those without aortic
calcifications (41). The cumulative exposure to vascular
risk factors including DM also contributes to increases in AoS
with age (42).

Sex
The relationship between sex and AoS is complex and varies
with age. Whereas pre-pubescent females have higher PWV
than pre-pubescent males, this difference is abrogated post-
puberty as the average PWV in females decreases but PWV
in males increases (43). In the Jackson Heart Study, while
adult men were more likely to have elevated cfPWV in the
overall cohort, women had steeper rise in both cfPWV and
forward wave amplitude with age >60 (35). Brachial-ankle PWV
(baPWV) has been shown to be similar in males and females
until about age 50–60 years old, at which point there is a greater
proportional increase in female baPWV (44). This accelerated
increase in the baPWV around age 50–60, when females are post-
menopausal, provides further evidence that there is a hormonal
component to the sex differences in AoS. Furthermore, when
corrected for age and blood pressure, middle aged females with
metabolic syndrome had higher aortic PWV as compared to
males, again supporting the role of sex the relationship of age with
PWV (45).

The mechanism behind sex differences in AoS may be related
to downstream effects of sex hormones. Men with acquired
hypogonadism have higher PWV compared to normal men,
and treatment with testosterone therapy helps to lower PWV,

supporting a possible role for testosterone in lowering AoS (46).
Indeed, in animal models, testosterone induces endothelium-
independent vasodilation of arterial beds (47). Sex hormones in
women also seem to play roles in modulating AoS. Decreases in
estradiol with menopause are associated with a proinflammatory
state, which may be a cause of elevated AoS in women after
menopause (48). Furthermore, female sex steroids such as 17
beta estradiol and progesterone promote elastin deposition, and
thus withdrawal following menopause may also contribute to
increased AoS during this time period (49).

Race
African Americans (AA) suffer a disproportionately increased
risk of CVD, hypertension, and microvascular dysfunction
compared to whites, highlighting the disparities in vascular
morbidity and mortality (50–52). Data suggests that these
differences may be driven by a difference in risk factor burden,
sociodemographic factors including income, as well as intrinsic
differences in mechanical properties of blood vessels and baseline
AoS (53).

Differences in AoS between AA and whites have been
observed in childhood. AA boys as young as 6–8 years
old have elevated mean arterial pressure (MAP), intimal
media thickness, and cfPWV compared to white boys (54).
Sociodemographic factors including education, lower family
income, and lower socioeconomic status were all associated
with higher PWV (55). However, higher aortic PWV is seen
in AA children compared to whites even after adjusting
for age, sex, body mass index, mean arterial pressure, and
socioeconomic status (56). This difference in AoS among
children persists in adults. In the Multi-Ethnic Study of
Atherosclerosis of multiple community cohorts, AA had a higher
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prevalence of hypertension and lower aortic distensibility (57).
In the Dallas Heart Study, both AA and Hispanic individuals
had greater aortic arch PWV independent of cardiovascular
risk factors including mean arterial pressure, heart rate,
DM, and smoking (58).

However, other studies suggest that there may be confounding
variables that account for the differences in AoS among races. In
the ELSA-Brasil study, investigators noted that AAs had a higher
burden of hypertension, DM, and obesity compared to the other
racial groups and had higher unadjusted cfPWV compared to
browns and whites who were similar. However, after adjusting
for characteristics including mean arterial pressure, age, waist
circumference, heart rate, and fasting glucose, the inter-group
differences were abrogated. The results of this study indicate that
∼40% of the difference between cfPWVvalues could be explained
by age andmean arterial pressure, suggesting less contribution by
race itself to AoS. Though there may be a race-sex interaction in
women, with AA and brown women having higher cfPWV than
whites particularly in the highest quartiles of cfPWV, the strength
of that relationship was much weaker than the effects of MAP
and age (59).

Several mechanisms have been proposed to contribute to
the differences of AoS among racial/ethnic groups. First, risk
factor sensitivity may vary among different racial groups. For
example, cfPWV progression is affected by risk factors such as
diastolic blood pressure, glucose, and low-density lipoprotein
cholesterol in AA women, while it was not in Caucasian women
(60). Furthermore, it has been demonstrated that AAs living
in the northern hemisphere likely suffer a greater burden of
Vitamin D deficiency relative to white counterparts (61). Vitamin
D has been proposed to improve vascular health by suppressing
oxidative pathways and the sensitivity to renin-angiotensin-
aldosterone system (RAAS) mediated remodeling. Vitamin D
supplementation has been shown to decrease PWV in AAs with
vitamin D deficiency (62).While the paucity of large-scale studies
suggests the need for further research to determine the clinical
utility of improving Vitamin D to improve vascular health, this
modifiable risk factor creates a targetable treatment regimen
for AAs.

Generalized endothelial dysfunction has also been posited as a
mediator of progressive AoS in AAs compared to whites. Studies
have demonstrated that AAs tend to have impaired nitric oxide
signaling and thus more endothelial cell dysfunction at baseline
and when compared to whites (63, 64). This impaired nitric oxide
signaling in AAs compared to white Americans has been shown
to be present even after adjusting for CVD risk factors, suggesting
that impaired vascular function precedes incident disease (65).
Whether additional intrinsic differences in the properties of
vessels or unmeasured risk factors exist between racial/ethnic
groups remains to be determined.

COMORBIDITIES ASSOCIATED WITH AoS

Hypertension
Hypertension demonstrates a very strong association with
AoS compared to other cardiometabolic risk factors studied.
A major shift has occurred regarding the understanding of

directionality between hypertension on AoS and vice versa.
The initial paradigm posited that arterial stress induced by
elevated pressure and pulsatility-mediated breaks in elastin led
to maladaptive remodeling by inducing inflammation (1, 66,
67). Both baseline blood pressure and blood pressure variability
have been linked to increased vascular stiffness (68). Higher
blood pressure variability is thought to promote vascular smooth
muscle cell proliferation and atherosclerosis as well as increase
oscillatory wall stress (69, 70). This increased variability may lead
to increased AoS which in turn, with stiffer arteries, may increase
blood pressure (71).

Clinical and experimental studies have demonstrated that the
relationship between hypertension and AoS is interdependent
(72–74). Elevated AoS preceding the development of overt
hypertension has been demonstrated in population-based studies
(3, 75). Additionally, Weisbrod et al. evaluated the temporal
relationship between AoS and hypertension in a mouse model
of diet induced obesity, demonstrating that AoS increased
within 1 month while hypertension evolved in 5 months (76).
Increased AoS and blood pressure were reversed with weight loss.
Understanding this temporal relationship is of particular clinical
significance, as AoS can be used as a marker for patients that are
high risk to develop hypertension, prompting earlier risk factor
modification and potential treatment.

Metabolic Syndrome
While hypertension alone can increase AoS, metabolic syndrome
is also associated with increased AoS. Metabolic syndrome is a
constellation of disorders consisting of obesity, insulin resistance,
hypertension, and dyslipidemia. Investigators from the Bogalusa
Heart Study showed that even in asymptomatic, young (ages 24–
44) subjects, baPWV rose with increasing number of components
of the metabolic syndrome (77). Multiple other studies have
shown that metabolic syndrome components were associated
with elevated PWV (78–80). Investigators of the CRAVE
study also showed that patients with both hypertension and
dyslipidemia had a four-fold increase in the annual progression
of cfPWV compared to controls (80). There is also evidence
to suggest that resolving metabolic syndrome is associated
with lower PWV compared to those with current metabolic
syndrome (81).

Diabetes Mellitus
Patients with DM are at a high risk for CVD (82, 83). Aortic
PWV serves as an additional tool to help risk stratify patients as
increased PWV has been shown to be associated with CVD in
those with DM (84). An interesting dose dependent relationship
between level of glucose dysregulation and elevation of cfPWV
has also been described (85).

The pathogenesis of AoS in DM is likely to be mediated by the
pro-inflammatory milieu generated by metabolic dysregulation
and direct damage to the vascular wall. For example, high intake
of advanced end glycation products, such as carboxy-methyl-
lysine, have been associated with higher PWVs among those
with DM (86). Furthermore, a trial of ALT-711, a non-enzymatic
breaker of these products, decreased PWV in the elderly (87).
Different genotypes of advanced end glycation products and their
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TABLE 2 | Association of lifestyle risk factors with aortic stiffness.

Population studied Exposure Effect

Diet Adults 20–59 years of age Salt consumption (varied) An increase in urinary sodium excretion by >100 mmol over a

24-h period is associated with increased systolic pressures

by 3–6mm Hg and increased diastolic pressures by 0–3mm

Hg (90)

11 adults aged 60 ± 2 years with

elevated BP (139 ± 2 over 83±2

mmHg)

Low sodium (77 ± 2 mmol/d) vs.

normal sodium (144 ± 7 mmol/d)

Low sodium group with 17% reduction in aortic PWV

compared to normal sodium (7 ± 0.40 vs. 8.43 ± 0.36 m/s, p

= 0.001) (91)

Exercise Endurance trained males age 69

± 2.5 years

Fitness level: VO2 max at least 1

SD above age matched sedentary

counterparts

26% decrease in Aortic PWV relative to peers their age (92)

Pre-menopausal women aged 31

± 1 years and post-menopausal

women age 59±2 years

6 ± 1 hour/week of endurance

exercise

No significant difference in aortic PWV or AI between pre and

post-menopausal women with exercise (suggesting age

related increase in AoS is halted by exercise) (93)

Systematic review/meta-analysis

of 14 RCTs of adults with

pre-hypertension and

hypertension

Exercise types:

aerobic/endurance, dynamic

resistance, isometric resistance,

combined exercise

Exercise significantly reduced PWV by 0.76 m/s (CI

1.05–0.47) (94)

Smoking Healthy adults 33 ± 6 years of

age

Acute: 5min after smoking 1

cigarette

FMD % decreased from 13.5 ± 5 to 6.9 ± 4% (95)

Adults 15–57 years of age Chronic: 1–75 pack years FMD 10±3.3% (4–22%) in controls vs. 4 ± 3.9% (0–17%) in

smokers; FMD is inversely related to the duration of

smoking (96)

Males 30–64 years of age Non-smokers, former smokers,

and current smokers

Men who quit smoking <1 year prior had elevated AI (β 3.94,

SE 1.54, p = 0.011) similar to current smokers (β 4.39, SE

0.74, p < 0.001) compared to non-smokers; those that quit

1– <10 years prior with AI similar to non-smokers (β 1.87, SE

0.94, p < 0.047) (97)

E-cigarettes Adults 30 ± 8 years of age 5min of usage and 30min of

usage

Smoking over 5min increased cfPWV by 0.19 m/s after

15min; over 30min increased cfPWV by 0.36 m/s (98)

Alcohol Males 40–80 years of age 4–10, 11–21, and 22–58

drinks/week

Compared to those consuming 0–3 drinks per week;

decreased cfPWV by 0.77 m/s (4–10 drinks), 0.57 m/s

(11–21 drinks), 0.14 m/s (22–58 drinks) (99)

Post-menopausal women 50–74

years of age

1–3, 4–9, 10–14, and 15–35

drinks/week

Compared to non-drinkers: those consuming 1–3, 4–9,

10–14, and 15–35 drinks/week had the following difference in

mean cfPWV 0.044 (95% CI −0.47–0.56), −0.085 (95% CI

−0.59–0.43), −0.869 (95% CI −1.44–0.29), and −0.225

(95% CI −0.98–0.53) m/s (100)

AI, augmentation index; AoS, aortic stiffness; β, beta; BP, blood pressure; cfPWV, carotid-femoral pulse wave velocity; FMD, flow-mediated dilation; PWV, pulse wave velocity; RCT;

randomized control trial; SD, standard deviation; SE, standard error.

receptors have also been associated with increased blood pressure
and AoS in patients with DM (88). Therefore, modulation
of advanced end glycation products remains an interesting
target to halt disease progression. Furthermore, increased
glucose may lead to increased activity of RAAS and thus the
detrimental consequences as described in the section on RAAS
below (89).

LIFESTYLE RISK FACTORS

The association of lifestyle risk factors with AoS detailed below
are summarized in Table 2.

Alcohol
Much of the evidence for the association of alcohol with
AoS is data derived from self-reported alcohol consumption
in cross-sectional epidemiology studies. Interestingly, evidence

suggests there may be a J shaped relationship of alcohol use
to central aortic hemodynamics, with more favorable measures
among those with light to moderate consumption compared
with negligible and heavy drinkers. In young individuals, those
who reported light alcohol consumption, 2–6 drinks per week,
had lower central blood pressure than those who drank lower
or greater amounts (101). Similar findings have been reported
in middle aged to older adults. In men aged 40–80 years old,
those who drank moderate to large amounts of 4–10 and 11–
21 drinks per week had lower PWV than those who drank more
or less than these groups (99). Additionally, in post-menopausal
women aged 50–74 years, moderate alcohol intake was inversely
related to PWV (100). Furthermore, in controlled experiments,
alcohol ingestion appears to acutely decrease AoS. Even drinking
200 or 350 cc of beer leads to decreased baPWV and
cfPWV compared to controls (102). There are many proposed
mechanisms as to why low doses of alcohol can be beneficial
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to the heart such as by increasing HDL, insulin sensitivity,
and decreasing oxidative stress (103). More acutely, small
amounts of alcohol may decrease PWV through alcohol induced
increases in nitric oxide (104). Ultimately, future prospective
studies will shed light on the ideal alcohol consumption with
respect to long-term outcomes and recommended exposure for
vascular health.

Smoking
Smoking is a major modifiable risk factor for CVD (105).
One cigarette causes acute increases in brachial and aortic
blood pressure, arterial wave reflection, and AoS (106). Even
passive smoking has been shown to worsen the elasticity
of the aorta (107). Cigarette smoking has been shown to
have a dose-response relationship to elevated PWV, which is
only reversed after prolonged smoking cessation >10 years
(108). There is also evidence to suggest that e-cigarettes are
detrimental to AoS (98). The effect of cigarettes on AoS may
be due to endothelial cell damage and subsequent impaired
vasodilatory capacity (95, 96). Additional mechanisms appear
to be an increase in cholesterol, increased vascular remodeling
and arterial calcification, increased vascular tone, and oxidative
stress/inflammation (109).

Diet and Physical Activity
There is a growing body of evidence that lifestyle habits including
smoking cessation, diet modification, and exercise/weight loss
can reverse AoS (110). It is well-supported that high salt intake
leads to higher blood pressures (90) and that reduction in salt
intake leads to lower blood pressures (111). Low salt diets
similarly have been associated with lower PWV independent
of blood pressure (112). Furthermore, in men, over a period
of 17.8 years, higher consumption of saturated fatty acids was
associated with higher cfPWV and higher consumption of poly-
unsaturated fatty acids was associated with lower cfPWV (113).
Greater dairy consumption, particularly in those withDM, as well
as increased intake of vegetables has also been associated with
lower AoS (114–116).

Physical activity leads to lower central PWV and age-related
increases in PWV can be mitigated by exercise in both men
and women (92, 93). The Baltimore Longitudinal Study of
Aging rigorously phenotyped adults and measured VO2 max in
adults aged 21–96 years of age. These investigators demonstrated
that with greater age in the entire cohort, augmentation index
and aortic PWV increased out of proportion to the blood
pressure increase. However, these measures of AoS were lower
in endurance trained male athletes (defined by a VO2 max
1 standard deviation above their age matched non-trained
controls), compared with sedentary individuals (defined as less
than at least 20min of aerobic exercise three times weekly)
of similar age (92). Similarly, while sedentary post-menopausal
women have higher augmentation index and PWV than
comparable pre-menopausal women, thesemeasures of AoS were
similar in both pre- and post-menopausal active women who
were physically active (performed endurance training, actively
competing in running races, with average exercise of 6+/– 1 hour
of activity per week) (93). The effect of exercise on reducing AoS

is thought to relate to exercise induced changes in vessel wall
stress, a reduction in vasoconstrictors and ultimately vasodilation
via increased nitric oxide activity (117, 118). These studies
add to the growing body of evidence that improved lifestyle
modifications could make a large impact on the development and
progression of disease.

BIOMARKERS ILLUMINATING
PATHOPHYSIOLOGY AND THERAPEUTICS

Given the association of AoS with adverse outcomes, serum
biomarkers that correlate with AoS allow further insight into
mechanisms of AoS, non-invasive detection and monitoring of
AoS, and may highlight therapeutic targets. In this section, we
will discuss key serum biomarkers that modulate AoS, and the
associated evidence for therapies targeting these pathways.

Inflammatory Biomarkers
The presence of chronic inflammatory and infectious conditions
is associated with elevated AoS. In patients with systemic lupus
erythematosus, cfPWV was shown to be elevated even when
traditional risk stratification categorized patients into low risk
for CVD (119). Furthermore, higher aortic PWV has been
seen in patients with inflammatory bowel disease and has been
associated with disease duration (120). Many other inflammatory
conditions have been associated with increased AoS such as
rheumatoid arthritis (121, 122), psoriatic arthritis (123, 124), and
Sjogren’s syndrome (125, 126). The increase in AoS in those
with autoimmune disorders and chronic inflammatory diseases is
independent ofmore traditional risk factors and related to disease
duration and the elevation in inflammatory markers, suggesting
inflammation as a key player in this pathology (127).

Multiple inflammatory biomarkers have been associated with
AoS. A prospective study that followed middle-aged Japanese
men without hypertension for 9 years demonstrated that
sustained elevations in serum C-reactive protein (CRP) were
associated with a longitudinal increase in baPWV. Higher
baPWV was in turn associated with higher blood pressures
during follow-up (128). The accelerated vascular disease in
this cohort at relatively low vascular risk suggests that
chronic inflammation may contribute to progressive vascular
stiffness and dysfunction. Though CRP is associated with
several cardiovascular risk factors, models adjusting for these
demonstrated a persistent linear association between CRP and
AoS in the population-based Rotterdam Study (129). A potential
mechanism may lie in endothelial dysfunction: in men with
coronary artery disease with forearm blood flow response
studied with venous occlusion plethysmography, CRP levels
were associated with blunted endothelial vasodilator capacity in
models including risk factors (130). Additionally, normalization
of CRP levels was associated with improved blood flow response
in these individuals. IL-6 is another inflammatory cytokine that
has been shown to be associated with cfPWV in individuals with
hypertension (131). Furthermore, there is research establishing
a link between polymorphisms on IL-6 with increased cfPWV
(132). These studies suggest that inflammation is associated
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with AoS but more studies are needed to fully elucidate the
mechanistic relationships.

The relationship between inflammatory states and CVD has
been further elucidated by studies that have examined the effect
of treatment of inflammatory diseases. Patients with rheumatoid
arthritis treated with anti-tumor necrosis factor-a agents have
shown significant declines in cfPWV after treatment (133).
Furthermore, statins have been shown to decrease AoS in patients
with inflammatory joint diseases, suggesting that controlling
inflammation and possibly lowering lipids is beneficial in
this population (134).

Klotho and Sirtuin-1
Klotho is predominantly expressed in the kidney and has been
described as an anti-aging gene (135). When mice are deficient
in Klotho, they have decreased lifespan and calcifications of
multiple organs. Haplodeficiency of Klotho in mice leads to
increased PWV and hypertension (136, 137). The association of
Klotho levels with AoS has also been demonstrated in patients
with chronic kidney disease (CKD) (138). Klotho appears to
directly regulate SIRT1, a gene encoding a NAD+ dependent-
deacetylase with anti-inflammatory and anti-oxidant effects and
importance in endothelial cell function (139, 140). Klotho

TABLE 3 | Association of serum biomarkers with aortic stiffness.

Biomarker Clinical relevance Association with aortic stiffness

Key biomarkers with independent association with AoS

Inflammatory biomarkers • The presence of conditions like SLE (155), IBD (156), psoriasis

(157), and HIV (158) are linked with high higher risk of CVD

• Elevated PWV in IBD patients (120)

• Elevated carotid AI and PWV in SLE patients (159)

CRP • Associated with insulin resistance (160), carotid intima-media

thickness and markers of atherosclerosis (161)

• Sustained elevation in serum CRP correlated with increased

baPWV and BP in middle aged Japanese men (128)

• In Chinese general population baseline hs-CRP associated with

baPWV (162)

Klotho • Klotho levels lower in those with renovascular hypertension and

essential hypertension compared to healthy controls (163)

• Klotho levels lower in those with significant coronary artery

disease (164)

• Haplodeficiency in Klotho in mice led to increased AoS

(136, 137)

Aldosterone • Increases insulin resistance, oxidative stress, inflammation (89)

• Promotes vascular calcification (165)

• Associated with increased PWV (143)

• Fibronectin accumulation (166)

Other biomarkers associated with AoS

Adipocyte-Fatty-Acid-

Binding protein

(A-FABP)

• Elevated levels have been associated with endothelial

dysfunction in patients with type 2 diabetes (167)

• Elevated levels associated with diastolic dysfunction (168) and

cardiovascular death (169)

• In patients with hypertension and metabolic syndrome, increased

levels of A-FABP associated with increased cfPWV (170)

• A-FABP levels positively correlated with cfPWV in patients with

type 2 diabetes (171)

Leptin • Leptin levels predicted ischemic heart disease in patients with

type 2 diabetes (172)

• Patients with coronary artery disease have higher levels of

serum leptin (173)

• Higher leptin levels associated with increased cfPWV in patients

with kidney transplants (174) and in geriatric patients on dialysis

(175)

• Meta-analysis demonstrated leptin is positively associated with

cfPWV (176)

Natriuretic peptides • Released in response to ventricular hypertrophy, inflammation,

and fibrosis (177)

• Predictor for heart failure or death in patients with an acute MI

(178, 179)

• AoS is associated with NT-proBNP level and MR-proANP

months after MI (180, 181)

Parathyroid hormone • Parathyroid hormone is associated with atherosclerosis (182) • Patients with mild hyperparathyroidism had increased cfPWV

which then decreased after a thyroidectomy (183)

• cfPWV increased independently with parathyroid hormone in

Chinese patients with untreated hypertension (184)

Resistin • Increased resistin associated with increased risk of heart failure,

coronary heart disease, CVD (185)

• High levels of resistin associated with increased cfPWV in sample

with high prevalence of untreated hypertension/obesity (186)

• Serum resistin is an independent predictor of cfPWV in patients

with coronary artery disease (187)

Uric Acid • High levels of uric acid associated with acute myocardial

infarction (188) cardiovascular events (189, 190) stroke (190)

• Association between higher uric acid and cfPWV in men after

adjustment for confounders (191)

• Overall positive association between uric acid and cfPWV at

adjusted analysis in both males and females (192)

• Serum uric acid is independently associated with cfPWV in

post-menopausal women (193)

• Significant association between uric acid cf PWV and carotid

radial PWV in young Caucasian population (194)

AI, augmentation index; AoS, aortic stiffness; ba-PWV, brachial-ankle pulse wave velocity; CVD, cardiovascular disease; HIV, human immunodeficiency virus; hs-CRP, high sensitivity

CRP; IBD, Inflammatory Bowel Disease; MI, myocardial infarction; PWV, pulse wave velocity; SLE, Systemic lupus erythematosus.
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haplodeficiency downregulates SIRT1 in arterial endothelial and
smooth muscle cells, with associated increased arterial wall
collagen deposition and elastin fragmentation, both of which
explain the association with AoS (137). Zhou et al. demonstrated
that CYP11B2, a rate-limiting enzyme in aldosterone synthesis,
is up-regulated in Klotho deficiency, and that treatment
with eplerenone reversed increased AoS (141). Thus, another
mechanism by which Klotho deficiency may mediate increased
AoS is through the aldosterone pathway.

The interaction between Klotho and SIRT1 has illuminated
a number of possible targets for therapies that modulate
pro-oxidant and pro-inflammatory pathways. Further,
improved calcium and phosphate homeostasis may be of
increased importance in CKD patients where impaired calcium
homeostasis and a pro-inflammatory milieu may accelerate
vascular dysfunction. Thus, understanding these mechanisms
provides opportunities for possible therapeutic interventions.

RAAS
The role of RAAS in the progression of AoS is supported by
observational studies, clinical studies relating to modulation with
therapeutics, biochemical studies demonstrating involvement in
vascular remodeling, and mapping of related gene loci.

RAAS-associated AoS is proposed to be due to aldosterone
and angiotensin II increased inflammation as well as
vasoconstriction from activation of angiotensin I receptors and
mineralocorticoid receptors (142). Aldosterone has been shown
to be involved in many pathologic processes such as increased
insulin resistance, increased oxidative stress, and increased
inflammation (89). In multivariable adjusted models, serum
aldosterone is linearly associated with PWV in hypertensive
patients (143). The importance of RAAS is further highlighted by
multiple studies that demonstrate a positive association between
cfPWV and polymorphisms in the angiotensin II type 1 receptor
(144, 145), angiotensin converting enzyme gene (146, 147) as
well as in the aldosterone gene (148). Polymorphisms in RAAS
may thus contribute to the highly heritable traits of AoS and
blood pressure (149). Additional future work may determine the
appropriate application of genetic testing to guide detection and
management of AoS.

With respect to therapies, inhibiting aldosterone with
spironolactone has been shown to decrease collagen density
and thus AoS (150). London et al. demonstrated that central
systolic blood pressure was decreased to a greater extent
with perindopril/indapamide treatment compared to treatment
with atenolol, implying a distinct role of RAAS modulation
in central hemodynamics (151). This data on the role of
RAAS inhibition in AoS may be useful to consider for
physicians choosing an anti-hypertensive medication. When
compared with atenolol, eplerenone has been shown to
decrease AoS, decrease the collagen to elastin ratio, and
decrease concentrations of inflammatory markers including
MCP-1, basic fibroblast growth factor, and interleukin-10 (152).
Furthermore, when comparing atenolol, nebivolol, aliskiren,
and quinapril, the RAAS modulating agents demonstrated
continued reductions of cfPWV, possibly implicating arterial
remodeling rather than modulation of hemodynamics alone

(153). Lastly, non-pharmacologic augmentation to the RAAS
system is also important to consider. Decreased salt intake
has been shown to decrease AoS independent of blood
pressure reductions that may be mediated through RAAS
modulation (154).

In addition to the above, other general biomarkers associated
with AoS are presented in Table 3.

GENERALIZABILITY AND FUTURE
DIRECTIONS

Despite data illuminating pathways important in AoS
pathophysiology and the promising data for their modulation,
there has been a paucity of data in this field. Controlled trials thus
far have been of relatively small size with short duration, with
possibly insufficient follow up time to adequately assess for aortic
remodeling and change in AoS (195). However, encouraging data
on the prognostic impact of PWV continues to emerge. In the
past 2 years, a post-hoc analysis of 8,450 patients in the Systolic
Blood Pressure Intervention Trial (SPRINT) demonstrated that
reductions in PWV after 1 year of anti-hypertensive therapy
were associated with 42% lower risk of death compared to
individuals who did not have reductions in PWV, independent of
Framingham Risk Score and blood pressure (196). Additionally,
an innovative experiment performed on mice aortas ex vivo used
a synthetic peptide targeted to a cytoskeletal protein known to be
associated with AoS in human genome wide association studies
(197). This study illustrated the proof of concept that such
decoy peptides decreased cfPWV, illustrating that approaches
targeted to AoS rather than blood pressure per se, may be
able to be applied in the future. Ultimately, larger therapeutic
trials that target AoS and demonstrate improved outcomes are
needed to establish widespread clinical utility of AoS assessment
and treatment.

CONCLUSION

AoS is a precursor to hypertension and an accepted risk factor for
CVD independent of blood pressure. Despite its demonstrated
prognostic value, thus far broad clinical applicability has been
limited by measurement variation in multiple methodologies
illustrated, lack of age and blood pressure specific reference values
applicable to all populations, and effective therapeutics targeting
AoS. AoS may be addressed indirectly through treating several
lifestyle risk factors and associated comorbidities. Continued
research will help to add to the illustrated biologic pathways of
AoS. In the future, novel approaches and applications of existing
drugs to specifically target pathways involved in modulating
AoS may provide further support to its broader assessment and
treatment to improve cardiovascular outcomes.
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