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Chronic total occlusion (CTO) of coronary arteries is a common finding in patients with

known or suspected coronary artery disease (CAD). Although tremendous advances

have been made in the interventional treatment of CTOs over the past decade,

correct patient selection remains an important parameter for achieving optimal results.

Non-invasive imaging can make a valuable contribution. Ischemia and viability, two

major factors in this regard, can be displayed using echocardiography, single-photon

emission tomography, positron emission tomography, computed tomography, and

cardiac magnetic resonance imaging. Each has its own strengths and weaknesses.

Although most have been studied in patients with CAD in general, there is an increasing

number of studies with positive preselectional factors for patients with CTOs. The aim of

this review is to provide a structured overview of the current state of pre-interventional

imaging for CTOs.

Keywords: chronic total occlusion, revascularization, non-invasive imaging, hibernation, ischemia, viability

INTRODUCTION

Chronic total occlusion (CTO) of coronary arteries is a common finding in coronary angiograms
of patients with known or suspected coronary artery disease (CAD). Despite their frequency,
CTOs are the most reliable predictor of an incomplete revascularization. This is the result of
two major factors: (a) a lack of data from randomized controlled trials regarding a benefit
on mortality and (b) the lower success rate accompanied by a higher complication rate of
an interventional revascularization. Large registry studies have shown that CTO percutaneous
coronary interventions (PCI) can reduce mortality (1–4). The EUROCTO trial, the first
randomized controlled trial on CTO, showed a benefit in terms of ischemic symptom burden rather
than other hard clinical outcomes (5). In another randomized controlled trial (REVASC Trial),
CTO PCI did not show an improvement in analyzed cardiovascular magnetic resonance (CMR)
parameters but a reduction in major adverse cardiovascular events (6).

Current guidelines and position papers therefore recommend CTO PCI in the case of ongoing
symptoms and viable myocardia in the CTO territory (7–10). However, imaging of ischemia
remains controversial. On the one hand, revascularization is recommended for CAD patients with
more than 10% myocardial ischemia (7, 8). However, the trial underlying this recommendation
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TABLE 1 | Viability testing using different non-invasive imaging modalities.

DSE SPECT FDG-PET CT (experimental) CMR

Sensitivity 80–84% 83–87% 88–93% N/A LGE: 84–95%

Dobutamine: 81–84%

Specificity 78–81% 65–69% 58–73% N/A LGE: 51–74%

Dobutamine: 82–91%

Radiation dose None 6–24 mSv ∼7 mSv ∼7 mSv None

Contrast agent/tracer Not necessary Radioactive tracer

(99mTc or 201Tl)

Radioactive tracer (18F,
82Rb)

Iodine
LGE: gadolinium

Dobutamine: None

Cost Low Moderate High Moderate High

Limitations Very low image quality

in some patients

Low resolution and

high radiation dose

High cost and high

radiation dose

High radiation dose

and limited knowledge

of viability testing

High cost and long

duration

Advantages Low cost and wide

availability

Balanced cost and

diagnostic accuracy

High resolution and

sensitivity

Positive adjunctive

information

Availability of

prognostic data in CTO

Sensitivity, specificity, and radiation doses are adopted from Henzlova et al. (21), Bax et al. (22), Matsuda et al. (23), Case et al. (24), Romero et al. (25), and Schinkel et al. (26).

Viability was defined as functional recovery after percutaneous coronary intervention or coronary artery bypass grafting in CAD patients.

DSE, dobutamine stress echocardiography; SPECT, single-photon emission computed tomography; FDG-PET, 18F-fluoro-2-deoxy-D-glucose positron emission tomography; CT,

computed tomography; CMR, cardiovascular magnetic resonance; LGE, late gadolinium enhancement.

focused on patients with CAD in general and not on CTO
patients in particular (11). On the other hand, ischemia is always
seen in viable CTO-related myocardia regardless of the grade
of collaterals, and in most CTOs of major vessels, the degree
of myocardial ischemia is above 10% (12, 13). Even though
the ISCHEMIA trial found no benefit of an ischemia-driven
revascularization approach, its results are not generally applicable
to patients with CTOs (14, 15).

Viability is by definition present in segments with preserved
systolic function. In contrast, dysfunctional segments are not a
priori avital. The term “hibernation” was introduced to explain
a potentially dysfunctional myocardium resulting in ischemia.
Information is gained from an initial coronary angiogram where
well-developed collaterals correlate with less extensive scarring,
indicating a more viable myocardium (16, 17). A normal wall
motion in CTO-related areas is a common finding, and extensive,
transmural scarring is only observed in about 5% of CTO
segments (16). Otherwise, the presence or extent of a Q wave or
QS complexes in an electrocardiogram (ECG) is no proof of a
vitality (18–20).

For the detection of a hibernating myocardium, a broad range
of non-invasive imaging modalities is available. An overview is
presented in Table 1 with an example of their use in Figure 1.
The selection mainly depends on local availability and expertise.
This review aims to discuss the possibilities and limits of the
available non-invasive imaging modalities and future trends. The
review focuses on studies aiming to optimize patient selection for
CTO reperfusion and its outcomes, although most findings are
applicable to CAD patients in general.

ECHOCARDIOGRAPHY

Echocardiography is inexpensive and available nearly
everywhere. It is the standard modality for the evaluation of

global and regional cardiac function. Besides pre-interventional
examinations, the bedside use of echocardiography in the
catheter laboratory provides the opportunity to detect
complications during interventions, such as pericardial effusions
or intramural hematomas.

However, the value and validity of echocardiography depend
on the investigator’s experience. In CAD patients, an increase
in regional contractility under dobutamine stress (“contractile
reserve”) can show viability and improvement of regional
function after revascularization (27–29). Themostly older studies
on dobutamine stress echocardiography (DSE) included small
patient samples with a clear underrepresentation of women. The
sensitivity of DSE in predicting an improvement of regional
function ranges from 74 to 94% (30). In a relatively large
trial involving 318 patients, revascularization in segments with
viability on DSE was associated with reduced mortality (31).
In another trial, viability assessed by DSE was associated with
a relative reduction of mortality by 19.5% in patients with a
severe left ventricular dysfunction (LVEF< 35%) (32). Because of
its wide distribution and cost-effectiveness and the accumulated
experience in clinical practice, DSE appears to be a good tool for
examining patients with CTOs, provided that the image quality
is good. Another advantage is the low rate of side effects of
dobutamine stress (33). Other forms of myocardial stress are also
possible as an alternative to dobutamine, such as dipyridamole
and treadmill exercise (34).

In addition to the examination under dobutamine stress,
echocardiography at rest can predict viability under certain
circumstances. An end-diastolic wall thickness (EDWT) of
>0.6 cm in dysfunctional segments is a marker of hibernation.
In a trial involving 45 patients undergoing 2D echocardiography,
DSE, and rest-redistribution thallium-201 (Tl-201) tomography
before revascularization, an EDWT of >0.6 cm had 94%
sensitivity and 50% specificity with a ROC curve similar to the
maximum Tl-201 uptake, while DSE increased specificity to 88%
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FIGURE 1 | Example of hibernating myocardium: 76 years old male with a perfusion defect on the posterolateral wall in the Tc-99m-MIBI rest scan that shows FDG

uptake in the viability F-18-FDG-PET/CT scan resulting in the diagnosis of hibernating myocardium. (A) Short axis, (B) vertical long axis, and (C) horizontal long axis.

The upper rows show the perfusion scan at rest with Tc-99m-MIBI (SPECT), the lower rows show the viability scan with F-18-FDG (PET). (D) Polar maps and

subtraction image to visualize the mismatch between the perfusion defect on SPECT and the viability on FDG-PET/CT. 23.7% of the myocardium in the left ventricle is

in hibernating status.
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(33). More recent studies focusing on strain echocardiography
have reported promising results (35, 36). However, the
interpretation of deformation parameters depends heavily on
image quality and the examiner’s experience. For wider use,
validation in a prospective cohort is warranted.

MYOCARDIAL PERFUSION
SCINTIGRAPHY

Myocardial perfusion scintigraphy (MPS) is a nuclear medicine
technique that is used for around 50 years to assess regional
left ventricular myocardial perfusion, diastolic and systolic
function as well as to differentiate hibernating myocardium from
transmural or non-transmural infarct. Three dimension images
of myocardium are acquired after injecting radiopharmaceuticals
with high first pass extraction by the myocardium using the
single emission computed tomography (SPECT) technique.
In majority of the centers the images are additionally
corrected for attenuation correction using low dose CT images
acquired simultaneously with SPECT images. As radioisotopes
preferentially Technetium-99m (Tc-99m), specially in Europe
and rarely Thallium-201 (Tl-201) are used (21). Tl-201 as a
cyclotron product is injected as Thallium-201-Chloride. The
Tc-99m is eluted from a generator and is either labeled with
Sestamibi (CardioliteTM) or Tetrofosmin (MyoviewTM).
Nowadays Tc-99m-labeled tracers are the tracer of choice
because of more favorable imaging characteristics because of
higher photon energy (140 keV compared to 69–83 keV) with
less attenuation by the tissues around the heart, improved image
quality and less radiation exposure (6 mSv vs. 17 mSv) compared
to Tl-201 because of a shorter half-life (Tc-99m = 6 h, Tl-201
= 72 h). ECG-gated perfusion images allow the simultaneous
assessment of perfusion as well as global and regional function
of the left ventricle and are therefore an important tool in
the diagnosis and management for CAD. To assess perfusion
imaging a comparison between images at rest and images after
stress is required. To replicate the normal physiological effect
of strenuous exercise on perfusion, radiopharmaceuticals are
injected after the patients underwent either physical stress
(e.g., by a treadmill) or pharmacological stress (adenosine,
regadenoson or dobutamine) tests. Thereafter the resting state
images are acquired at a later time point. In patients without
hemodynamically relevant myocardial ischemia, both stress and
rest scans show a homogeneous distribution of the perfusion
tracers. In comparison, patients with hemodynamically relevant
stenosis of the coronary vessels, decreased segmental or
subsegmental uptake of the tracer is seen in stress which however
normalizes itself in the resting phase. A scar of the myocardium
shows reduced or no uptake in the scar area both during stress
and in rest conditions as a fixed defect.

The rarely used Tl-201 is a potassium analog and uses
the Na/K ATPase system of viable myocardial cells. Its initial
myocardial uptake is proportional to blood flow and it is rapidly
cleared from the blood. After that up to 4 h a re-equilibration
takes place when Tl-201 concentration levels are lower in the
blood. This is also called redistribution and the process is directly

proportional to blood flow to the area and viable myocardial
cells. If the stress and rest images show matched homogeneous
normal tracer uptake there is no sign of ischemia or infarction.
If the tracer uptake during stress is abnormal but with normal
uptake during rest / redistribution that is a sign for ischemia.
Perfusion defects on both stress and rest images usually means
there is a scar. To check that area for hibernating myocardium a
reinjection of Tl-201 and another image acquisition after 18–24 h
can be carried out. If there is Tl-201 uptake, there is hibernating
myocardium in this area. If there is a scar no tracer uptake can be
detected (37, 38).

The Tc-99m-labeled radiotracers are monovalent cations
that enter cells through their lipophilic characteristics. Their
uptake is also dependent on blood flow but as well as on
electrochemical gradients of the plasma- and mitochondrial-
membranes, the cellular pH and intact energy pathways. In the
myocytes they are trapped mainly in the mitochondria with
minimal washout and no redistribution in the blood. After
the intravenous injection these tracers are first cleared by the
liver and excreted through the bile. This makes it impossible
to assess the myocardial uptake of the inferior wall right after
injection and leads to a delay of 15–45min before the start of
the imaging acquisition, especially for Sestamibi. Tetrofosmin
allows earlier imaging acquisition because of lower hepatic
uptake. Stress and rest images can be acquired in 2-day and
1-day protocols that show no significant differences (21). For
the 1-day protocol the stress images should be acquired first.
If there is a homogenous tracer uptake the rest images can be
avoided. In the 1-day protocols the injection for the second
imaging (rest) higher amount of radioactivity is injected to
overcome the shine through from the remaining radioactivity
after stress. With the Tc-99m-labeled radiotracers perfusion and
ischemia as well as viability can be examined but not hibernating
myocardium (39). As Tl-201 is associated with higher radiation
exposure, hibernating myocardium are best depicted by using a
combination of Tc-99m Tetrofosmin or Sestamibi perfusion scan
and F-18-FDG-PET.

The accurate interpretation of the myocardial perfusion
imaging with SPECT is crucial. Absolute quantification of
perfusion is more common with PET than with SPECT.
According to the literature the sensitivity and the specificity of
gated myocardial SPECT studies to diagnose clinically significant
CAD with Tc-99m tracers is 88.3 and 75.8%, respectively (40).
Cutoff values for the uptake of the tracers of > 50% of Tc-99m
and > 60% of Tl-201 are commonly associated with regional
functional recovery in CAD. However, in the detection of a
viable hibernating myocardium, specificity is moderate (49–
69%) and can lead to an overestimation of potential functional
recovery (22). The presence of an ischemic area on a SPECT
scan has shown a negative predictive value for cardiac events
(41). In a trial involving patients with CTO of the left anterior
descending artery, perfusion defects on SPECT scans before
a PCI were associated with an improvement of clinical and
functional markers, such as the 6-min walk test, left ventricular
volumes and ejection fraction (42). The effect was stronger in
patients with reversible perfusion defects than in patients with
irreversible defects.
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Visual interpretation of three vessels CAD is a challenge for
nuclear cardiology field. However, with the development and
standardization of protocols as well as advances in the scanner
types (e.g., digital scanners or the even newer C-shaped heart-
specific gamma cameras) there is a remarkable improvement in
the quantification of myocardial wall thickening, contraction,
and dilatation as well as in measurement of ejection fraction.
Left ventricular dilatation in stress in comparison to rest can be
quantified as transient ischemic dilatation (TID). A TID value
above 1.3 is generally considered to be significant and can be used
for assessment of three vessels disease (43).

However, the comparatively low spatial resolution of SPECT
images compared to that of other imaging modalities is a
potential disadvantage, as it can lead to overdiagnosis of
subendocardial infarctions. Nevertheless, this is not a real
disadvantage in the examination of patients with CTOs since
transmurality is the main question in this case. There are new
predefined criteria for differentiating between transmural and
non-transmural infarction in SPECT images (44).

Overall, SPECT appears to be a useful examination modality
for patients with CTOs. A radiation dose of 6–24 mSv, depending
on the protocol and tracer used (lower radiation doses for Tc-99m
and higher radiation doses for Tl-201) (21), as well as expertise,
should be taken into consideration.

POSITRON EMISSION TOMOGRAPHY

Positron emission tomography (PET) is another nuclear
medicine imaging technique that is in use for around 40
years in some specialized centers with a broader use during
the last years. The main advantages of PET over SPECT are
higher-quality images because of high-energy emitted photons
(511 keV) with improved spatial and temporal resolution and
shorter half-lives of the radioisotopes (mostly some minutes)
as well as less radiation exposure (45, 46). By the use of
F-18-FDG it is also possible to make the myocyte glucose
metabolism visible. A combination of MPS and FDG-PET is
important in the detection and risk stratification of CAD. Two
examples for the detection of hibernating myocardium and the
differentiation to scar are seen in Figures 1, 2. Additionally,
perfusion PET also allows an improved functional evaluation
of CAD because of a higher diagnostic accuracy and the
possibility of measurements of myocardial blood flow (MBF)
in absolute terms (milliliters per gram per minute). That
makes it also possible to detect microvascular disease and
balanced ischemia.

For the imaging with PET positron emitting radionuclides
like Rubidium-82 (Rb-82), Oxygen-15 (O-15), Nitrogen-13 (N-
13), and Flouride-18 (F-18) are used and incorporated into
biochemical molecules. Rb-82 is a generator product, the other
named radioisotopes are cyclotron products and for O-15 and N-
13 with very short half-lives of 2 and 10min, respectively, making
an onsite cyclotron necessary. For perfusion imaging O-15 water,
N-13 Ammonia, Rb-82 and F-18 Flurpiridaz are used with stress
and rest imaging as in MPS. O-15 water is ideal for quantification
of MBF in absolute terms. It can be seen as a one-compartment

tracer kinetic model as it has no barrier effect form cellular
membranes. Because of its very short half-life and poor contrast
images between blood pool and themyocardium its use is limited.
N-13 Ammonia is cationic and its first-pass extraction is related
to blood flow for low flow rates. It reaches the cytosols via passive
diffusion or active transport and is incorporated into the amino
acid pool or diffuses back into the blood. Rb-82 is a potassium
analog with a very short half-life of 75 s. During first-pass its
extraction is not very high and builds a plateau with higher
blood flow rates. F-18 Flurpiridaz is a novel PET mitochondrial
complex-1 inhibitor in preparation with a half-life of 120min.
It has a high extraction rate with high flow and therefore makes
absolute quantification of blood flow possible (47). As for SPECT
tracer uptake between stress and rest images are compared to
detect ischemia and scars.

For the differentiation of a perfusion defect in both stress and
rest between a scar region and ischemic but viable region F-
18-Fluorodeoxyglucose (FDG) is used. F-18-FDG competes with
glucose for transport as well as phosphorylation by hexokinase.
Once it is in the cytosol and phosphorylated it cannot be further
processes by glycogen synthesis and is therefore trapped in the
cell (45, 48). Its half-life of 110min makes it easy to handle. To
assess myocardial viability of a perfusion defect in stress and
rest or in rest only (preferably from PET scans) an additional
PET scan with F-18-FDG according to a special protocol can be
performed. For non-diabetic and diabetic patients fasting for at
least 6 h is required. After measurement of the serum glucose
a protocol for glucose loading and insulin is required before F-
18-FDG is administered intravenously (glucose < 100 mg/dl 25–
100 g oral load or dextrose infusion, later insulin is administered
according to the glucose level, glucose < 250 mg/dl only insulin
is administered without an additional glucose load). In a viability
study areas with highly reduced or absent perfusion but preserved
or even enhanced metabolic activity Perfusion/metabolism
mismatch, are hibernating but viable and have a high probability
of regaining function after revascularization. Areas that show no
perfusion during rest but do have preserved glucose metabolism
are viable whereas the absence of glucose metabolism indicates
non-viable myocardium. There are three different patterns
which can be seen combining myocardial perfusion imaging
at rest with F-18-FDG: (1) hibernating myocardium showing
reduced perfusion with preserved FDG-uptake, (2) transmural
scar without perfusion and without FDG-uptake, and (3)
non-transmural scar with partially reduced perfusion of the
myocardium with concordant FDG-uptake.

In CAD patients in general, an ischemia-driven
revascularization approach guided by PET could result in a
reduction in angina severity and a slight improvement in the left
ventricular ejection fraction (49). Stulijfzand et al. who examined
69 CTO patients with O-15 water PET, found no correlation
between the degree of ischemia and volumetric or functional
improvements after CTO PCI but observed a significant ischemic
burden reduction (13). In another study, this improvement in
myocardial blood flow correlated to the defect size in a baseline
PET examination (50). To summarize, PET imaging is a useful
tool for evaluating ischemia and viability, with excellent spatial
and temporal resolutions.
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FIGURE 2 | Example of multiple perfusion defect with hibernating myocardium as well as areas of scars: 45 years old male with perfusion defects in the anteroseptal

wall as well as on the anterolateral and posterolateral wall in the Tc-99m-MIBI rest scan. FDG uptake in the viability F-18-FDG-PET/CT scan shows some uptake in the

areas with perfusion defects resulting in the diagnosis of hibernating myocardium but also some areas with no FDG uptake especially septal and posterior resulting in

the diagnosis of scars. Overview and polar maps with SRS, summed rest score; VS, vitality score; SS, scar score.

COMPUTER TOMOGRAPHY

Computed tomography (CT) angiography has traditionally

been used for anatomical evaluations of the coronary tree.

With the advent of new-generation scanners with dual-source

imaging, 64-row scanners, and modern software techniques,

plaque morphology and regional calcium burden evaluations and
functional assessments have also become possible (51, 52).

Since CTOs are found in many patients with known or
suspected CAD, CT examinations can also contribute to their
diagnosis. However, the distinction between a “true” CTO
and subtotal stenosis constitutes a diagnostic difficulty. The
distal lumen is often contrasted via collaterals, and the spatial

resolution of CT is relatively low in comparison to classical
angiography. Diagnostic markers such as a lesion length over
9mm and the so-called reverse attenuation gradient sign have
proven to be helpful, enabling a clear diagnosis in most cases (53–
55). Apart from pure diagnostics, CT angiography is increasingly
used for prognostic assessments and pre-procedural planning of
coronary interventions and offers the possibility of follow-up
restenosis assessments (56). Blooming artifacts are a limitation
caused by severe calcification or stent struts, leading to a potential
overestimation of lumen narrowing. This affects diagnosis of
CTO as well as follow-up evaluation of the stent patency.
Novel techniques and algorithms sought to overcome this
limitation (57).
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A key task of the pre-interventional examination of CTO
patients is the abovementioned viability test. While cardiac CT
was previously used for purely anatomical assessments of the
coronary tree, it can also be used for hibernation assessments.
These are based on classic measures, such as global and regional
function, wall thickness, and wall thickening in systole, while
assessment methods derived from CMR have not yet found their
way into clinical routine. Reduced perfusion can be indicated
by reduced contrast during the arterial phase. Similar to the
flooding behavior of gadolinium-containing magnetic resonance
imaging (MRI) contrast agents, delayed (late) enhancement
with iodine-containing contrast media indicates myocardial
scarring. A mismatch between underperfusion (arterial phase)
and late enhancement indicates a potential intervention target
(58). An additional late CT examination (5–15min after the
administration of the contrast medium) is associated with
considerable radiation exposure. Currently, only data from
experimental and animal studies showing good agreement with
CMR scans are available (23, 52, 59, 60).

For the prediction of interventional recanalization success,
the Computed Tomography Registry of Chronic Total Occlusion
Revascularization (CT-RECTOR) score was established by
analogy with angiography-based scores, such as the Japanese
Multicenter CTO Registry (J-CTO) and Prospective Global
Registry for the Study of Chronic Total Occlusion Intervention
(PROGRESS-CTO) scores (61). It is calculated based on
the presence of multiple occlusions, a blunt stump, severe
calcification in the cross-sectional area of the occluded vessel,
tortuosity, anamnestic information from a second attempt, and
the presumed duration of the CTO. However, the J-CTO score
has also shown applicability to CT angiographies (62).

The actual procedure can also be planned using CT
angiography. Depending on factors such as good collateralization
or the presence of an intensively calcified proximal cap, the access
route (antegrade or retrograde) can be determined, or in the
case of severe calcifications over short distances, an early switch
to a stiffer wire can be decided. The anticipation of a need for
rotablation or debulking devices is a potentially time-saving and
patient-friendly factor (63). In a single-center study involving
one interventionalist and 73 patients with CTOs, the use of pre-
procedural CT angiography for planning significantly increased
the recanalization rate in the matched analysis from 64 to 88%
(64). In another study with 15 patients with pre-procedural CT
planning and 59 patients in a purely classical angiographically
controlled group, a stiff wire was chosen significantly more
often as the initial wire, and there was less contrast exposure
(65). An option after a CT scan that should not be neglected
is referral to another center if there is no experience in the
use of retrograde maneuvers or foreseeably necessary material is
not available.

CT angiography can also be used to detect in-stent restenosis
in follow-up investigations. However, as it has shown a high
negative predictive value but a low positive predictive value
(66–68), its clinical benefit in the case of frequent inconclusive
findings, and thus the necessity of an invasive examination with
double exposure to radiation and contrast media, must be further
investigated in clinical trials. A combination with CT perfusion

imaging or fractional flow reserve CT could further increase its
value (69, 70).

In summary, pre-interventional multi-slice CT is a useful
additional pre-interventional diagnostic tool. If necessary, it
should be combined with other examination modalities to detect
hibernation. Among all diagnostic modalities, CT is the closest
to integrating diagnosis, risk calculation, intervention planning,
and follow-up care in one modality.

CARDIOVASCULAR MAGNETIC
RESONANCE

Cardiovascular magnetic resonance (CMR) is the gold standard
for the evaluation of the left and right ventricular volumes
and function, as well as ischemia and viability. A major
advantage of CMR over nuclear and CT imaging is the lack
of a need for ionizing radiation and the better tolerance of
gadolinium-containing contrast media compared to iodine-
containing contrast media. Its spatial and temporal resolutions
are good thanks to modern sequences, such as balanced steady-
state free precision imaging, ECG-gating, and breath holding
techniques (71). Image quality is getting worse only in patients
with severe arrhythmia or non-compliant patients. Real-time
imaging without the need for breath holding is evolving to
overcome these disadvantages (72).

Ischemia can be visualized using adenosine perfusion CMR.
Less contrasted myocardial areas under vasodilator stress
indicate a myocardium at risk (73). In CAD patients in general,
adenosine perfusion imaging has shown potential for diagnosis
and risk prediction (74, 75). Dobutamine stress can be used
as an alternative to vasodilatory stress for risk assessment with
comparable results (76, 77). However, the role of stress imaging
in evaluating CTOs is controversial, as a study found a perfusion
deficit in every CTO patient (78). Nevertheless, it can be argued
that it may have its place inmyocardium risk assessment. Perhaps
the ongoing CARISMA_CTO study will provide more clarity on
the matter (79).

Two modalities have been developed for viability assessment:
low-dose dobutamine CMR (LDD-CMR) and LGE. LDD-CMR
is the older method, but it has shown excellent results in
predicting functional recovery after revascularization, even in
direct comparison with other imaging techniques (80, 81). In
low doses, dobutamine increases the regional function of an
ischemic or hibernating myocardium (“contractile reserve”).
Therefore, an increase in systolic wall thickness with low
dobutamine doses is a predictor of functional recovery after
revascularization in CAD patients in general. Conversely, in
higher doses, the systolic function of an ischemic myocardium
deteriorates. A combination with strain imaging is a promising
method for improving diagnostic accuracy (82). To date,
no studies have evaluated the utility of LDD-CMR prior to
CTO revascularization.

LGE imaging is a valuable tool for distinguishing a hibernating
myocardium from post-infarction scarring. Five to 15min after
the administration of a gadolinium-based contrast agent, focal
deposits of gadolinium in the myocardium show a widening
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FIGURE 3 | Example of a 56 year old male with a chronic total occlusion of the right coronary artery. The occlusion is seen in the computer tomography coronary

angiogram (A and B, red cross) with a short occlusion length and a small amount of calcification. Because of an impaired regional function with thinning of the left

ventricular wall, imaging of ischemia (C, first-pass perfusion) and scarring (D, late gadolinium enhancement) was done using cardiac magnetic resonance. With a LGE

of <50% transmurality (white crosses) and a high symptom burden, interventional revascularization was successfully performed (E,F) with significant clinical

improvement.
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of the extracellular volume, indicating fibrosis and scarring,
because of a delayed washout. LGE has shown a good correlation
with PET examinations and excellent inter- and intra-observer
agreement (83). In stable CAD, the combination of adenosine
perfusion imaging and LGE has been shown to improve risk
stratification and to help identify patients who will benefit from
revascularization (74, 75, 84).

In a trial involving 59 patients with successful CTO PCIs,
a pre-interventional LGE extent of <50% was associated with
functional recovery of the related segment (85). In another study,
CTO PCI was associated with an improvement of myocardial
blood flow assessed using CMR and a reduction in the ischemic
symptom burden (86). In that study, patients with a transmural
LGE extent of more than 75% in most segments in the CTO
territory were excluded. Although this approach seems obvious,
it should not be seen as absolute, as the perfusion areas of
the individual coronaries show significant variations between
patients (87). Nevertheless, the two aforementioned studies
suggest that a CMR-guided approach to CTO revascularization
significantly improves regional blood flow and systolic function
and sufficiently reduces patient symptoms. Accordingly, CMR
imaging offers great benefits in the pre-interventional diagnostics
of CTO patients, with a high prognostic value. An example of
the combined use of CT and CMR in a patient with CTO is
seen in Figure 3.

For even better workups, new techniques, such as parametric
mapping, are currently under investigation. In a first study,
the extracellular volume was found to be superior to LGE for
functional recovery assessments (88).

Using CMR, patients have already been examined after
complex PCI in order to investigate the extent and clinical
impact of a peri-interventional infarction. This revealed a
relevant proportion of patients with new LGE after PCI, which
in turn had a negative impact on the clinical outcome (89).
Techniques that are particularly prone to infarction, such as
rotablation, could therefore have a negative impact on endpoints
in CTO studies (90). Here CMR offers the potential for
further investigations.

OUTLOOK

A central point of future developments, besides a further increase
in diagnostic accuracy, will be a reduction in patient exposure to
contrast media or radiation. Since CMR typically works without

radiation, a further improvement of CMR coronary angiography
would be an obvious direction in the quest to overcome the
disadvantages of CT in CTO intervention planning. CMR
coronary angiography is already feasible for the evaluation of
plaque morphology and composition (91–93). At the same time,
radiation exposure in SPECT, PET, and CT imaging is now
only a fraction of the historically required doses thanks to the
constant development of new detectors, collimators, techniques,
and software.

Another goal for further improvement of interventional
outcomes is the integration of imaging modalities into the
actual intervention. Opolski et al. demonstrated the feasibility
and safety of an augmented-reality glass that provides the
interventional cardiologist with additional information from
coronary CT angiography (65). This is yet another indication
that CT is the closest to integrating diagnostics, prognostic
assessment, planning, and follow-up care.

As already discussed, each modality has its own strengths
and weaknesses. Therefore, fusion imaging, such as PET/CT
or PET/MRI, could improve the pre-interventional workup of
CTO patients. For example, a combination of morphological
assessments using CT with metabolic assessments using PET
could improve patient selection (94). In a first human study
using PET/MRI fusion scans prior to CTO PCI in 49 patients,
the combined images predicted functional improvement more
accurately than PET or CMR alone (95). However, their high
costs and limited access in daily care are clear limitations of
these techniques.

In summary, the use of non-invasive imaging for ischemia
and viability assessments before interventional recanalization of
a CTO is desirable. Although some imaging techniques have
clear advantages over others, the selection depends mainly on
regional availability and expertise. Better patient selection and
prediction of interventional success should be the target of future
prospective studies.
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