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Inflammation plays a central role in cardiovascular diseases (CVD). One pathway under

investigation is the innate immune DNA sensor cyclic GMP-AMP synthase (cGAS) and its

downstream receptor stimulator of interferon genes (STING). cGAS-STING upregulates

type I interferons in response to pathogens. Recent studies show that also self-DNA may

activate cGAS-STING, for instance, DNA released from nuclei or mitochondria during

obesity or myocardial infarction. Here, we focus on emerging evidence describing the

interaction of cGAS-STING with cardiovascular risk factors and disease. We also touch

on translational therapeutic opportunities and potential further investigations.
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INTRODUCTION

Cardiovascular diseases (CVD) are one of the large health problems in our societies. The 2015
incidence for CVD in the European Society of Cardiology member countries was 11 million
people with a prevalence of around 83.5 million (1). CVDs are the major global cause of
death. Worldwide, more than 17 million people die from CVD each year (2, 3), 4 million of
which in Europe (2). The relation between inflammatory and immune phenomena and the
pathophysiology of CVD is receiving increasing attention recently. Its role in disease progression
is evident in several conditions (3–5). For example, immune phenomena comprising both innate
and adaptive responses are central in the development of atherosclerosis (6) and a landmark
clinical trial demonstrated for the first time in 2017 that specifically targeting inflammation reduces
cardiovascular events in high-risk subjects (7).

Inflammation and immune phenomena are also intricately involved in myocardial infarction
healing and the progression of heart failure (8, 9). Early myocardial infarction remodeling is a
wound healing response with the massive influx of myeloid cells from extra-cardiac reservoirs (10).
These innate immune cells clear necrosis and pave the way for the establishment of a functional
scar. Exuberant responses, e.g., after inhibiting regulatory cytokines such as TGF-β, are detrimental,
and preclinical trials demonstrate the benefit of suppressing these (11, 12). However, clinical
trials that sought to translate this to clinical use failed (13). Inflammatory processes are not only
detrimental in injured tissues. In fact, they are often a requisite for repair and regeneration. The
key is the right balance of proinflammatory and antiinflammatory responses in terms of magnitude
and timing (12, 14). For instance, macrophages can be proinflammatory (M1 like) and required to
clear damaged tissue, while pro-reparative M2 like macrophages mitigate inflammatory responses
and are essential for ensuing healing processes (15, 16). In chronic heart failure, proinflammatory
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cytokines such as IL-1, IL-6, and TNFα are elevated and may
contribute to disease progression (17), however, clinical studies
targeting cytokines such as TGFα in heart failure patients failed
in the past (18).

INNATE IMMUNITY AND THE cGAS-STING
PATHWAY

The innate immune system is our first-line defense and
consists of humoral and cellular parts. Cellular components
are phagocytes like neutrophils, eosinophils, and macrophages,
as well as natural killer cells and dendritic cells (19, 20).
The humoral system includes the complement system and
natural antibodies as well as cytokines like interferons
(IFNs), interleukins (ILs), tumor necrosis factors (TNFs),
and transforming growth factors (TGFs) (20–22). Triggers
initiating inflammation are pathogen-associated molecular
patterns (PAMPs) derived from infectious agents, or non-
infectious damage-associated molecular patterns (DAMPs).
These molecular patterns can consist of different components
like cell wall components, proteoglycans, or nucleic acids. DNA
e.g., can originate from extracellular sources such as viruses,
bacteria, or dying cells. However, DNA can also be derived from
intracellular sources such as damaged nuclei or mitochondria.
What these sources have in common is that DNA is present in
compartments where it is out-of-place. DNA sensors are, for
instance, the Toll-like receptor 9 (TLR9), absent in melanoma 2
(AIM2), or interferon gamma-induced 16 (IFI16) (23). cGAS is
another example for a DNA sensor.

cGAS is a 63kDa protein predominantly localized in the
cytoplasm during the cell cycle’s interphase (24). It was initially
described as a defense mechanism against viral and bacterial
infections by binding foreign DNA and transforming ATP
and GTP to the second messenger cyclic-GMP-AMP (cGAMP)
(Figure 1) (25–36). cGAMP activates the STING receptor
(36–38). STING is a receptor protein with three isoforms
ranging from 9–34 kDa and is localized at the endoplasmic
reticulum (39). STING activates the TANK-binding kinase 1
(TBK1), which phosphorylates the transcription factor interferon
releasing factor 3 (IRF3) (35–37). Ultimately, IRF3 induces the
transcription of type I interferons (25, 37), which in turn activate
several signaling cascades including activation of the IFN-α
receptor 1 (IFNAR1) and the transcription of IFN-stimulated
genes (ISGs) (40, 41).

Regulatory mechanisms are necessary to attenuate excessive
proinflammatory stimulation. This is also true for the cGAS-
STING pathway. For instance, cytosolic deoxyribonuclease
degrades cytosolic DNA and ensures that minute amounts
of free DNA do not trigger the full inflammatory cascade
(42). Additionally, an intact cell’s compartmentalization restricts
nuclear or mitochondrial DNA sensing by cytosolic sensors (42).
However, the regulatory capacity is limited. Genomic instability
and nucleic damage can release DNA in considerable amounts
into the cytosolic compartment activating cGAS (36, 38, 43).
ER stress also actives STING and IRF3 (31, 44) and promotes
autophagy in stressed cells, e.g., through direct interaction

of cGAS with Beclin-1(31, 45). STING activated T-cells can
further induce a type I IFN response eliciting apoptosis (46).
Interestingly, even in T cell-derived cancer cells, this process
is still functional and represents a therapeutic approach (47).
Similarly, STING may induce apoptosis in malignant B cells
(48). Activating the cGAS-STING pathway also improves the
outcome of solid tumors, for instance in metastatic breast cancer,
by enhancing the immune response against tumor cells (49, 50).

Another area where cGAS-STING is under investigation is
infectious disease. For instance, virus infections like hepatitis B
(51), Dengue (52), and HIV (31, 38) or bacterial infections like
tuberculosis (53) and Streptococcus pyogenes infections (38).

An increased amount of self-DNA released into the cytosol
by autoimmune diseases activates the cGAS-STING pathway as
well, e.g., in Systemic Lupus Erythematosus or Aicardi-Goutières
syndrome (31, 34, 43, 54, 55). Another autoinflammatory disease
without an increased amount of self-DNA is the STING-
associated vasculopathy with onset in infancy (SAVI) with gain-
of-function mutations in the STING gene (56).

EVIDENCE FOR INVOLVEMENT OF
THE cGAS-STING PATHWAY IN
CARDIOVASCULAR RISK FACTORS
AND DISEASE

Self-DNA can activate cGAS-STING in non-communicable, non-
immune disorders such as CVD.Here, we give a concise overview
of evidence linking CVD risk factors and disease to cGAS-STING
(Figure 2).

Risk Factors
Smoking
Liu et al. (57) showed that side-steam smoke exposure (SSE),
a model for second-hand smoking (SHS), reduced fractional
shortening (FS) in mice and increased left ventricular (LV)
mass. Additionally, they investigated these effects on mice
haploinsufficient for the autophagy protein Beclin 1 (Becn+/−).
They found no difference between wild-type (WT) mice and
Becn+/− without SSE, but a significant reduction in FS and an
increase in LV mass in Becn+/− with SSE. On the cellular level,
myocyte hypertrophy was present, myocardial TNFα and IL-
1β increased, and cardiomyocyte peak shortening was reduced.
This was associated with an increase of cGAS and STING
protein expression, suggesting that this pathway is involved in
the inflammatory process of SHS in WT and Becn+/− mice and
that this is exacerbated with impaired autophagy. Furthermore,
the authors tested the cGAS inhibitor (PF-06928215) and STING
inhibitor (Astin C) in their study. In WT mice with SSE, the
inhibitors improved peak shortening significantly, while this
effect was lost in Becn+/− mice (57). Chronic ozone exposure,
which mimics smoke-induced chronic obstructive pulmonary
disease (COPD) and induces reactive oxygen species (ROS) and
mitochondrial damage, may also be associated with the cGAS-
STING signaling in humans (58).
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FIGURE 1 | Overview of the cGAS-STING pathway and inhibitors.

Obesity
Another major risk factor for CVDs is obesity. Obesity is
associated with endothelial inflammation (59) and induces
proinflammatory responses in M1 macrophages, e.g., through
elevated levels of palmitic acid (PA) in the blood (60). Mao
et al. (61) investigated the influence of PA on cardiovascular
endothelia and STING’s role in this interaction. In-vitro
experiments in human aortic endothelial cells demonstrate PA-
induced mitochondrial damage and release of mitochondrial
DNA (mtDNA) into the cytosol leading to cGAS STING
pathway activation and IFN production. Silencing STING or
IRF responses via small interfering RNA (siRNA) attenuates this
response. These results were reiterated in-vivo as well. Wild-
type mice on a high-fat diet (HFD) had a significant increase of
IRF3 in adipose tissue and the aortic wall, which was reduced in
STING-deficient (STINGgt/gt) mice (61).

A recent study fromGong et al. supports cGAS-STING’s effect
on HFD associated cardiovascular dysfunction. They showed
that WT mice with HFD had significantly reduced FS in-vivo,
peak shorting in isolated cardiomyocytes, and cardiomyocyte
hypertrophy. This was accompanied by elevation of TNFα, IL-1β,
STING, and cGAS. Deletion ofAkt2 andAmpkα2 (double knock-
out, DKO), decreased phosphorylation of Unc-51 like autophagy

activation kinase (ULK1) (62), which phosphorylates Beclin1
and thereby induces autophagy (63). Furthermore, cGAS/STING
activation on HFD was amplified in DKO (62).

Aging
Inflammageing describes low-grade, chronic, and sterile
inflammation that occurs with aging and is associated with
CVDs (64). One trigger for this inflammatory process is the
degeneration of DNA during aging.

Quan et al. (65) demonstrated that cGAS-STING regulates the
senescence-associated secretory phenotype (SASP). SASP in aged
hearts is primed by an increase in proinflammatory cytokines like
IL-1β, IL-6, and IL-8, and release of mtDNA into the cytosol may
induce SASP via cGAS-STING. Circulating mtDNA associated
with age increases inflammatory SASP in aged hearts (66, 67).

Interestingly, patients suffering from the accelerated aging
disease Hutchinson Gilford Progeria Syndrome (HGPS) often
die from CVDs like myocardial infarction (MI) or stroke (68)
and HGPS is associated with amplified interferon responses
potentially via the cGAS-STING pathway (69–71). However,
mutations can also be protective. The single nucleotide
polymorphism (SNP) R293Q of the STING gene is protective in
obesity-associated CVDs and other age-related diseases (72, 73).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 July 2021 | Volume 8 | Article 715903

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Rech and Rainer cGAS-STING in Cardiovascular Diseases

FIGURE 2 | CVDs and risk factors associated with cytosolic DNA sensing.

Established CVD
Heart Failure
Heart Failure (HF) is a clinical syndrome with symptoms
and structural and/or functional cardiac abnormalities (68).
It represents end stage disease in many CVDs like ischemia
or hypertension.

In a model of non-ischemic pressure-overload induced
heart failure (transverse aortic constriction, TAC) exhibiting
hypertrophy, cardiac dysfunction, and fibrosis expression of
STING, IFNα and IFNβ were increased (74). In STING knock-
out (STING-KO) mice, levels returned to baseline levels (74).
Neonatal rat cardiomyocytes treated with angiotensin II had
increased levels of STING, IFNα, and IFNβ. STING inhibition
via siRNA resulted in a significant reduction of IL-6, IL-1β,
TNFα, IFNα, and IFNβ in these cells. Increased levels of STING,
IFNα, and IFNβ were also seen in human samples of dilative and
hypertrophic cardiomyopathies (74).

Another study confirmed these findings: the expression levels
of cGAS, STING, IFN, and the IFN induced chemokines
CXCL10, IFIT3, and ISG15 were significantly increased 3 days
after TAC (75). Silencing cGAS via adeno-associated virus 9
(AAV9) resulted in a significant decrease of LV remodeling and
fibrosis (75).

Myocardial Infarction
Two independent groups investigated the relevance of cGAS-
STING in myocardial infarction healing. They demonstrate
increased IFNβ1 expression and IRF3 phosphorylation
and an increase in the expression levels of CXCL10,
IRF7, STING, and cGAS after myocardial infarction

(76, 77). This was attenuated by using knockout models
for pathway members such as cGAS, STING, or IRF3.
Interestingly, cGAS knock-out (cGAS−/−) did not reduce
the universal proinflammatory cytokines IL-1β, TNFα, and
IL-6 (76).

By using fluorescence reporter tagged cells, parabiosis
experiments, and scRNAseq King et al. (77) demonstrated that
cardiomyocyte cell death after MI leads to recruitment of
interferon-inducible cells (IFNICs) with increased expression of
IRF3-dependent genes from the blood to the heart and they
identify these IFNICs as monocyte-derived cardiac macrophages
that phagocytose cell debris. Disruption of pathway activation via
genetic or pharmacologic means improves outcomes.

Cao et al. (76) treatedWT and cGAS−/− humanmacrophages
with IFN stimulatory DNA. As expected, cGAS−/− macrophages
produced no cGAS and also no CXCL10 (76). CXCL10 was
expressed in WT macrophages and associated with M1-like
polarization. In contrast, M2 marker expression like CD163,
IL-10, and CCL17 was increased in cGAS−/− animals (76).

Both groups observed improved outcomes in cGAS−/− mice
compared to WT in terms of LV function and survival (76, 77),
although, the survival benefit was more pronounced in INFAR
and IRF3 knockout animals. IFNAR neutralization via antibodies
mirrored survival and functional benefit.

Interestingly, Cao et al. showed increased myofibroblast
activation and collagen deposition in cGAS−/− mice afterMI and
propose this enhances functional scar generation.

Cao et al. also provide data demonstrating high myocardial
levels of cGAS and CXCL10 in human end stage ischemic heart
failure patients that are decreased back to near normal levels by
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unloading the left ventricle by means of mechanical circulatory
support via left ventricular assist devices (LVADs).

Stroke
Li et al. (78) showed that the cGAS-STING pathway is also
involved in stroke in an in-vivo model with middle cerebral
artery occlusion (MCAO). They observed increased levels
of cGAS and STING in the infarcted brain area. Using a
small synthetic oligodeoxynucleotide, A151 (TTAGGG), which
inhibits cGAS, this was reduced to the levels of sham-operated
mice. Additionally, A151 reduced IL-1β levels, reduced infarct
size and improved cognitive function (78).

Cardiovascular and Systemic Infection
Li et al. (79) described upregulation of STING and
phosphorylated IRF3 in an in vitro model of sepsis induced
cardiomyopathy (SIC) using neonatal rat cardiomyocytes.
Treating cells with siRNA against STING resulted in a decrease
in IRF3 phosphorylation. In an in vivo model of SIC using LPS
injection STING-KO reduced CK-MB, IL-1β, and TNFα levels
and improved EF, FS, and survival. Likewise, other investigators
found that the small cGAS inhibitor molecule RU.521 improved
LPS induced SIC (IRF3 phosphorylation, IL-1β, IL-6, TNFα
expression, apoptosis, left ventricular function, and survival)
(80). Lastly, selenium supplementation appeared to ameliorate
LPS-induced SIC via STING (81).

In Chagas cardiomyopathy, Choudhuri et al. showed that
extracellular vesicles from Trypanosoma cruzi infected cells lead
to increased levels of IL-1β, IL-6, and TNFα in macrophages.
Using different inhibitors, including the cGAS inhibitor PF-
06928215, they detected a significant decrease in the levels of
IL-1β, IL-6c, and TNFα (82).

Further, there is speculation that COVID-19 infection may
lead to prolonged cGAS-STING pathway activation in leucocytes
(83) and increased leucocyte infiltration was present in the
majority COVID-19 patient’s hearts in an autopsy studie (84).

Radiation Injury
Radiation produces DNA damage, which can be sensed in the
cytosol by cGAS (85). Phillipp et al. (86) studied the effect of
radiation on cultured human coronary artery endothelial cells.
With increasing radiation up to 10Gy, the expression levels of
STING and ISG15 increased continuously after 1 week as well

as ISG15 and cGAS up to a dose of 2Gy. This may have clinical
implications as radiation therapy for breast cancer may result in
up to 20Gy delivered to the left anterior descending coronary
artery (LAD) (87).

CONCLUSION AND OUTLOOK

cGAS-STING is involved in the pathophysiology of
cardiovascular disease and risk factors. This ranges from
conditions with cell death and massive release of DAMPs such
as myocardial infarction or stroke to chronic conditions where
inflammatory responses are mildly increased over longer periods
such as heart failure. This may have translational implications,
as pharmacologic agents are available and have been tested for
non-cardiovascular diseases. Inhibitors of cGAS include PF-
06928215, A151, RU.521, J014, G140, or X6 (80, 88–90). Direct
STING inhibition also seems promising (91) and antagonists
include Astin C, C-176, C178, and H-151 (88, 92, 93). However,
potential adverse effects need to be studied. As cGAS and STING
agonists are used for cancer and viral infection treatments
(48–51), inhibition may promote these conditions. Furthermore,
pathways are more complex and promiscuous than mentioned
here, and inhibitors targeting other molecules may impact
cGAS-STING too, for instance the ALK inhibitor LDK378 (94).

In conclusion, CVD and risk factors modulate cGAS-STING
and this may contribute to disease progression. Targeting
pathway members may be useful to attenuate excessive
inflammation, e.g., ischemic injury to the heart or brain.
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