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Introduction:Cyclic plaque structural stress has been hypothesized as a mechanism for

plaque fatigue and eventually plaque rupture. A novel approach to derive cyclic plaque

stress in vivo from optical coherence tomography (OCT) is hereby developed.

Materials and Methods: All intermediate lesions from a previous OCT study were

enrolled. OCT cross-sections at representative positions within each lesion were selected

for plaque stress analysis. Detailed plaque morphology, including plaque composition,

lumen and internal elastic lamina contours, were automatically delineated. OCT-derived

vessel and plaque morphology were included in a 2-dimensional finite element analysis,

loaded with patient-specific intracoronary pressure tracing data, to calculate the changes

in plaque structural stress (1PSS) on vessel wall over the cardiac cycle.

Results: A total of 50 lesions from 41 vessels were analyzed. A significant1PSS gradient

was observed across the plaque, being maximal at the proximal shoulder (45.7 [32.3,

78.6] kPa), intermediate at minimal lumen area (MLA) (39.0 [30.8, 69.1] kPa) and minimal

at the distal shoulder (35.1 [28.2, 72.3] kPa; p = 0.046). The presence of lipidic plaques

were observed in 82% of the diseased segments. Larger relative lumen deformation and

1PSS were observed in diseased segments, compared with normal segments (percent

diameter change: 8.2± 4.2% vs. 6.3± 2.3%, p= 0.04; 1PSS: 59.3± 48.2 kPa vs. 27.5

± 8.2 kPa, p < 0.001). 1PSS was positively correlated with plaque burden (r = 0.37, p

< 0.001) and negatively correlated with fibrous cap thickness (r = −0.25, p = 0.004).
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Conclusions: 1PSS provides a feasible method for assessing plaque biomechanics

in vivo from OCT images, consistent with previous biomechanical and clinical studies

based on different methodologies. Larger 1PSS at proximal shoulder and MLA indicates

the critical sites for future biomechanical assessment.

Keywords: biomechanical assessment, finite element analysis, optical coherence tomography, plaque structural

stress, plaque rupture

INTRODUCTION

Spontaneous plaque rupture and subsequent thrombosis are
recognized as the leading pathogenic mechanism for acute
coronary syndrome (ACS), one of the major causes of mortality
worldwide (1–3). Thin cap fibroatheroma (TCFA) has been
postulated as the phenotype responsible for plaque rupture
(3–8). However, limited specificity was observed for TCFA
in predicting future coronary events, urging the need to
further define meaningful surrogates for rupture-prone plaque
identification (9–12).

From a biomechanical point of view, long-term repetitive
superficial stress, generated by the pulsatile coronary pressure
wave, might weaken the fibrous cap and ultimately lead to
its fatigue and rupture (13, 14). Thus, the evaluation of
cyclic plaque structural stress might add prognostic value for
future cardiac events and subsequently for ACS prevention.
Although direct in vivo measurement of plaque structural stress
is not currently feasible, finite element analysis (FEA) might
provide a reliable estimation (15). The prerequisites for accurate
FEA are precise plaque morphology and composition, known
mechanical properties of the different materials and precise
model loads. Optical coherence tomography (OCT) provides
optimal image resolution, enabling detailed visualization and
precise characterization of plaque composition (16). Meanwhile,
intracoronary pressure tracing from pressure wire could serve as
an accurate load for cyclic plaque stress evaluation using FEA.
The aim of this study was to propose a novel method to derive
the changes in plaque structural stress during the cardiac cycle
in vivo using a combination of OCT images and intracoronary
pressure recordings.

MATERIALS AND METHODS

All patients from a previous prospective optical flow ratio
(OFR) study with both OCT and fractional flow reserve (FFR)
interrogation were screened for post-hoc analysis (17). Inclusion
criteria were intermediate coronary lesions, defined as a diameter
stenosis 40–90% by visual estimation. Exclusion criteria for
FEA were: 1) bifurcation lesions with a side-branch ≥2mm;
2) diffuse coronary disease in the target vessel; 3) stented
lesions; 4) intracoronary thrombus; 5) guidewire artifact in the
OCT images; 6) incomplete intracoronary pressure recording,
with baseline aortic pressure or distal coronary pressure at
rest missing. Detailed description of the OCT acquisition
and intracoronary pressure measurement has been previously
reported (17).

Representative Position Selection
Five OCT cross-sections were selected at representative positions
for each lesion, whenever available (Figures 1C1–C5): 1)
proximal and distal references (PR, DR): immediately adjacent
cross-sections to the lesion, at the proximal and distal edges,
respectively, where neither plaque nor remodeling were observed
in OCT and angiography; 2) minimal lumen area (MLA): the
cross-section with minimal lumen area in OCT; 3) proximal and
distal shoulders (PS, DS): midpoints between PR andMLA or DR
and MLA, respectively. In case the PR or DR are not present in
certain lesion, the midpoint between proximal edge and MLA or
distal edge and MLA will be used for PS or DS, respectively.

Geometric Model Reconstruction
The lumen contours of selected OCT cross-sections were
automatically delineated using OctPlus software (Pulse Medical
Imaging Technology, Shanghai, China). The contour of the
internal elastic lamina (IEL) was then identified or extrapolated
from adjacent cross-sections, according to a previously validated
method (18). The plaque composition was then automatically
analyzed at every cross-section in the region encompassed
between IEL and the lumen contour, using artificial intelligence
(18). The mechanical-relevant plaque components considered
for the current FEA in the intima were lipids, calcium and
fibrous tissue. Media and adventitia were also incorporated into
the geometric model by measuring their thickness on OCT and
offsetting the IEL contour uniformly (Figures 1C1–C5,D1–D5).
In case media and adventitia were not visible at the cross-section,
their thickness on adjacent OCT cross-section was selected.

Biomechanical Analysis
The simulation was performed with the commercially available
FEA software ABAQUS (Version 6.13, Dassault Systemes Simulia
Corp., Providence, RI, USA). Intimal lipidic plaque and calcific
plaque were modeled as isotropic, hyperelastic materials as
described by Mooney-Rivlin strain energy density function:

W=C1 (I1−3)+C2 (I2−3)+D1( exp (D2 (I1−3))−1)

where I1 and I2 are the first and second strain invariants. C1, C2,
D1 and D2 are material constants adapted from previous studies
(19, 20).

Intimal fibrous tissue, media and adventitia were
modeled as anisotropic, hyperelastic materials, according to
Holzapfel model:

W=µ (I1−3)+
k1

k2
(exp

{

k2
[

(1− ρ) (I1−3)2+ρ (I4−1)2
]}

−1)
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FIGURE 1 | Representative example of 1PSS analysis of an intermediate RCA lesion. Cross-sections (C1-C5) correspond to the five representative positions in the

angiography showed in panel (A), with (C1) as the cross-section of proximal reference, (C2) as the cross-section of proximal shoulder, (C3) as the cross-section of

minimal lumen area, (C4) as the cross-section of distal shoulder and (C5) as the cross-section of distal reference. The 2-dimensional FEA model is loaded with the

position-specific intracoronary pressure derived from intracoronary tracing data, by normalizing the computed OFR pullback curve between the resting aortic pressure

tracing data and distal coronary pressure tracing data (B). The three-layer geometric models were reconstructed based on an automatic plaque delineation algorithm

(18) (D1–D5), where the lipidic plaque is shown in yellow. The thicknesses of media and adventitia were manually measured from OCT cross-sections (C1–C5).

(E1–E5) show the stress distribution with the red triangles pointing the positions with largest 1PSS. FEA, finite element analysis; RCA, right coronary artery; OCT,

optical coherence tomography; OFR, optical flow ratio; 1PSS, delta plaque structural stress.

where µ, k1 and k2 are material constants adapted from previous
studies (21–23).

Position-specific pressure condition derived from
intracoronary tracing data was applied to the 2-dimensional (2D)
FEA model for each cross-section. From OCT images the OFR
pullback was firstly computed using a recently validated software
package (OctPlus, Pulse medical imaging technology, Shanghai,
China) (17, 24, 25). By normalizing the computed OFR pullback
curve between the resting aortic pressure and distal coronary
pressure tracing data, the position-specific intracoronary
pressure at each OCT cross-section could be precisely estimated,

also given the excellent agreement between OFR and FFR (17).
The change in coronary pressure, i.e., the relative pressure, was
then computed by subtracting the estimated diastolic pressure
from the cyclic pressure (Figure 1B), which was used as the
mechanical load for simulations. The 2D FEA models were then
meshed with three-node or four-node linear, hybrid elements.
Large deformation formulation and plane strain assumption
were used for simulation. The rotational freedom was restricted
to prevent the model from rolling while enabling its radial
deformation. By submitting the FEA model to ABAQUS/Explicit
Solver, the dynamic change of lumen and the plaque structural
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FIGURE 2 | Study flow chart. FFR, fractional flow reserve; OCT, optical coherence tomography.

stress distribution at each cross-section during the cardiac cycle
could then be simulated (Supplementary Video 1).

After the simulation, the maximal superficial von Mises stress
on the vessel wall at maximal pressure load moment was denoted
as OCT-derived change in plaque structural stress (1PSS). The
thickness of the superficial layer depends on the size of the
meshes in the FEA model which was <50µm. Lumen diameter
change (LDC) and percent lumen diameter change (LDC%)
during cardiac contraction were used for presenting lumen
deformation and relative lumen deformation. The LDC equals
to the maximal lumen diameter minus minimal lumen diameter
over the cardiac cycle. The LDC% is computed by dividing LDC
with the minimal lumen diameter.

Statistics
Descriptive statistics of continuous variables are reported as
mean ± SD or median (quartiles) as appropriate, while those of
categorical variables are presented as counts (percentages). The
difference between groups was tested using independent sample
t-test, Mann-Whitney test or One-way Analysis of Variance
(ANOVA), as appropriate. Paired t-test, Wilcoxon signed-rank
test or repeated measures ANOVA were used for pair-wise
comparison, as appropriate. To evaluate the statistical differences
of simulated lumen deformation and plaque structural stress
at different locations of the lesion, the generalized estimation
equation (GEE) analyses were performed. Statistical assessments
were performed withMedCalc version 19.5.6 (MedCalc Software,
Ostend, Belgium) and SPSS version 27.0.1.0 (SPSS Inc., Chicago,

Illinois). A 2-sided value of p < 0.05 was considered to be
statistically significant.

RESULTS

Baseline Clinical and Lesion
Characteristics
A total of 83 intermediate lesions from 75 vessels were enrolled.
Thirty-three lesions were excluded from FEA due to bifurcation
(n = 10), diffuse disease (n = 1), stented lesion (n = 3),
intracoronary thrombus (n = 3), guidewire artifact (n = 12)
or incomplete intracoronary recording (n = 4), resulting in 50
lesions suitable for biomechanical analysis (Figure 2).

Baseline demographic and lesion characteristics are presented
inTables 1, 2, respectively. Themean age of the patients was 63±
11 years. Half of the lesions (50.0%) were located at the proximal
segment of the target vessel.

Plaque Morphology and Composition
Quantification of the OCT images was performed using the
OctPlus software package (Pulse medical imaging technology,
Shanghai, China). Automatic plaque characterization and
delineation of the IEL from OCT images by the software was
performed using artificial intelligence algorithm and recently
validated with high accuracy (18). Average lumen diameter,
plaque burden and fibrous cap thickness in the representative
positions are presented in Table 3. MLA had the smallest lumen
diameter (1.82 [1.60, 1.97] mm) and the largest plaque burden
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TABLE 1 | Baseline demographic characteristics.

Patients (N = 37)

Age, years 63 ± 11

Women 3 (8.1%)

BMI, kg/m2 28.4 [25.4, 29.9]

Diabetes mellitus 12 (32.4%)

Hypertension 25 (67.6%)

Hyperlipidemia 17 (46.0%)

Current smoker 12 (32.4%)

Family history of CAD 3 (8.1%)

Previous PCI 29 (78.4%)

Previous CABG 1 (2.7%)

Previous MI 21 (56.8%)

Clinical presentation

Stable Coronary Heart Disease 29 (78.4%)

Unstable Angina 4 (10.8%)

NSTEMI 4 (10.8%)

Data are presented as mean ± SD, median (quartiles), or n (%), as appropriate.

BMI, body mass index; CAD, coronary artery disease; CABG, coronary artery bypass

surgery; NSTEMI, Non-ST-elevation myocardial infarction; MI, myocardial infarction; PCI,

percutaneous coronary intervention.

TABLE 2 | Baseline lesion characteristics.

Vessels (N = 41)

Interrogated vessel

Left anterior descending 23 (56.1%)

Diagonal 4 (9.8%)

Left circumflex 0 (0.0%)

Obtuse marginal 2 (4.9%)

Ramus intermedius 1 (2.4)

Right coronary artery 11 (26.8%)

Lesions (N = 50)

Lesion location

Proximal segment 25 (50.0%)

Middle segment 19 (38.0%)

Distal segment 6 (12.0%)

Minimal Lumen Area, mm2 2.70 [2.16, 3.11]

Data are presented as mean ± SD, median (quartiles), or n (%), as appropriate.

(69.11 ± 9.11%) of all the representative positions. Fibrous cap
thickness was numerically smaller in PS than inMLA andDS, but
it did not reach statistical significance (PS vs. MLA vs. DS: 154.1
[60.8, 242.2] µm vs. 168.9 [54.2, 264.7] µm vs. 212.4 [92.7, 253.2]
µm, p= 0.48). The plaque composition and microfeatures of the
lesions included in current study are presented in Table 4. Forty-
one lesions (82.0%) have more than one plaque phenotypes.
By using the predominant plaque phenotype for each lesion, a
total of 28 fibroatheromas, 8 fibrotic plaques and 14 fibrocalcific
plaques were included in the present study.

TABLE 3 | Plaque morphologies.

Position within

the lesion

Lumen

diameter (mm)

Plaque burden

(%)

Cap thickness

(µm)

PR (N = 10) 3.94 [2.92, 4.21] 32.47 ± 5.78 –

PS (N = 50) 2.46 [2.13, 2.95] 56.91 ± 5.67 154.1 [60.8, 242.2]*

MLA (N = 50) 1.82 [1.60, 1.97] 69.11 ± 9.11 168.9 [54.2, 264.7]*

DS (N = 50) 2.40 [2.15, 2.63] 53.82 ± 11.57 212.4 [92.7, 253.2]*

DR (N = 17) 2.91 [2.74, 3.18] 32.36 ± 8.70 –

*Cap thickness was not recorded in 3 PS, 2 MLA and 14 DS because only fibrous plaque

was observed.

PR, proximal reference; PS, proximal shoulder; MLA, minimal lumen area; DS, distal

shoulder; DR, distal reference.

TABLE 4 | Plaque composition and microfeatures.

Position

within the

lesion

Number of

lipidic

plaques

Mean lipidic

plaque area

(mm2)

Number of

calcific

plaques

Mean calcific

plaque area

(mm2)

PS (N = 50) 49 2.18 [1.36, 3.22] 29 0.65 [0.39, 1.83]

MLA (N = 50) 51 2.28 [1.24, 3.85] 27 0.70 [0.31, 0.85]

DS (N = 50) 38 1.41 [0.87, 2.91] 22 0.48 [0.22, 0.89]

PS, proximal shoulder; MLA, minimal lumen area; DS, distal shoulder.

TABLE 5 | Biomechanical results.

Position

within the

lesion

LDC (mm) LDC% 1PSS (kPa)

PR (N = 10) 0.19 [0.17, 0.26] 5.48 [4.75, 6.43] 25.2 [21.2, 32.3]

PS (N = 50) 0.20 [0.13, 0.31] 8.55 [6.13, 11.12] 45.7 [32.3, 78.6]

MLA (N = 50) 0.13 [0.08, 0.23] 7.56 [5.17, 11.28] 39.0 [30.8, 69.1]

DS (N = 50) 0.17 [0.13, 0.26] 6.26 [5.31, 9.85] 35.1 [28.2, 72.3]

DR (N = 17) 0.19 [0.12, 0.26] 6.84 [3.85, 8.39] 28.6 [20.8, 32.6]

PR, proximal reference; PS, proximal shoulder; MLA, minimal lumen area; DS, distal

shoulder; DR, distal reference; LDC, lumen diameter change; 1PSS, delta plaque

structural stress.

Among all 177 interrogated cross-sections, more than half
of them (92 cross-sections) have a good (external elastic
lamina circumference ≥270◦) or moderate visibility (270◦ >

external elastic lamina circumference ≥ 180◦) of the media
(54 and 38 cross-sections, respectively). While the media were
completely invisible in 14 (7.9%) cross-sections, where the
artificial intelligence algorithm used their adjacent cross-sections
for IEL delineation. In these cases, the mean number of skipped
cross-sections for manual media and adventitia thicknesses
measurement was 5.6± 6.8 frames.

Lumen Deformation and Plaque Structural
Stress
A representative example of 1PSS analysis is shown in Figure 1

and Supplementary Video 1. The LDC, LDC% and 1PSS across
the lesion are presented in Table 5 and Figure 3. Absolute LDC
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FIGURE 3 | (A–C) Biomechanical results in different locations of the lesion. *p < 0.001. PR, proximal reference; PS, proximal shoulder; MLA, minimal lumen area; DS,

distal shoulder; DR, distal reference; LDC, lumen diameter change; LDC%, percent lumen diameter change; 1PSS, delta plaque structural stress. The blue circles

represent the mild outliers, and the red squares represent the extreme outliers.

was smaller at MLA than at both reference cross-sections (PR
andDR), but LDC%was larger. Positive correlation was observed
between LDC and lumen diameter (r= 0.53, p< 0.01). However,
no correlation was observed between LDC% and lumen diameter.

1PSS was significantly smaller at the reference cross-sections
than at MLA or at the shoulders (PR vs. PS, MLA and DS: 25.2
[21.2, 32.3] kPa vs. 45.7 [32.3, 78.6] kPa, 39.0 [30.8, 69.1] kPa
and 35.1 [28.2, 72.3] kPa; p < 0.001, p < 0.001 and p < 0.001,
respectively). In paired analysis per lesion, a significant 1PSS
gradient was observed across the plaque (PS-MLA-DS, p= 0.046;
test for linear trend: p = 0.012). 1PSS at PS was significantly
larger than at DS (p = 0.02), while 1PSS at MLA tended to have
intermediate values between PS and DS (Figure 3). Within all 49
lesions with lipidic plaques, the highest 1PSS occurred at the
cross-sections with thinnest cap in 49.0% (24) of these lesions.
While for 22 lesions (44.9%), the highest 1PSS occurred at the
cross-sections with lipidic plaques but thicker cap thickness.
Three (6.1%) lesions were observed to have the highest 1PSS at
cross-sections without any lipidic plaque.

Normal vs. Diseased Segments
The analyzed OCT cross-sections were divided into two groups:
1) normal segments, comprising PR and DR; 2) diseased
segments, comprising PS, MLA and DS. LDC was numerically
smaller in diseased segments compared to normal segments,
but statistically non-significant (0.17 [0.10, 0.27] mm vs. 0.19
[0.13, 0.25] mm, p = 0.69). While both LDC% and 1PSS were
significantly larger in diseased segments than in normal segments
(LDC%: 7.57 [5.38, 10.64]% vs. 6.29 [4.44, 8.17]%, p = 0.002;
1PSS: 41.8 [29.1, 74.6] kPa vs. 27.7 [21.2, 32.1] kPa, p < 0.001)
(Figure 4).

In normal segments, a good correlation was observed between
maximal pressure load and 1PSS and (r = 0.72, p < 0.001).
Nonetheless, this correlation was significantly worse in diseased

segments (r = 0.42, p < 0.001; difference p = 0.04), wherein
relatively low pressure loads often resulted in high 1PSS.

Correlation of Stress Parameters With
Morphological Features of Plaque
Vulnerability
1PSS was positively correlated with plaque burden (r = 0.37, p
< 0.001) while negatively correlated with fibrous cap thickness
(r = −0.25, p < 0.001). Good correlation was observed between
1PSS and LDC% (r = 0.78, p < 0.001).

Moderate correlation was observed between 1PSS and lipidic
plaque area (LPA) (r = 0.44, p < 0.001), while no significant
correlation was observed between 1PSS and calcific plaque area.
LPA showed good correlation with both lumen deformation and
relative lumen deformation (LPA-LDC: r = 0.55, p < 0.001;
LPA-LDC%: r = 0.88, p < 0.001).

Computational Performance of 1PSS
Assessment
Using an off-the-shelf workstation with a quadcore Intel i7-4790
processor (Intel Corporation, Santa Clara, CA; 3.6 GHz) and 8GB
of RAM, the average simulation time for analysis of each FEA
model was 12.5± 10.2min, and the estimated time for the whole
FEA analysis process was <30 min.

DISCUSSION

In this study, we present for the first time a new methodology to
calculate the changes in plaque structural stress within the cardiac
cycle in vivo using OCT images and FEA simulation. The changes
of superficial plaque structural stress on vessel wall are the main
focus of our current study since it tends to be closely related to
plaque rupture and subsequent acute coronary events (26–29).
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FIGURE 4 | (A–C) Comparison between normal segment and diseased segment. LDC, lumen diameter change; LDC%, percent lumen diameter change; 1PSS,

delta plaque structural stress. The blue circles represent the mild outliers, and the red boxes represent the extreme outliers.

The key findings of this study can be summarized as follows: 1)
1PSS provides a feasible and reasonable approach for OCT-based
biomechanical assessment; 2) diseased segments, especially the
proximal shoulder andminimal lumen area of the lesion, bear the
highest 1PSS, thus highlighting the critical importance of these
sites for future biomechanical studies of plaque vulnerability and
prediction of event risk; 3) correlation between 1PSS and plaque
morphology is consistent with previous clinical and imaging
studies, thus reassuring the rationale of our method.

This novel method is original in many aspects, including
the automatic plaque characterization from OCT images
using artificial intelligence, the incorporation of the three-
layered structure of the vessel wall into 2D FEA model,
the accurate position-specific load derived from intracoronary
pressure tracing data. Previous studies performed coronary
plaque stress simulation (27), but most of them were based
on coronary angiography or intravascular ultrasound (IVUS),
with inherent limitations in plaque characterization and inferior
image resolution, as compared with OCT. Additionally, rigid-
body assumption restricting all deformation was applied to most
FEA models hitherto (20, 30, 31).

The first advantage of the current approach is the higher image
resolution provided by OCT, enabling the detailed description
of coronary lumen, plaque morphology and composition which
are essential for FEA analysis. The significant lower correlation
between load and 1PSS in diseased segments than in normal
segments (r = 0.42 vs. 0.72, p < 0.001) strongly suggests a crucial
role of plaque morphology and composition in determining the
actual plaque stress. Chau et al. have also proposed an FEA
method to derive plaque stress from OCT images (32). However,
a fixed pressure from 0 to 120 mmHg was applied to all models,
which might not be realistic since the geometry of the vessel
was not imaged under zero-pressure condition. In addition, the
same isotropic material properties were applied to the whole
artery wall, ignoring the anisotropy of media and adventitia
and the mechanical differences between them. Although OCT
has limited tissue penetration, as compared with IVUS, and
notwithstanding the high attenuation of near-infrared waves in
lipids, apparently precluding the imaging of media and adventitia

in diseased segments (16), recent studies have proven that the
external elastic lamina can be identified for ≥180◦ in most of
the OCT cross-sections (33). Thus, the media contour could
be extrapolated considering its circular or elliptical geometry.
For OCT cross-sections with invisible IEL, which only accounts
for 7.9% of the total cross-sections in this study, our artificial
intelligence algorithm will refer to adjacent OCT cross-sections
and estimate the contour of IEL. This principle was externally
validated for the same specific software used in the current
study, providing high diagnostic accuracy for delineation of the
media contour and tissue characterization within the plaque,
including lipids (90.5%) (18). In this study, we mainly focused
on the superficial cyclic plaque structural stress on vessel wall,
which is more likely to be affected by the different plaque
components in near-lumen regions, as compared to outer layers
as media and adventitia. During the analysis, we also observed
that the slight deviation, i.e., thickness and contour, in media and
adventitia have a relatively small impact on simulation results.
While for superficial layers, even a tiny change, e.g., lumen
contour and fibrous cap thickness, will cause great difference
in 1PSS. It has also been proven by previous studies that the
most crucial impact on stress computation comes from the
superficial wall adjacent to lumen, and that the vascular structure
determined by OCT provides adequate basis for biomechanical
analysis (23, 32). Nevertheless, when focusing on the stress
distribution at deeper layer, e.g., behind the plaque or near the
outer vessel boundary, more precise simulation results might be
achieved by incorporating more accurate delineation of media
and adventitia, especially for lesions with large lipidic plaque
burden where the outer boundary is invisible due to light
attenuation in OCT. In such cases, IVUS with higher tissue
penetration could serve as a complemental modality (34). By
combining detailed evaluation of plaque morphology provided
by OCT and assessment of the entire vessel structure provided
by IVUS, a more precise geometric model for FEA should
become obtainable, leading to a more accurate biomechanical
assessment especially for outer layers (35). In the future, with the
development of automatic OCT-IVUS co-registration algorithm
and/or hybrid intravascular imaging system with combined OCT
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and IVUS probes (36), the accuracy of PSS assessment could be
further improved with great efficiency.

A complete vessel architecture with three-layer structure
was applied for simulation in this study. Very few studies
have incorporated the three-layered structure of the vessel
into the FEA simulation hitherto. This might be a potential
limitation of previous studies because stress distribution heavily
depends on the physical properties of the material and the
layered arrangement of the vessel wall (21, 37–39). The different
composition and stiffness of intima, media and adventitia
determine their different roles during loading. The stiffness
of intima widely varies depending on the different plaque
components. Conversely, media and adventitia use to have more
predictable mechanical properties: the structured arrangement
of smooth muscle cells in the media confers this layer high
resistance to load, while the helically arranged wavy collagen
fibrils and elastic fibers in adventitia make it more compliant to
pressure than media under normal load (40, 41).

Accurate model load using intracoronary pressure registration
has been instrumental to render precise stress estimations.
The model, however, was only loaded with the change in
coronary pressure, instead of using the whole pressure recording,
in order to simplify and expedite the calculation. The stress
change over the cardiac cycle in atherosclerotic plaques has
been proven to correlate with the incidence of major adverse
cardiovascular events (42) and the general relation between
plaque morphology and plaque stress remains intact irrespective
of the inclusion or exclusion of the initial stress in the model
(43). On this rationale, the decision of using only pressure
change seems justified. Loading the model with the whole
pressure recording might have added marginal accuracy to
the estimations, but at the price of exponentially increasing
the complexity of the analysis and subsequently the time
required for it (43–45). For models to be loaded with the
whole pressure recording, accurate computation of zero-pressure
state is one of the prerequisites. Several methods have been
proposed for the estimation of initial stress. A preshrinkage
algorithm by Huang et al. iteratively shrinks the in-vivo plaque
geometry before the whole pressure loading to estimate the
zero-pressure state and initial stress (44, 45). However, manual
adaptation was required in each iteration to compare the
computed geometry with the image-derived real geometry and
adjust the geometry for the next iteration, which might be
too complicated for daily practice. Speelman et al. proposed
a Backward Incremental method that requires no manual
input (43). However, the vessel geometry under certain fixed
intracoronary pressure is one of the prerequisites for the intimal
stress estimation, making this method not suitable for in vivo
assessment. Theoretically, zero-pressure state and initial stress
could be accurately estimated from the geometrical models of
the same cross-section at both diastole and systole, where the
imaging catheter is required to be fixed at the same position
for at least one cardiac cycle. However, this kind of relative
stillness between catheter and vessel is technically difficult to
achieve, considering the impact of cardiac motion and vessel
contraction (46). Thus, the gain in incorporating whole pressure
recording might be partly canceled by the relative displacement

between the imaging catheter and the analyzed cross-section
during cardiac cycle.

The consistency of the plaque stress calculated by this novel
methodwith previous clinical findings and biomechanical studies
is reassuring of the validity of our approach. Autopsy studies
have linked high plaque stress with plaque rupture (13, 47).
Likewise, imaging studies have associated high plaque stress
with acute coronary syndromes (14). This evidence supports
the biomechanical hypothesis for plaque rupture: the repetitive
cyclic stress would end up breaking the plaque, like repetitively
bending a paper leads to its weakening and fracture (1). In line
with this evidence, normal coronary segments bear significantly
lower 1PSS than diseased segments in our study. Moreover, it
is known that strain and plaque stress are higher upstream than
downstream in the atherosclerotic plaque (48, 49), i.e., higher in
the proximal segments than in the distal segments of the plaque,
and that most plaque ruptures occur in these proximal segments
of the lesion (30, 48, 50, 51). Our results, finding a plaque
stress gradient from the PS to the MLA and ultimately to the
DS, are in line with this preceding evidence. In addition, 1PSS
showed positive correlation with LPA and negative correlation
with fibrous cap thickness, thus confirming a direct association
between 1PSS and morphologically rupture-prone plaque, i.e.,
TCFA. Nonetheless, both correlations were relatively weak (r =
0.37 and−0.25, respectively) and only around half (49.0%) of
the lesions with lipidic plaques have the highest 1PSS located
at the thinnest cap sites, thus suggesting a mismatch between
the histological and biomechanical evaluation of vulnerability.
This observation may at least partially account for the limited
prognostic value of TCFA alone (9–12).

In this study, the mean LDC% in normal segment is 6.29%,
slightly smaller than the range of 7–14% observed by several
previous studies from groups of healthy people aged from 8
to 60 (52–54). Since the coronary artery stiffens with age and
disease, the relatively smaller LDC% of 6.29% in this study seems
reasonable considering that our material property for intimal
fibrous tissue was adopted from patients with an average age
of 66 (21). The LDC is larger in normal segments compared
to the diseased segments, though statistically non-significant.
This finding is in line with previous IVUS studies that normal
segments are more compliant to deformation (55). Conversely,
significantly larger LDC% in diseased segments were observed
in the present study (7.57% vs. 6.29%, p = 0.04). A possible
explanation for this phenomenon is that 82% of the diseased
segments have lipidic plaques, which are softer and thus tend to
have larger relative deformation. Good correlation between LPA
and %LDC further elucidates this point (r = 0.88, p < 0.001).

Clinical Perspectives
TCFA is currently recognized as a precursor for plaque rupture.
However, several issues regarding image-based TCFA detection
remain unsolved, including modest interobserver agreement and
inconsistent definitions between studies (56). In addition, most
TCFAs do not cause symptomatic rupture (9–11), revealing
the fact that histological assessment alone is not enough for
ACS prevention.
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Plaque stress evaluation based on FEA might serve as a
supplementary strategy. The location of peak cyclic plaque stress
might be helpful to predict the risk of rupture and hence
for ACS prevention. However, the length of a focal lesion
is 12–30mm, with 60–150 OCT cross-sections at the highest
pullback speed (57, 58). Therefore, plaque stress evaluation
would be very time-consuming if the whole lesion were
scanned. For future studies, limiting the analysis to high-risk
locations, especially for lipid rich plaques which are at higher
propensity to rupture, might be instrumental for fast and efficient
risk stratification.

Interestingly, LDC% showed good correlation with both1PSS
(r = 0.78, p < 0.001) and LPA (r = 0.88, p < 0.001) in our
study. These findings invite us to explore the possibility of
using angiography-derived lumen deformation for the estimation
of lipidic burden and for simplified identification of high-risk
sites for rupture. Considering the relatively short modeling and
simulation time of 1PSS, the hereby described method might
also be integrated into the current OCT-based FFR computation
system, where the morphological, histological and biomechanical
assessments could be achieved efficiently within one single
OCT pullback.

Limitations
The current study is limited by its post-hoc design and its
relatively small sample size. Nevertheless, all intermediate lesions
with both OCT and intracoronary pressure tracing were enrolled,
following strictly predefined inclusion/exclusion criteria, thus
minimizing the selection bias. Besides, not all interrogated lesions
had PR and DR.

In this study, the FEA models were reconstructed in 2D
without incorporating the shear stress and mechanical forces
in the axial direction (59–61). The homogenous material
property within lipidic and calcific plaque and the uniform
assumption for media and adventitia might also introduce
error into the simulation. Besides, the effect of residual stress
was not considered since it was currently immeasurable. The
lumen deformation might also be different from real situation
depending on the prevailing diastolic blood pressure levels.
In addition, for cross-sections with invisible IEL, the vessel
boundaries estimated by the artificial intelligence might be less
accurate and lead to imprecise simulation results. However,
the impact of this limitation on superficial 1PSS is negligible.
Although the simulation results are in line with clinical findings,
due to the complexity of our current approach combining OCT,
FFR and FEA model together, there is no single “gold standard”
for validation. Besides, only presentative positions were analyzed
for each lesion in this feasibility study. We did not perform
frame-by-frame analysis considering that the reliability in tissue
characterization might be impaired for cross-sections with side
branches. Future prospective studies with larger sample sizes are
warranted to investigate the prognostic value and the clinical
usefulness of 1PSS and other 1PSS-related parameters.

The current approach, using intracoronary pressure
recordings, is exquisitely accurate, but it makes the method

complex and expensive to routine clinical implementation. In
addition, only OCT images without guidewire artifact were
analyzed in this pilot study. Future simplifications of this
approach might facilitate the applicability of this assessment in
the cathlab, provided they rendered acceptable accuracy.

CONCLUSIONS

Plaque structural stress over the cardiac cycle can be estimated
from OCT images, using automatic plaque characterization and
FEA, on a feasible fully automated process aided by artificial
intelligence. The results of this novel approach are consistent
with previous clinical and biomechanical studies, showing higher
plaque stress in diseased vs. normal segments. The highest
stress at the proximal shoulder and MLA indicates the critical
rupture-prone sites for efficient biomechanical assessment in
the future.
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