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Background: Acute kidney injury is an adverse event that carries significant morbidity

among patients with acute decompensated heart failure (ADHF). We planned to develop

a parsimonious model that is simple enough to use in clinical practice to predict the risk

of acute kidney injury (AKI) occurrence.

Methods: Six hundred and fifty patients with ADHF were enrolled in this study. Data for

each patient were collected from medical records. We took three different approaches

of variable selection to derive four multivariable logistic regression model. We selected

six candidate predictors that led to a relatively stable outcome in different models to

derive the final prediction model. The prediction model was verified through the use of

the C-Statistics and calibration curve.

Results: Acute kidney injury occurred in 42.8% of the patients. Advanced age, diabetes,

previous renal dysfunction, high baseline creatinine, high B-type natriuretic peptide,

and hypoalbuminemia were the strongest predictors for AKI. The prediction model

showed moderate discrimination C-Statistics: 0.766 (95% CI, 0.729–0.803) and good

identical calibration.

Conclusion: In this study, we developed a prediction model and nomogram to estimate

the risk of AKI among patients with ADHF. It may help clinical physicians detect AKI and

manage it promptly.

Keywords: acute decompensated heart failure, acute kidney injury, prediction model, B-type natriuretic peptide,

acute cardiorenal syndrome

BACKGROUND

Acute kidney injury is a complex systemic syndrome associated with high morbidity and mortality.
In patients with acute decompensated heart failure (ADHF), the incidence and impact of acute
kidney injury (AKI) have been reported mainly in subjects hospitalized with acute HF (AHF),
in which the prevalence of AKI is about 20% (1). In patients with ADHF, AKI is a frequent
event in which hemodynamic status, low cardiac output or congestive status, and the impact
of drugs, mainly diuretics and renin–angiotensin system blockade, are relevant factors. It has
been recognized that AKI is a strong independent predictor of both in-hospital and 1-year
mortality (1–3).
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Early detection of patients at higher risk for AKI occurrence
would help physicians to plan and initiate appropriate
managements to improve the renal safety of therapies, augment
surveillance of cardiac and renal dysfunction, and develop
renal-preserving treatments. A substantial proportion of cases of
AKI are thought to be preventable with early treatment (4, 5).

Many studies have revealed the mechanism of AKI in
patients with heart failure through common hemodynamic,
neurohormonal, and immunological and biochemical feedback
pathways (6–8). An evolution in the early diagnosis has been
the discovery of novel AKI biomarkers, such as Cystatin
C (9), neutrophil gelatinase-associated lipocalin (NGAL) (10,
11), kidney injury molecule 1 (12), and soluble urokinase
plasminogen activator receptor (suPAR) (13). These biomarkers
are not convenient for clinical acquisition and are not suitable
for clinical prediction. At present, risk factors for postoperative
AKI in outpatients (14), inpatients (14), critically ill patients
(15–18), and surgical patients (19–21) have been analyzed, and
a prediction model has been established. There is lack of a
prediction model for AKI in patients with ADHF. We, therefore,
derived a practical risk prediction model for AKI among patients
with ADHF.

METHODS

The methods described in this article are in accordance with
the transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) statement (22).

Data Sources and Processing
This study was approved by the ethics committee of the
Aerospace Center Hospital, Beijing, China; written informed
consent was waived owing to the use of anonymous retrospective
data. Data for each patient were collected from the medical
records. A team of experienced cardiology clinicians reviewed
and cross-checked the data. Each record was checked
independently by two clinicians.

Patient Selection
A total of 1,081 patients diagnosed with ADHF who were
admitted to Aerospace Center Hospital (a tertiary hospital in
Beijing, China) from January 2017 to December 2019 were
retrospectively recruited. ADHF was diagnosed based on the
European Society of Cardiology guidelines (23).

We excluded patients who met the following exclusion
criteria: chronic kidney disease requiring regular dialysis, <18
years old, pregnant women, dementia, psychosis, length of stay
<2 days, underwent surgery, and injection contrast agent in
hospital. When there were two or more admissions for the same
patient, only the most recent was considered. Electronic medical
records were then screened, and patients were excluded if critical
data for the diagnosis of AKI (such as serum creatinine levels and
urine output) were missing (Supplementary Figure 1).

Potential Predictive Variables
Consistent data for each patient were collected from the medical
records. All candidate predictors were selected based on detailed

literature reviews and clinical evidence within the confines of
data availability (24).

Potential predictive variables included the following
patient characteristics at hospital admission: clinical signs and
symptoms, imaging results, laboratory findings, demographic
variables, medical history, and treatment. Demographic
variables collected for the study included sex, age, height,
and weight. Medical history included diabetes, hypertension,
coronary artery disease, previous heart failure, atrial fibrillation,
previous renal dysfunction, cerebral infarction, cancer, and
cirrhosis. Clinical signs and symptoms included categorical and
continuous variables: New York Heart Association (NYHA)
functional class, heart rate, systolic blood pressure, diastolic
blood pressure, rales (>1/2 lung fields), jugular venous
distension, and peripheral edema. Imaging results included
left ventricular ejection fraction (LVEF) by two-dimensional
transthoracic echocardiography. Laboratory findings included
B-type natriuretic peptide, hemoglobin, hematocrit, C-reactive
protein, alanine aminotransferase, total bilirubin, blood urea
nitrogen, creatinine, albumin, serum sodium, serum potassium,
uric acid, and glucose. We recorded the baselines of these tests
with the first value being within 2 days of onset admission.
Treatment included aldosterone antagonists, loop diuretic,
angiotensin-converting enzyme inhibitors/angiotensin receptor
blockers (ACE-Is/ARBs), beta-blockers, anticoagulants, aspirin,
non-steroidal anti-inflammatory drugs (NSAIDs), vasopressor
use, intra-aortic balloon pump (IABP), and mechanical
ventilator. These detailed and specific definitions are listed in
Supplementary Table 1.

Definition of AKI
The outcome was the occurrence of AKI during the hospital
stay of the patients, according to the Kidney Disease: Improving
Global Outcomes (KDIGO) guidelines (25). Any patient meeting
criteria for stage 1 or higher, based on either serum creatinine
level or urine output, was considered to have AKI. (Criteria
for stage 1 : serum creatinine, 1.5–1.9 times baseline or ≥26.5
µmol/L increase; urine output, <0.5 ml/kg/h for 6–12 h),
we placed that patient into the AKI group. The creatinine
measurement obtained the first value being within 2 days of
onset admission to the hospital was used as the baseline value for
all analyses.

Sample Size
We originally considered events per variables (EPV) ratio
between 5 and 10 acceptable, with EPV of 10 as the optimal
number to minimize overfitting of the regression model.
According to this rule, we needed 60 ADHF inpatient AKI
occurrence to evaluate six candidate predictors. Assuming that
the prevalence of acute kidney injury was 20% among patients
with ADHF (26), a total sample size of at least 300 would suffice.
To ensure an adequate number of events, we decided to collect
data of at least 600 individuals.

Missing Data
Before data analysis, predictor variables were inspected for
missing values. Among the predictors, the proportion of missing
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data was 0.3–6 %. To include these data from the analyses,
we imputed missing data by multiple imputations by chained
equations, using the mice package for R, in which predictive
mean matching is embedded with the cases (k) = 5 default.
Baseline clinical characteristics before and after imputation are
listed in Supplementary Table 2.

Statistical Analysis
Data are presented as frequencies (percentages) for categorical
variables and mean (standard deviation) or medians
(interquartile ranges [IQRs]) for continuous variables. Means
for continuous variables were compared by t-tests when the data
were normally distributed; otherwise, the Mann–Whitney U
test was performed. Proportions for categorical variables were
compared by the χ

2 test, although the Fisher exact probability
test was performed when the data were limited. The significance
level of the above statistical analyses was set as α = 0.05, and P <

0.05 (two-tailed) was considered statistically significant.

Variable Selection and Model Development
Different models will be constructed based on different variables.
Some variables, which may be closely related to the true
world, will lead to a relatively stable outcome even in different
models (24, 27). To ensure the robustness and validity of the
prediction model, we took three different approaches of variable
selection to derive four multivariable logistic regression models:
Akaike information criterion (AIC)-based stepwise (model A),
multifractional polynomial (MFP) (model B), least absolute
shrinkage and selection operator (LASSO) regression (model C
and model D according to tuning parameter lambda.1se and
lambda.min, respectively).

If the relationship between the variable and the outcome is
not linear, the variable can be transformed with the MFP model
(24). LASSO regularization was used for variable selection, and
logistic regression was used to estimate the association of risk
factors and AKI. LASSO regression is a compression estimation
that is used to deal with the collinearity between covariates.When
there are several collinear predictors, LASSO selects only one
and ignores the others or zeroes out some regression coefficients.
Multicollinearity was tested using the variance inflation factor
(VIF) method, with a VIF ≥ 10 indicating the presence of
several multicollinearities.

The analysis results and clinical reasons, sample size, and
statistical power should be considered at the same time. We
evaluated the C-Statistics and calibration curve of each model,
evaluated the variables of the four models, and selected six most
stable predictors based on their clinical significance (28).

Finally, we selected six candidate predictors to derive the
prediction model, and built a nomogram based on the results of a
logistic regression model. If the relationship between the variable
and the outcome is not linear, the variable can be transformed by
the MFP model. We evaluated the C-Statistics of the two models.

Model Validation
We carried out internal validation of the model development
process using a bootstrap resampling process (500 bootstrap
samples per model) to provide an unbiased estimate of model
performance (24). Then, the prediction model was verified

through the use of the C-Statistics, calibration curve (29), and
Decision Curve Analysis (28).

Sensitivity Analysis
Given the heterogeneity of sex and age, to investigate whether
the predictive strength of nomogram would change by sex or
age, we investigated the interaction between creatinine and sex
or age with the Wald test. We considered a two-sided P value
of <0.05 to be statistically significant. If there is an interaction
between sex or age and creatinine, we divided the cohort into
two subgroups based on sex and age (threshold of 65 years) to
investigate whether the prediction model performed equally well.

Statistical Analysis Software
Data were analyzed with the use of the statistical packages
R (The R Foundation; http://www.r-project.org; version 3.4.3)
and Empower (R) (version 3.0; www.empowerstats.com, X&Y
solutions, Inc., Boston, MA, United States;).

RESULTS

Statistical Analysis
In total, 650 patients with ADHF were enrolled in this
study, and 278 had AKI, meaning that the incidence of
AKI was 42.8%. With the mean age of 74.8 years, 298
(45.8%) of the patients were male. Compared with non-
AKI patients, patients with AKI were significantly older
(P < 0.05). Supplementary Table 3 shows a comparison of
the characteristics of patients enrolled in the study. The
proportions of medical history (diabetes, coronary artery disease,
previous congestive heart failure, atrial fibrillation and previous
renal dysfunction) and laboratory findings (B-type natriuretic
peptide, hemoglobin, hematocrit, alanine aminotransferase,
blood urea nitrogen, creatinine, and albumin) were significantly
different (P < 0.05).

Variable Selection and Model Development
We developed model A of variable selection by AIC-based
stepwise that consisted of 15 variables. We further developed
model B by MFP-selected variables that also consisted of 15
variables (B-type natriuretic peptide divided by 1,000, age,
creatinine, albumin divided by 100, and C-reactive protein
divided by 10).

Based on LASSO analysis (Supplementary Figure 2), we
identified model C and model D that consisted of 7 and
19 variables with the tuning parameters lambda.1se and
lambda.min, respectively (Supplementary Table 4).

We evaluated the C-Statistics (Supplementary Table 5) and a
calibration curve of each model (Supplementary Figure 3).

We selected the six most stable candidate predictors to derive
the prediction model, and built a nomogram based on the results
of a logistic regression model (Figure 1).

A risk score was calculated for each patient using a formula
derived from the expression levels of the six variables weighted
by their regression coefficients: Risk score = −3.02492 +

0.04100 × age (years) + 0.48031 × (diabetes = 1) + 0.69499
× (previous renal dysfunction = 1) + 0.00851 × creatinine
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FIGURE 1 | Nomogram based on the results of a logistic regression model (age in units of years, creatinine in units of µmol/L, B-type natriuretic peptide in units of

pg/ml, albumin in units of g/L).

(µmol/L)+ 0.00026× B-type natriuretic peptide (pg/ml)−0.056
× albumin (g/L).

As the relationship between four variable and the
outcome is not linear, the variable was transformed by
the MFP (B-type natriuretic peptide divided by 1,000,
age, creatinine, albumin divided by 100). We found that
two models had similar prediction performance in terms
of C-Statistics (MFP model, C-Statistics: 0.766 [95% CI,
0.729–0.803]; prediction model, C-Statistics: 0.766 [95%
CI, 0.729–0.803]), so we finally selected the prediction
model for validation, taking into consideration the clinical
significance, in which there is no need for variable divided by 100
or 1,000.

Model Validation
The bootstrap method showed a moderate discriminative ability
of prediction model (C-Statistics: 0.763 [95% CI, 0.73–0.803]
(Figure 2A). Calibration plots of the model by the bootstrap
method showed good performance at most (Figure 2B). Decision
curve analysis showed moderate clinical effectiveness of the
models (Figure 2C).

Sensitivity Analysis
We did not find the interaction between sex and creatinine
(P = 0.89, crude, P = 0.41, adjusted). We found the interaction
between age (threshold of 65 years) and creatinine (P = 0.13,
crude, P = 0.01, adjusted). Given the heterogeneity of age,
we divided the cohort into two subgroups (122 younger and
528 older patients) based on the age threshold of 65 years to
investigate whether the prediction model performed equally well
in the older and younger patients. The discrimination of the
prediction model was consistent for the younger subgroup (C-
Statistics: 0.825 [95% CI, 0.747–0.903]) and the older subgroup
(C-Statistics: 0.748 [95% CI, 0.707–0.79]). The calibration curve
indicated that the prediction model was similar calibrated in
subgroups (Supplementary Figure 4).

Nomogram Interpretation
The point in Figure 1 is a selected scoring standard or scale. For
each independent variable, a straight line perpendicular to the
axis of points (through a ruler) is made at that point, and the
intersection point represents the score under the value of the
independent variable. For example, age at 60 means 35 points;
creatinine at 150 means 27.5 points. The corresponding points of
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FIGURE 2 | Model internal validation. (A) Discrimination of the prediction model by the bootstrap method. (B) Calibration plots of the model by the bootstrap method.

(C) Decision curve of the model.

these independent variables of each patient can be calculated in
total. We can get total points, which will locate to the axis with a
perpendicular line. This will indicate the risk for AKI occurrence
of this patient.

DISCUSSION

Heart and kidney interactions are complex and a subject
of immense clinical and scientific interest and debate. The
coexistence of acute cardiac and renal dysfunction, termed as
acute cardiorenal syndrome, has been shown to correlate with
increased mortality and all manners of adverse outcomes (6).
Currently, there is no effective practical tool for estimating the
likelihood of AKI occurrence after ADHF. In this study, we
developed a risk score and nomogram to estimate the risk of AKI
among patients with ADHF. This risk score system in the study
is easy and convenient to apply for early-stage AKI prediction. It
may help clinical physicians detect AKI and manage it promptly.

Based on different regressions, we found six most stable
risk factors of AKI occurrence in this retrospective study,
namely, advanced age, diabetes, previous renal dysfunction,
high baseline creatinine, high B-type natriuretic peptide, and
hypoalbuminemia. Some established risk factors are advanced
age, chronic heart disease, and previous renal dysfunction
(30). Advanced age, diabetes, and high creatinine (baseline
renal function) at admission were also found in other AKI
prediction models (31). Recent research has identified several
non-traditional risk factors for AKI, which clinicians caring for
acutely ill patients should be aware of. The B-type natriuretic
peptide has emerged as an important tool for the diagnosis
and risk stratification of patients with heart failure. Our
study and Hogenhuis et al. found that renal dysfunction is
independently associated with B-type natriuretic peptide levels
in patients with heart failure (32). Patel et al. found that B-
type natriuretic peptide level is associated with postoperative
AKI in high-risk patients undergoing cardiac surgery (33).
Low serum albumin is common in patients with heart failure

and is associated with increased mortality (34, 35). Renal
dysfunction may be the main pathophysiological mechanism
underlying hypoalbuminemia in patients with heart failure. The
association between hypoalbuminemia and development of AKI
and subsequent morbidity/mortality can also be regarded as
confirmed (36). B-type natriuretic peptide and hypoalbuminemia
reflect the interaction between the heart and the kidney.

The discussion on variable screening has been going on for a
long time. We found out the most stable factor for the outcome
from results based on C-Statistics and plotted the calibration
curve of four models by three different approaches. The analysis
results and clinical reasons, sample size, and statistical power
were considered at the same time. A prediction model is
constructed with traditional clinical features and laboratory test
results. The predictive variables in the nomogram model are
convenient for clinical acquisition, and the construction of these
models is feasible. These parsimonious models will be sufficiently
stable for application (24). Sometimes algorithms of machine
learning are used to build models, and most of these models are
non-parametric. Because there are no parameters like regression
coefficients, the clinical interpretation of such nonparametric
models is difficult (24). Therefore, we did not select machine
learning for variable filtering. The study took many steps to
minimize potential bias. For instance, we excluded repeated
admissions to ensure that all cases in the final cohort were
independent from each other (37).

Limitations
In addition to these findings, some limitations to our study
should be addressed. First, this is an observational study that
cannot directly draw causal conclusions. Second, this study
excluded patients of injection contrast agent and surgery, so
this population could not be extrapolated. Third, some pieces
of information, such as a history of myocardial infarction and
etiology of heart failure, were not inputted into the analysis, and
this may need to be investigated in future research. Finally, as
this study was based on a single center in China, it will inevitably
have sample selection bias. We lack external validation of the
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study. As such, prospective validation to examine model stability,
reproducibility, and external validity in independent samples
is needed.

CONCLUSION

Acute kidney injury is an adverse event that carries significant
morbidity among patients with ADHF. Currently, there is no
effective practical tool for estimating the likelihood of AKI
occurrence after ADHF. In this study, we developed a risk score
and nomogram to estimate the risk of AKI among patients with
ADHF. It may help clinical physicians detect AKI and manage
it promptly.
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