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Objective: Elevated plasma cholesterol concentrations contributes to ischemic

cardiovascular diseases. Recently, we showed that inhibiting hepatic (pro)renin receptor

[(P)RR] attenuated diet-induced hypercholesterolemia and hypertriglyceridemia in

low-density lipoprotein receptor (LDLR) deficient mice. The purpose of this study was

to determine whether inhibiting hepatic (P)RR could attenuate atherosclerosis.

Approach and Results: Eight-week-old male LDLR−/− mice were injected with either

saline or N-acetylgalactosamine-modified antisense oligonucleotides (G-ASOs) primarily

targeting hepatic (P)RR and were fed a western-type diet (WTD) for 16 weeks. (P)RR

G-ASOs markedly reduced plasma cholesterol concentrations from 2,211 ± 146 to

1,128 ± 121 mg/dL. Fast protein liquid chromatography (FPLC) analyses revealed that

cholesterol in very low-density lipoprotein (VLDL) and intermediate density lipoprotein

(IDL)/LDL fraction were potently reduced by (P)RR G-ASOs. Moreover, (P)RR G-ASOs

reduced plasma triglyceride concentrations bymore than 80%. Strikingly, despite marked

reduction in plasma lipid concentrations, atherosclerosis was not reduced but rather

increased in these mice. Further testing in ApoE−/− mice confirmed that (P)RR G-ASOs

reduced plasma lipid concentrations but not atherosclerosis. Transcriptomic analysis of

the aortas revealed that (P)RR G-ASOs induced the expression of the genes involved in

immune responses and inflammation. Further investigation revealed that (P)RR G-ASOs

also inhibited (P)RR in macrophages and in enhanced inflammatory responses to
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exogenous stimuli. Moreover, deleting the (P)RR in macrophages resulted in accelerated

atherosclerosis in WTD fed ApoE−/− mice.

Conclusion: (P)RR G-ASOs reduced the plasma lipids in atherosclerotic mice due

to hepatic (P)RR deficiency. However, augmented pro-inflammatory responses in

macrophages due to (P)RR downregulation counteracted the beneficial effects of lowered

plasma lipid concentrations on atherosclerosis. Our study demonstrated that hepatic

(P)RR and macrophage (P)RR played a counteracting role in atherosclerosis.

Keywords: macrophage, cholesterol, V-ATPase = vacuolar H+-adenosine triphosphatase, renin- angiotensin

system, (Pro)renin receptor (PRR)

INTRODUCTION

Atherosclerosis is a major cause of morbidity and mortality.
Increased concentrations of plasma cholesterol and triglycerides,
elevated blood pressure, and impaired blood glucose metabolism
are the major risk factors for developing atherosclerosis and
ischemic cardiovascular diseases (CVD). The (pro)renin receptor
[(P)RR] can bind both renin and prorenin, and activate
intracellular signaling cascades, including extracellular signal-
regulated kinase 1/2 and phosphatidylinositol 3-kinase /Akt (1).
Upon binding, the (P)RR activates prorenin in a non-proteolytic
manner, leading to a renin-angiotensin system (RAS) activation.
However, the interaction of (P)RR with renin/prorenin at
supraphysiological concentrations questioned the physiological
relevance of RAS. Indeed, recent studies show that the (P)RR
is an accessory protein of the vacuolar H+-ATPase (V-ATPase)
and is also indispensable for V-ATPase integrity and functions
(2–5). We recently identified that the (P)RR played an RAS-
independent role in regulating lipoprotein and lipid metabolism
(6, 7). Suppressing the (P)RR in hepatocytes reduced the
protein abundance of the low-density lipoprotein receptor
(LDLR), which is the major receptor for low-density lipoprotein
(LDL), thus reducing cellular LDL uptake (6). Inhibiting the
hepatic (P)RR on one hand impairs plasma LDL clearance
as a consequence of decreased hepatic LDLR abundance, but,
on the other hand, it also reduces hepatic very low density
lipoprotein (VLDL) secretion, resulting in a diet-dependent
phenotype in plasma cholesterol (7). However, when LDLR
functions are impaired, hepatic (P)RR inhibition reduces plasma
cholesterol and triglycerides regardless of the diet being fed.
We, thus, hypothesized that (P)RR inhibition would be an
effective way to lower plasma cholesterol and triglycerides
concentrations and to reduce the risk for atherosclerosis in
familial hypercholesterolemia patients, whose LDLR activity is
reduced or diminished, and whose responses to statin is less
pronounced than in normal patients (8).

Abbreviations: CVD, cardiovascular diseases; GalNAc, N-acetylgalactosamine;

IDL, intermediate density lipoprotein; LDL, low-density lipoprotein; LDLR, low-

density lipoprotein receptor; LPS, lipopolysaccaride; ox-LDL, oxidized LDL;

(P)RR, (pro)renin receptor; RAS, renin-angiotensin system; TNF, tumor necrosis

factor; V-ATPase, vacuolar H+-ATPase; VLDL, very low density lipoprotein;

WTD, western type diet.

MATERIALS AND METHODS

The data that support the findings reported in this
manuscript are available from the corresponding authors
upon reasonable request.

Animal Experiments
Low-density lipoprotein receptor deficient (LDLR−/−),
ApoE−/−, and Lyz2-Cre mice were purchased from the Model
Animal Research Center of Nanjing University (Nanjing, China),
and mice carrying floxed (P)RR allele were kindly provided for
by Prof. Michael Bader and Prof. Genevieve Nguyen (9). Mice
were housed on a 10-h light/14-h dark cycle. Eight-week-old
male LDLR−/− and ApoE−/− mice were subcutaneously injected
on a weekly basis with either saline or N-acetylgalactosamine
(GalNAc)-modified antisense oligonucleotides, therefore
targeting the (P)RR [(P)RR G-ASOs]. Only male mice were
studied because our previous study also focused on male mice.
Also, the estrus cycle in female mice may affect atherosclerosis
and other parameters (10). ASOs were synthesized as described
before (7, 11, 12). G-(P)RR ASOs were injected subcutaneously
at 3.0 mg/kg/week at the first 4 weeks and were then reduced to
1.5 mg/kg/week. Mice were fed a western-type diet (WTD, 42%
kcal/kcal fat, 0.2% wt/wt cholesterol, cat Nr. TD88137, Envigo)
for 16 weeks. Blood samples were collected via submandibular
bleeding after 6 h of fasting. Systolic blood pressure was
measured on conscious mice with a computerized noninvasive
tail-cuff system (Softron, BP-2010A, Japan). Blood pressure was
measured weekly for 4 weeks, prior to the end of the study.
The mean of five repeated measurements at the last week (16th
week) is reported. To isolate peritoneal macrophages, C57BL/6J
mice were first injected with saline or 3.0 mg/kg (P)RR G-ASOs,
then 4 days later, mice were injected with 6% autoclaved starch
broth into its intraperitoneal cavity. Three days after starch broth
injection, peritoneal macrophages were isolated as described
(13). To obtain macrophage (P)RR knockout mice on ApoE−/−

background, Lyz2-Cre and (P)RR flox mice were first crossed
with ApoE−/− mice, and the offspring were intercrossed to
obtain Lyz2-Cre+/0 (P)RRwt/YApoE−/− mice and Lyz2-Cre+/0

(P)RRfl/YApoE−/− mice, which were further intercrossed to
obtain macrophage (P)RR knockout mice. Genotyping primers
were listed in Supplementary Table 1. These mice were fed with
WTD for 12 weeks to assess the consequences on atherosclerosis.
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Experimental procedures were approved by the Animal Ethics
Committee of Shenzhen Health Science Center (no. 2014-0140).

Isolation of Mouse Aortas and en Face
Analysis
Aortic segments between the ascending aorta and the iliac
arteries were dissected and fixed with 4% paraformaldehyde for
24 h. After fixation, adventitial tissues were carefully removed,
and the aortas were cut open. Isolated aortas were quantified with
or without Oil Red O (ORO), as described in the AHA statement
(14). En face aortas were imaged with a microscope (Nikon,
SMZ1270, Japan), and lesion areas were measured and quantified
using Image J. In addition to quantification of plaque sizes in the
whole aorta, plaque sizes of the ascending aorta, arch, and from
the aortic orifice of left subclavian artery to 3mm below were also
quantified, which was designated as aortic arch in the figures.

Histology Analysis of Aortic Root
Mice hearts were removed and fixed with 4% paraformaldehyde
for 24 h, embedded in OCT, and cryosectioned at 7µm thickness.
Aortic root sections were prepared as recommended, but with
some modifications (14). In short, serial tissue sections were
acquired from the initial appearance of the aortic valves. Three
tissue sections were placed on a single slide, and in total, 45–48
slides were obtained. The slide showing the largest aortic valves
were chosen for hematoxylin and eosin (H&E) andORO staining.
Stained slides were scanned using Cytation 5 Cell ImagingMulti-
mode reader (Biotek, US). Lesion areas of the aortic root were
measured using ORO staining for the three sections on the same
slide with Image J, and mean lesion size was reported.

Biochemical Measurements
The total cholesterol of plasma and triglycerides concentration
were measured by commercial kit (Wako, Japan) following
the manufacturer’s protocol. Plasma renin concentrations were
measured by enzyme-kinetic assay in the presence of excess
sheep angiotensinogen as described previously (15). The plasma
concentrations of apolipoprotein B (ApoB) were determined by
ELISA kit (Signalway Antibody, EK0320, US). Fractionation of
plasma was described earlier (7), and cholesterol and triglycerides
concentrations in each fraction were determined by commercial
kit (Wako).

RNA Isolation, Quantitative PCR, and RNA
Sequencing
Total RNA was extracted using Direct-zolTM RNAMiniPrep kit
(ZYMO Research). One microgram of total RNA was reverse-
transcribed with Prime ScriptTM RT Master Mix (TaKaRa,
Japan). SYBR Green real-time quantitative PCR assays were
performed on a qTOWER apparatus (Analytic Jena, Germany)
using SYBR R© Premix Ex TaqTM II kit (TaKaRa). Primers
used in the study were listed in Supplementary Table I. Total
RNAs extracted from aortic arch region were used to construct
RNA sequencing libraries, which were sequenced on Illumina
HiSeq X10 platform. DESeq2 was used to identified differently
expressed genes (DEGs). Gene ontology (GO) and KEGG
enrichment analysis were performed using clusterProfiler.

Gene set variation analysis (GSVA) was performed as
described previously (16), using described curated datasets
(Supplementary Table II) from the literature (17, 18).

Cellular Experiments
RAW264.7 cells were maintained with DMEM high glucose
medium supplemented with 10% fetal bovine serum. To inhibit
(P)RR expression, 0.1 mg/ml final concentrations of (P)RR G-
ASOs were incubated with cells. Twenty-four hours later, cells
were incubated, with or without 100 ng/ml lipopolysaccharide
(LPS, In vivoGen), for 4 h to measuring gene abundance, and 12 h
for measuring cytokine production, respectively. To stimulate
cytokine release, cells were incubated with 10µM nigericin for
30min before collecting the cell culture medium. Concentrations
of secreted cytokines in the cell culture medium were measured
using commercial kits from Thermo Scientific (TNF-α: # 88-
7324-88; IL-1b: # 88-7013-22; IL-6: # 88-7064-88; IL-10: 88-7105-
88), following the manufacturer’s protocol.

Fast Protein Liquid Chromatography
(FPLC) Analysis of Plasma Lipoproteins
Fast Protein Liquide Chromatography (FPLC) analysis was
performed as described previously (7). In short, plasma samples
from eight mice were pooled, and cleared by centrifugation
and further filtered through a 0.22µm filter. Two hundred fifty
microliters of filtered plasma were loaded for FPLC analysis
using Superous-6 Increase 10/300 GL column (GE) on an AKTA
purifier (GE). Flow rate was set to 0.5 mL/min, and fractions
between 10 and 16mL were collected at an interval of 0.25
ml/fraction. Cholesterol and triglycerides concentrations in each
fraction were measured.

Statistics
All values are presented as mean ± SEM. The Kolmogorov-
Smirnov test was performed to test normality. All samples
passed normality test. Data were not tested for equal variance.
Two-tailed Student t-test was performed when comparison was
made between two groups: one-way ANOVA followed by the
Bonferroni test was performed for comparison in case of >2
groups. P < 0.05 were considered significant. Statistical analysis
was performed using Prism 9 (Graphpad Software).

RESULTS

(P)RR G-ASOs Did Not Ameliorate but
Increased Atherosclerosis in LDLR–/– Mice
To evaluate whether hepatic (P)RR inhibition attenuates
atherosclerosis, we administered (P)RR G-ASOs to LDLR−/−

mice. The efficacy and specificity of G-(P)RR ASOs in reducing
hepatic (P)RR were demonstrated in our previous study
(7). Inhibiting the (P)RR in hepatocytes reduced the plasma
cholesterol concentrations by ∼50% (2,211 ± 146 vs. 1128 ±

121 mg/dL), and FPLC analysis revealed that the cholesterol
contents of VLDL and IDL/LDL fractions were the most
reduced (Figure 1A). Plasma triglyceride concentrations were
also significantly reduced, mainly by reducing VLDL and
IDL/LDL-triglycerides (Figure 1B). Strikingly, lesion sizes in the
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FIGURE 1 | (Pro)renin receptor [(P)RR] N-acetylgalactosamine-modified antisense oligonucleotides (G-ASOs) reduced plasma cholesterol and triglyceride

concentrations but not atherosclerosis in low-density lipoprotein receptor deficient (LDLR−/−) mice fed a western-type diet (WTD). Eight-week-old male LDLR−/− mice

were administered with saline (blue) or (P)RR G-ASOs (red) and fed a WTD for 16 weeks. N = 8/group. Total plasma cholesterol (A) and triglycerides concentrations

(B). Pooled plasma samples were resolved by FPLC for lipoprotein fractionation analysis, and cholesterol (A) and triglycerides content (B) in each fraction was

determined. Representative images of the aorta arch and Oil Red O-stained whole aorta (C). Quantification of lesion areas of the whole aorta (D) and aortic arch

region (E). Representative images of cross-sectioned aortic root stained with H&E and ORO and quantification of lesion areas of the aortic root (F). Bar = 1,000 µm.

aortic arch region and the entire aorta were increased rather than
reduced by (P)RR inhibition (Figures 1C–E). However, lesions
sizes in the aortic root, revealed by H&E and ORO staining,
were unaltered by (P)RR inhibition (Figure 1F). It is worthy
to notice that lesions development in the aortic root and in
the aortic region can exhibit considerable differences (14, 19).
Overall, our results indicate that atherosclerosis was accelerated
by (P)RR G-ASOs. A previous study reported that systolic blood
pressure was elevated in adipose (P)RR knockout mice (20),
suggesting that (P)RR inhibition may affect RAS activity and
blood pressure. However, (P)RR inhibition did not alter systolic
blood pressure or plasma renin concentrations in LDLR−/−

mice (Supplementary Figure I), ruling out altered RAS activity
as the counteracting factor for the beneficial effects of lowered
lipid concentrations.

(P)RR G-ASOs Did Not Ameliorate
Atherosclerosis in ApoE–/– Mice
We further tested the effect of (P)RR inhibition on atherosclerosis
in another atherosclerotic mice model, namely ApoE−/−

mice. We found that (P)RR G-ASOs also effectively reduced
both plasma cholesterol and triglyceride concentrations in
ApoE−/− mice (Figures 2A,B; Supplementary Figure II), into
a similar extent as observed in LDLR−/− mice. Since plasma
lipid-lowering effects were observed in both LDLR−/− and
ApoE−/− mice, while (P)RR inhibition reduces hepatic LDLR

abundance, the results therefore indicate that LDLR and ApoE
were not required for the lipid-lowering effects of (P)RR
inhibition. However, despite the marked reduction in plasma
lipids concentrations, lesion size in the whole aorta and
aortic arch region has remained unaltered by (P)RR inhibition
(Figures 2C–E).Moreover, lesion sizes of the aortic root, revealed
by H&E and ORO staining, were also unaltered by (P)RR G-
ASOs (Figure 2F). As a whole, it is clear that (P)RR G-ASOs were
unable to attenuate atherosclerosis in ApoE−/− mice.

(P)RR G-ASOs Promoted Immune
Responses by Stimulating Macrophage
Inflammatory Cytokines
Our observation that (P)RR G-ASOs markedly reduced plasma
lipid concentrations, but not atherosclerosis in two different
atherosclerotic models, suggested that (P)RR G-ASOs can
promote other crucial atherogenic factor(s) to counteract the
potential benefit of lowered plasma lipids. To clarify this, we
mapped the transcriptomic changes in aortic arch region of
saline and (P)RR G-ASOs administered LDLR−/− mice that
was fed with a WTD for 4 weeks (Figure 3A). Using aortic arch
region of normal diet-fed 8-week-old LDLR−/− mice as control,
we identified 58 upregulated and 3 downregulated genes in saline
administered LDLR−/− mice, and the GO enrichment analysis
of DEGs revealed that immune response-related biological
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FIGURE 2 | (P)RR G-ASOs reduced plasma lipid concentrations, but not atherosclerosis in ApoE−/− mice. Eight-week-old ApoE−/− mice were administered with

either saline (blue) or (P)RR G-ASO (red) and fed a WTD for 16 weeks. N=9 per group. Plasma cholesterol (A) and triglycerides concentrations (B). Representative

images of aortic arch and en face whole aorta (C). Quantification of lesions in whole aorta (D) or aortic arch region (E). Representative images showing H&E and

ORO-stained sectioned aortic root and quantification of lesion size in aortic root (F). Bar = 1,000µm.

processes were the most affected (Supplementary Table III;
Supplementary Figure III). In comparison, (P)RR G-ASOs
upregulated 256 genes and downregulated 4 genes, which are
also enriched in immune- response-related biological processes
(Supplementary Table IV; Supplementary Figure IV). We
then compared the DEGs and found that 206 genes were
specifically altered by (P)RR G-ASOs (Supplementary Table V;
Figure 3B). GO enrichment analysis revealed that these genes
were related to immune responses (Supplementary Figure V),
while KEGG enrichment analysis revealed that inflammation
related pathways, such as NF-κB signaling pathway, chemokine
signaling pathway, and Toll-like receptor signaling pathway,
were mostly affected (Figure 3C). GSVA analysis demonstrated
that inflammatory gene set, which is type I interferon response
gene set, and M1 macrophage signature gene set were activated
(Figure 3D), suggesting enhanced inflammation in the aortic
arch region of (P)RR G-ASOs administered LDLR−/− mice.
Despite the relatively high specificity of GalNAc-modified
ASOs toward hepatocytes (21), macrophages could also be a
target as they express asialoglycoprotein receptors which bind
GalNAc (22). We therefore suspected that (P)RR G-ASOs may
inhibit (P)RR expression in macrophages and consequently
promotes inflammation, thereby counteracting the benefit
of lowered plasma lipids concentrations. Indeed, isolated
peritoneal macrophages from C57BL/6J mice administered
(P)RR G-ASO for 1 week have showed marked reduction in
(P)RR expression (Supplementary Figure VIA). Moreover, a
successfully inhibited (P)RR expression in murine RAW264.7

(Supplementary Figure VIB), a widely usedmurinemacrophage
cell line, has enhanced LPS-stimulated expression of pro-
inflammatory cytokines, including Tnfa, Il6 and Il1b (Figure 3E).
In RAW264.7 cells, inhibiting the (P)RR has reduced the
abundance of Il10, which is an anti-inflammatory cytokine, done
either with or without LPS stimulation (Figure 3E). In line with
the gene expression findings, (P)RR inhibition in RAW264.7
increased TNF-α, IL-6 and IL-1β secretion, and decreased IL-10
secretion (Figure 3F; Supplemental Figure VII). To confirm the
effect of macrophage (P)RR downregulation in atherosclerosis,
we generated macrophage-specific (P)RR knockout mice on
ApoE−/− background (Supplementary Figure VIII). We found
that deleting the (P)RR in macrophages did not affect plasma
cholesterol and triglyceride concentrations (Figures 4A,B),
further confirming that lowered plasma lipid concentrations
were due to hepatic (P)RR deficiency. But, macrophage
(P)RR-deleted mice did show accelerated atherosclerosis
development (Figures 4C–F). Collectively, these findings
suggested that suppressed (P)RR expression in macrophages
has enhanced inflammatory responses in lesions, counteracting
the benefits of lowered plasma lipid concentrations by hepatic
(P)RR inhibition.

DISCUSSION

Increased plasma cholesterol concentrations are thought to
initiate atherosclerosis by causing abnormal lipid deposition in
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FIGURE 3 | (P)RR G-ASOs promoted immune responses in aorta by augmenting macrophage inflammatory cytokine production. (A–D) Eight-week-old LDLR−/−

mice were administered with either saline or (P)RR G-ASOs and fed a WTD for 4 weeks, and aortas were isolated for transcriptomic analyses. Aortas from 8-week-old

LDLR−/− mice (0 week) served as control. Experimental procedure (A). Venn graph showing overlapped and non-overlapped DEGs (B). KEGG enrichment analysis

(C) and GSVA analysis of curated gene sets (D). (E,F) RAW264.7 cells were incubated with saline (blue) or (P)RR G-ASOs (red) and stimulated with or without LPS.

Expression and production of cytokines were determined.

the artery wall (23). Reducing plasma cholesterol concentrations,
for instance, with statins, is an effective way to reduce CVD
risk. However, in the current study, we demonstrated that a
∼50% reduction in plasma cholesterol concentrations by hepatic
(P)RR inhibition failed to attenuate atherosclerosis in either

LDLR−/− or ApoE−/− mice. It is worthy to note that reduced
plasma cholesterol concentrations were observed as early as 1
week after hepatic (P)RR inhibition (7). Thus, the reduction of
plasma cholesterol concentrations was maintained throughout
the experimental period. Moreover, IDL/LDL cholesterol, the
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FIGURE 4 | Deleting (P)RR in macrophages accelerated atherosclerosis in ApoE−/− mice. Eight-week-old Lyz2-Cre+/0 (P)RRwt/YApoE−/− mice (Ctrl) and Lyz2-Cre+/0

(P)RRfl/YApoE−/− mice (CKO) were fed a WTD for 12 weeks. N = 7 per group. Plasma cholesterol and triglycerides concentrations (A,B). Representative images

showing aortic arch and ORO-stained whole aorta (C). Quantification of lesion area in whole aorta (D) and aortic arch region (E). Representative images showing H&E

and ORO-stained sections of aortic root and quantification of lesion size in aortic root (F). Bar = 1,000µm.

most potent atherogenic cholesterol, was reduced by ∼30%
by inhibiting hepatic (P)RR inhibition. LDL particles are
heterogenous in terms of size, density, and lipid compositions,
and LDL particles with smaller size and higher density (more
apolipoproteins and less lipids) have higher atherogenic ability
(24, 25). Thus, it is possible that (P)RR inhibition alters
the size and density of LDL. Indeed, we found that plasma
ApoB concentrations were increased by inhibiting hepatic
(P)RR (Supplementary Figure IX). Since sortilin-1 promotes
ApoB degradation and the (P)RR inhibition reduces sortilin-
1 abundance (6, 7, 26), increased ApoB is likely a result
of reduced sortilin-1 abundance. This finding, together with
reduced cholesterol content in the IDL/LDL fraction, suggested
that the densities of LDL particles were likely increased by
hepatic (P)RR inhibition. Since small dense LDL enters arterial
intima more easily and is more prone to be oxidized (27, 28), it
may also elicit immune responses smoothly. This may explain
the overactivated immune responses in the aortas of (P)RR
inhibited mice.

Activation of immune responses, characterized by infiltration
of macrophages, mast cells, and T lymphocytes, is another
hallmark in atherosclerosis development (29). The number
of macrophages accumulating in aorta can increase up to
20-fold during atherogenesis (30). These macrophages can
internalize accumulated oxidized LDL, leading to foam cell
formation and the production of inflammatory cytokines, such
as IL-1β. Oxidized LDL can also directly interact with Toll-
like receptors to activate the expression of proinflammatory

cytokines and chemokines (29), which leads to activation of both
innate and adaptive immune responses. Unexpectedly, we found
that inhibiting macrophagic (P)RR promoted inflammatory
cytokine production in the presence of exogenous stimuli,
providing another possibility of why (P)RR G-ASOs did not
attenuate atherosclerosis although they did reduce plasma lipid
concentrations. A recent study demonstrated that WTD feeding
increased angiotensinogen, as well as the angiotensin type 1
receptor expression in peritoneal macrophages, while blocking
the RAS with the angiotensin type 1 receptor antagonist,
valsartan, reduced ox-LDL concentrations, and expression of
Il1b and Tnfa in macrophages (31). This study also highlighted
that RAS activation plays a role in inflammatory responses
of macrophages. However, despite the debate on the role
of (P)RR in RAS (32), inhibiting the (P)RR would inhibit
rather than activate the RAS. Thus, (P)RR depletion is an
unlikely cause of macrophage inflammatory responses via RAS
activation. In fact, we found no effect on renin concentrations
by (P)RR G-ASOs. Thus, the observed effect might be linked
with its functions related to V-ATPase. V-ATPase is expressed
at the plasma membrane and in lysosomes in macrophages
(33). Inhibiting V-ATPase using bafilomycin induces TNF-α
production in macrophages with and without LPS stimulation,
and extends the duration of LPS-stimulated TNF-α production
(33). Moreover, deleting macrophage Atp6v0d2, a subunit of
the V-ATPase complex, augmented LPS-stimulated IL-1β and
TNF production in vivo (34). Interestingly, this study also
showed that LPS stimulation itself reduced Atp6v0d2 expression,
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indicating that inhibition of V-ATPase is required for activating
inflammatory responses in macrophages. V-ATPase also plays
a role in cholesterol efflux in macrophages (35). Inhibiting
V-ATPase using bafilomycin dose-dependently reduced ATP
cassette, binding protein A1-mediated cholesterol efflux in
RAW264.7 cells, inhibiting V-ATPase using bafilomycin dose-
dependently reduced cholesterol efflux mediated by ATP cassette
binding protein A1. In fact, our transcriptomic result shows that
the expression of ATP-binding cassette transporters was altered
by (P)RR G-ASOs. Thus, it is possible that (P)RR deficiency
in macrophages augments inflammation and impairs cholesterol
efflux by impairing V-ATPase activity.

In summary, we showed that (P)RR G-ASOs lowered
the plasma lipid concentrations in WTD-fed LDLR−/− and
ApoE−/− mice due to hepatocyte (P)RR inhibition. However,
unexpectedly, downregulation of (P)RR in macrophages due to
(P)RR G-ASOs promotes inflammatory cytokine production
and suppressed anti-inflammatory cytokine production,
thus counteracting the benefits of lowering plasma lipid
concentrations. Overall, (P)RR G-ASOs did not attenuate
atherosclerosis in WTD-fed LDLR−/− and ApoE−/− mice.
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