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Background: Acute aortic dissection is a potentially fatal cardiovascular disorder

associated with high mortality. However, current predictive models show a limited ability

to efficiently and flexibly detect this mortality risk, and have been unable to discover a

relationship between the mortality rate and certain variables. Thus, this study takes an

artificial intelligence approach, whereby clinical data-driven machine learning was utilized

to predict the in-hospital mortality of acute aortic dissection.

Methods: Patients diagnosed with acute aortic dissection between January 2015

to December 2018 were voluntarily enrolled from the Second Xiangya Hospital of

Central South University in the study. The diagnosis was defined by magnetic resonance

angiography or computed tomography angiography, with an onset time of the symptoms

being within 14 days. The analytical variables included demographic characteristics,

physical examination, symptoms, clinical condition, laboratory results, and treatment

strategies. The machine learning algorithms included logistic regression, decision tree,

K nearest neighbor, Gaussian naive bayes, and extreme gradient boost (XGBoost).

Evaluation of the predictive performance of the models was mainly achieved using the

area under the receiver operating characteristic curve. SHapley Additive exPlanation was

also implemented to interpret the final prediction model.

Results: A total of 1,344 acute aortic dissection patients were recruited, including

1,071 (79.7%) patients in the survivor group and 273 (20.3%) patients in non-survivor

group. The extreme gradient boost model was found to be the most effective

model with the greatest area under the receiver operating characteristic curve (0.927,

95% CI: 0.860–0.968). The three most significant aspects of the extreme gradient

boost importance matrix plot were treatment, type of acute aortic dissection, and

ischemia-modified albumin levels. In the SHapley Additive exPlanation summary plot,

medical treatment, type A acute aortic dissection, and higher ischemia-modified albumin

level were shown to increase the risk of hospital-based mortality.
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Conclusions: The extreme gradient boost model was as an effective approach to

generate an accurate and early prediction of in-hospital mortality in patients with acute

aortic dissection. Overall, this model facilitates early risk evaluation and clinical decisions

relating to individual patients.

Keywords: acute aortic dissection, machine learning, extreme gradient boost, in-hospital mortality, prediction

INTRODUCTION

Acute aortic dissection (AAD) is amongst the most common
cardiovascular disorders; moreover, it is renowned for its high
mortality (1, 2). Research has shown that ∼1–2% of all patients
with AAD die every hour following the onset of symptoms
(3). Despite considerable improvements to the treatment of
AAD recently, the in-hospital mortality of AAD remains at a
concerningly high level (4)—nearly 20% of all patients with
AAD die before hospital admission (5). Therefore, being able to
predict the in-hospital mortality risk of this disorder precisely
and efficiently in its early phase would undoubtedly improve the
prognosis of patients diagnosed with AAD in the future.

Previous studies were unable to comprehensively detect the
risk of in-hospital fatality or short-term death in patients with
AAD (6–8). Tolenaar et al. (6) evaluated the death risk of
this disorder and were able to produce a convenient bedside
prediction tool for patients with acute type B aortic dissection.
Similarly, Leontyev et al. (7) developed a scorecard to anticipate
the short-term mortality of patients with type A AAD, which has
proved to be very useful. In addition, Yang et al. (8) managed
to identify potential predictors of in-hospital mortality, and
subsequently constructed a predictive nomogram prototype to
detect high-risk patients with AAD. However, these studies were
analyzed using a conventional logistic regression (LR) method,
which involves statistical assumptions about the independent
linear relationship between the variables and the outcomes, or
neglected the analysis of other valuable variables. Consequently,
these findings are somewhat limited due to the complex process,
inadequate predictive strength, and poor stability.

Machine learning (ML) is a specific form of artificial

intelligence (AI) that automatically obtains valuable information

and can recognize underlying patterns within large sets of data,

subsequently generating an outcome prediction (9). Compared

with traditional prediction methods, ML techniques perform on

a superior level, and therefore, have been applied to an array

of medical services, such as image identification, diagnosis, and

treatment (10, 11). Existed research has evidenced the capability
of ML algorithms to improve patient outcomes in relation to
sepsis, based on the development of diagnosis and risk prediction
models (12–14). Martinez et al. (15) also developed a ML model
to identify high-risk patients for acute kidney injury at an
early stage. Another recent study focused on patients presenting
with chest pain in the emergency department, whereby it was
found that ML had a critical role as a decision support tool
for early detection of myocardial infarction (16). Therefore, the
implementation of ML can be seen as a major contributor to
improving patients’ quality of life.

In recent times, ML has emerged in the context of aortic
dissection. Huo et al. (17) successfully demonstrated the use of
ML models to identify patients with AAD from misdiagnosed
cases. This is a beneficial finding as it would aid early
classification of the disorder and would enable timely decision-
making by physicians. However, there is little research regarding
the use of the ML algorithm to predict short-term outcomes of
patients with AAD.

The purpose of this study was to construct and evaluate a
ML model with the goal of predicting in-hospital mortality in
patients with AAD. The significance of the results could aid
efficient detection of high-risk patients and could effectively
allocate appropriate medical resources upon AAD diagnosis.

MATERIALS AND METHODS

Study Design and Setting
A retrospective single-center study was designed, whereby the
clinical information of patients with AAD admitted to the Second
Xiangya Hospital of Central South University were investigated.
The patients were admitted to the hospital between January
2015 to December 2018. Prior to study commencement, ethical
approval was granted by the institutional review board; as this
was a retrospective observational study, the requirement for
informed consent was removed.

Enrollment in the study involved 1,344 adult patients
with AAD. Classification relied upon Stanford criteria,
whilst magnetic resonance angiography (MRA) or computed
tomography angiography (CTA) was used to diagnose AAD,
based on the 2014 European Society of Cardiology (ESC)
guidelines regarding the medical treatment and diagnosis of
AAD (18). The exclusion criteria of the study included: (1) being
under the age of 18; (2) the presence of intramural hematoma;
(3) pregnancy; (4) hospital admission being ≥14 days since the
commencement of symptoms.

Features Extraction
Extraction from electronic medical registers involved the
following features: age, sex, height, weight, body mass
index, hypertension, diabetic status, stroke, atherosclerosis,
Marfan syndrome, blood pressure, symptoms, smoking,
drinking, Stanford classification, and treatment. These
features were extracted based on the timeline of January
2015 to December 2018.

Relevant laboratory features were also collected, including:
white blood cell count, neutrophil ratio (N%), lymphocyte
ratio (L%), platelet count, hemoglobin, alanine transaminase,
aspartate aminotransferase, albumin, total bilirubin, direct
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bilirubin, creatinine, blood urea nitrogen, uric acid, myoglobin,
creatine kinase, creatine kinase-MB, troponin T, B-type
natriuretic peptide, D-dimer, ischemia-modified albumin, C-
reactive protein, erythrocyte sedimentation rate, procalcitonin,
and lactate dehydrogenase. All variables were detected within
the initial 24 h of patient admission; the main laboratory of
the Second Xiangya Hospital was responsible for analysis of
each variable.

Clinical Outcome
In-hospital mortality was regarded as the clinical outcome, which
referred to all causes of death during a period of hospitalization.

Data Preprocessing
For the further development of ML models, categorical features
were preprocessed according to their natures. For instance, the
treatment of patients was encoded as 0, 1, or 2 (0 = Medical
treatment, 1= Endovascular treatment, 2= Surgical treatment).
Moreover, the type of AAD and gender were encoded as 1 or 2
(type of AAD: 1 = type A, 2 = type B; gender: 1 = male, 2 =

female). In other cases, the features related to clinical conditions
such as smoking, drinking, medical history, and symptoms are
binary, were encoded as 0 or 1 (0= absence, 1= presence).

Model Construction
Once the features were inputted, ML algorithms were applied,
including LR, decision tree (DT), Gaussian naive bayes
(GaussianNB), K nearest neighbor (KNN), and extreme
gradient boost (XGBoost). These algorithms enabled predictions
regarding in-hospital mortality in a sample of patients with
AAD. Python programming software (version 3.6) was used to
build the predictive models.

Model Training and Performance
Evaluation
Figure 1 displays the concise training flow chart; firstly, all the
data was randomly split into training and test sets based on 9:1
division. Optimal model parameters were then modified within
the training set. To avoid overfitting, the model was tested on an
independent test set that was unseen during training.

The model performance of the test set was evaluated by
creating receiver operating characteristic (ROC) curves and,
respectively, calculating the area under the ROC (AUROC) for all
the models. At various thresholds, creation of the ROC utilized
the “true positive rate” (TPR) against the “false positive rate.”
Model capability was evaluated using the AUROC. To conduct a
comprehensive assessment of model performance, the sensitivity
(TPR), accuracy, average precision, specificity (true negative rate,
TNR), positive predicted value (PPV), and negative predictive
value (NPV) were all acknowledged.

Finally, 10-fold cross validation was implemented in the
aforementioned procedures; this reduced the variability in
estimations of model performance and ensured that the
estimated performance of a model would reflect its practical
performance. The model that obtained the best average
performance metrics of the 10-fold-validation was then regarded

as the optimal ML predictive model of in-hospital mortality in
patients with AAD.

Model Interpretation
There are distinctive Black-Box characteristics associated with
ML, which can weaken the model’s ability to produce correct
interpretations (19). Nonetheless, the reasons behind each
predictive outcome should be ascertained. To achieve this, in
the ML model, the importance of each feature was evaluated
by the feature importance score, which was determined based
on the average reduction of loss when a feature was used as a
partition attribute (20). The higher the feature score, the greater
the influence of the feature on the prediction.

The SHapley Additive exPlanation (SHAP) method was used
to expand and enhance the interpretation of the XGBoost model;
the SHAP method provides a visualization of the prediction
created by the final model. Concurrently, the DT model was also
interpreted through SHAP Tree-Explainer as a way of comparing
the results of SHAP. Cooperative game theory was initially used
to establish the SHAP method; the theory was further developed
to facilitate the SHAP method’s ability to calculate the individual
contribution values of each feature toward the final prediction
(21). The SHAP method also evidenced the positive or negative
influence of each feature value on the predicted results.

To explain the single prediction of the ML model, Local
Interpretable Model-agnostic Explanations (LIME), a commonly
used local explanation tool, was included in the model
interpretation (22). LIME utilizes interpretability models,
including linear models and tree-based models, to locally infer
the target black box model’s prediction. Although this does not
result in significant depth within the model, this method is able
to detect changes in the output of the black box model based on
slight perturbations of the input. The model can then train an
interpretability model at specific points of interest (the original
input) based on this change. An important point to acknowledge
is that the interpretability model is a local approximation of the
black box model, as opposed to a global approximation, which
also explains the origin of its name.

Statistical Analysis
Two patient groups were constructed according to their status
as deceased or alive during the hospitalization period. Variables
were compared between these groups, whilst characteristics for
continuous variables were shown as mean ± standard deviation
or as median (IQR), and for categorical variables were shown as
a percentage or frequency. Student’s t-test (normal distribution)
or Mann–Whitney U-test (skewed distribution) were used to
compare continuous variables; in contrast, Fisher’s exact test or
Chi-square analysis were implemented to compare categorical
variables. Regarding missing data, any feature with >10% of the
data missing was eliminated; however, for features with <10%
of the data missing, imputed values (which were combined
using Rubin’s rules) were used to impute the missing data.
Statistical analyses were all completed using R software. Statistical
significance was deemed when two-sided P < 0.05.
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FIGURE 1 | Training and evaluation procedures of machine learning model.

FIGURE 2 | Flow chart of patient enrollment.

RESULTS

Demographic Information and Clinical
Characteristics
This study involved the recruitment of 1,344 patients with
AAD between January 2015 to December 2018 (Figure 2).
Table 1 shows the baseline characteristics of this patient sample,
categorized based on survival status. Overall, 273 (20.3%)
patients were classified as deceased, whilst 1,071 (79.7%) were
classified as survived during hospitalization, with 662 (49.26%)
type A acute aortic dissection (TA-AAD) patients and 682
(50.74%) type B acute aortic dissection (TB-AAD) patients,
respectively. Among the cohort, 351 (26.12%) received medical

treatment, 558 (41.52%) received endovascular treatment, and
435 (32.37%) underwent open surgery. The average age of the
cohort was 52.37± 11.73 years; 80.36% of the patients were male,
while 19.64% were female.

Comparison of Baseline Characteristics
Between Survivor and Non-survivor
Groups
An insignificant difference was determined between age, gender,
height, weight, and body mass index between the survivor and
non-survivor groups (P > 0.05). However, the non-survivor
group presented lower systolic (P < 0.001) and diastolic (P <
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TABLE 1 | Baseline characteristics of the AAD patients.

Characteristics Total

(n = 1,344)

Survivors

(n = 1,071)

Non-survivors

(n = 273)

P-value

Age (years) 52.37 ± 11.73 52.36 ± 11.53 52.39 ± 12.50 0.975

Gender 0.915

Male 1,080 (80.36%) 860 (80.30%) 220 (80.59%)

Female 264 (19.64%) 211 (19.70%) 53 (19.41%)

Physical examination

Height (cm) 167.70 ± 7.05 167.86 ± 6.85 167.04 ± 7.75 0.084

Weight (kg) 70.87 ± 14.11 70.97 ± 13.77 70.48 ± 15.39 0.609

BMI (kg/m2 ) 25.12 ± 4.33 25.11 ± 4.22 25.16 ± 4.75 0.870

SBP (mmHg) 147.22 ± 29.92 149.41 ± 28.29 138.65 ± 34.35 <0.001

DBP (mmHg) 82.17 ± 18.57 83.87 ± 17.78 75.51 ± 20.06 <0.001

Smoking 443 (32.96%) 364 (33.99%) 79 (28.94%) 0.113

Drinking 193 (16.47%) 159 (17.23%) 34 (13.65%) 0.314

Medical history

Hypertension 949 (70.61%) 753 (70.31%) 196 (71.79%) 0.630

Diabetes 53 (3.94%) 43 (4.01%) 10 (3.66%) 0.790

Stroke 42 (3.12%) 30 (2.80%) 12 (4.40%) 0.176

Atherosclerosis 102 (7.59%) 79 (7.38%) 23 (8.42%) 0.559

Marfan syndrome 25 (2.35%) 16 (1.84%) 9 (4.64%) 0.049

Laboratory results

White blood cells count (×109/L) 11.70 ± 4.04 11.45 ± 3.87 12.66 ± 4.52 <0.001

Lymphocyte Ratio (%) 11.51 ± 6.18 11.82 ± 6.17 10.30 ± 6.09 <0.001

Neutrophil Ratio (%) 81.96 ± 8.13 81.66 ± 8.15 83.15 ± 7.97 0.007

Platelet count (×109/L) 190.85 ± 82.32 195.20 ± 83.60 173.79 ± 74.81 <0.001

Hemoglobin (g/L) 125.25 ± 20.77 126.10 ± 19.59 121.90 ± 24.65 0.003

Alanine transaminase (µ/L) 21.50 (14.10–39.00) 20.90 (13.75–36.15) 24.00 (15.10–56.40) <0.001

Aspartate aminotransferase (µ/L) 21.10 (15.90–35.10) 20.50 (15.55–32.45) 24.10 (17.80–55.50) <0.001

Albumin (g/L) 35.62 ± 4.61 35.80 ± 4.65 34.92 ± 4.41 0.005

Total bilirubin (µmol/L) 17.36 ± 10.40 17.43 ± 10.68 17.11 ± 9.21 0.655

Direct bilirubin (µmol/L) 6.93 ± 6.62 6.90 ± 6.68 7.03 ± 6.35 0.775

Creatinine (µmol/L) 82.20 (66.00–113.93) 79.70 (65.20–106.15) 101.00 (71.50–155.70) <0.001

Blood urea nitrogen (mmol/L) 6.51 (4.97–8.54) 6.22 (4.83–8.16) 7.78 (5.87–10.64) <0.001

Uric acid (µmol/L) 319.55

(241.50–406.10)

319.00 ± 117.65 386.43 ± 158.89 <0.001

Myoglobin (g/L) 82.05 (50.08–202.90) 75.50 (48.70–165.00) 122.00 (65.20–394.00) 0.002

Creatine kinase (µ/L) 102.00 (59.80–196.15) 95.00 (56.45–182.60) 128.30 (72.00–352.10) <0.001

Creatine kinase-MB (µ/L) 12.40 (8.07–17.90) 12.30 (8.30–17.50) 13.40 (7.30–21.90) <0.001

Troponin T (pg/mL) 8.93 (3.89–20.79) 8.25 (4.06–16.60) 15.96 (3.52–47.36) <0.001

B-type natriuretic peptide (pg/mL) 239.60

(104.00–673.45)

221.00 (94.55–542.50) 390.60 (155.00–1130.00) <0.001

D-Dimer (mg/L) 3.79 (2.22–9.01) 3.56 (2.06–7.52) 5.94 (3.07–18.90) <0.001

Ischemia-modified albumin (µ/ml) 75.25 ± 21.68 69.40 ± 15.31 84.41 ± 23.10 <0.001

C-reactive protein (µg/L) 52.80 (11.20–114.25) 61.40 (13.60–121.50) 19.50 (7.43–86.80) <0.001

Erythrocyte Sedimentation Rate

(mm/h)

22.00 (7.00–52.00) 23.00 (8.00–53.00) 17.00 (7.00–44.00) 0.070

Procalcitonin (ug/L) 0.17 (0.06–0.65) 0.16 (0.06–0.60) 0.25 (0.09–0.95) 0.382

Lactate Dehydrogenase (U/L) 243.00

(201.40–311.70)

240.60

(198.60–302.20)

263.20 (209.70–367.00) <0.001

Symptom 0.058

Chest pain 1,089 (81.03%) 864 (80.67%) 225 (82.42%)

Back pain 60 (4.46%) 47 (4.39%) 13 (4.76%)

Abdominal pain 93 (6.92%) 81 (7.56%) 12 (4.40%)

(Continued)
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TABLE 1 | Continued

Characteristics Total

(n = 1,344)

Survivors

(n = 1,071)

Non-survivors

(n = 273)

P-value

Syncope 19 (1.41%) 11 (1.03%) 8 (2.93%)

Other 83 (6.18%) 68 (6.35%) 15 (5.49%)

Type of AAD (Stanford) <0.001

A 662 (49.26%) 436 (40.71%) 226 (82.78%)

B 682 (50.74%) 635 (59.29%) 47 (17.22%)

Treatment <0.001

Medical treatment 351 (26.12%) 132 (12.32%) 219 (80.22%)

Endovascular treatment 558 (41.52%) 546 (50.98%) 12 (4.40%)

Surgical treatment 435 (32.37%) 393 (36.69%) 42 (15.38%)

BMI, body mass index; SBP, systolic blood pressure; DBP, diastole blood pressure.

0.001) blood pressure at admission, compared with the survivor
group. Furthermore, the non-survivor group showed statistically
significantly higher levels of creatinine (P < 0.001), uric acid (P
< 0.001), myoglobin (P = 0.002), creatine kinase (P < 0.001),
troponin T (P< 0.001), B-type natriuretic peptide (P< 0.001), D-
dimer (P < 0.001), and ischemia-modified albumin (P < 0.001),
compared with the survivor group. Meanwhile, the platelet count
(P < 0.001) and c-reactive protein (P < 0.001) values were lower
in the non-survivor group compared with the survivor group.
In addition, greater frequencies of Stanford type A AAD (P <

0.001) and Marfan syndrome (P = 0.049) were detected in the
non-survivor group compared with the survivor group. It was
also determined that the non-survivor group was more likely to
receive medical treatment (P < 0.001) (Table 1).

Predictive Performance of Five Models
Regarding the five derived models, the ROC curves of each
are displayed in Figure 3, where the XGBoost model shows the
largest mean AUROC of 0.927 (95% CI: 0.860–0.968) across 10
iterations. This is followed by the GaussianNB model of 0.832
(95% CI: 0.769–0.895), the model of DT 0.823 (95% CI: 0.779–
0.867), the LR model of 0.790 (95% CI: 0.705–0.875), and the
KNNmodel of 0.624 (95% CI: 0.545–0.703).

Since AUROC alone is an insufficient form of evaluation, the
accuracy, average precision, TPR, TNR, PPV, and NPV were
explored to comprehensively evaluate the performance of each
model. The mean performance evaluation metrics are shown in
Table 2, for each of the five ML models. Following comparison,
XGBoost produced the most superior predictive performance,
with an accuracy of 0.918 (95% CI: 0.838–0.998), average
precision 0.683 (95% CI: 0.400–0.966), TPR of 0.729 (95% CI:
0.457–1.000), TNR of 0.966 (95% CI: 0.908–1.000), PPV of 0.855
(95% CI: 0.627–1.000), and NPV of 0.934 (95% CI: 0.869–0.999).

Model Interpretation
In terms of the XGBoost model, Figure 4 presents the feature
importance matrix plot, whereby the importance of the features
is determined in terms of creating the final predictive model.

FIGURE 3 | ROC analysis results of five models. LR, logistic regress; DT,

decision tree; KNN, K nearest neighbor; GaussianNB, Gaussian naive bayes;

XGBoost, extreme gradient boost.

Figure 4 shows that the three most important features were
treatment, type of AAD, and ischemia-modified albumin levels.

From this, Figure 5 shows the average absolute SHAP values
pertaining to the 20 most important features in the XGBoost
model (Figure 5A) and the DT model (Figure 5B). As with the
ranking of the feature importance scores, in both models, the top
three features of the mean absolute SHAP values remained as
treatment, type of AAD, and ischemia-modified albumin levels.
The SHAP summary plots of the XGBoost model (Figure 6A)
and the DT model (Figure 6B) explain the relationship between
the feature type or level and the SHAP values. By comparing
the SHAP results of XGBoost and DT model, an association
was determined between positive SHAP values and medical
treatment, type A AAD, and higher ischemia-modified albumin
levels; resultantly, this denotes an increased risk of in-hospital
mortality. Contrastingly, negative SHAP values were associated
with endovascular or surgical treatment, type B AAD, and lower
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TABLE 2 | Performance comparison between the five models.

Algorithms AUROC

(95% CI)

Accuracy

(95% CI)

Average

Precision

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

PPV

(95% CI)

NPV

(95% CI)

LR 0.790

(0.705–0.875)

0.837

(0.762–0.912)

0.387

(0.192–0.582)

0.334

(0.770–0.590)

0.965

(0.906–1.000)

0.743

(0.386–1.000)

0.851

(0.798–0.904)

DT 0.823

(0.779–0.867)

0.874

(0.825–0.923)

0.549

(0.394–0.704)

0.718

(0.490–0.946)

0.914

(0.874–0.954)

0.682

(0.569–0.795)

0.928

(0.874–0.983)

KNN 0.624

(0.545–0.703)

0.775

(0.725–0.825)

0.233

(0.173–0.293)

0.147

(0.380–0.283)

0.935

(0.887–0.983)

0.371

(0.115–0.627)

0.811

(0.781–0.841)

GaussianNB 0.832

(0.769–0.895)

0.813

(0.770–0.856)

0.300

(0.204–0.396)

0.231

(0.108–0.354)

0.961

(0.933–0.989)

0.599

(0.350–0.848)

0.831

(0.804–0.858)

XGBoost 0.927

(0.086–0.968)

0.918

(0.838–0.998)

0.683

(0.400–0.966)

0.729

(0.457–1.000)

0.966

(0.908–1.000)

0.855

(0.627–1.000)

0.934

(0.869–0.999)

LR, logistic regress; DT, decision tree; KNN, K nearest neighbor; GaussianNB, Gaussian naive bayes; XGBoost, extreme gradient boost; TPR, true positive rate; TNR, true negative rate;

PPV: positive predicted value; NPV: negative predictive value.

FIGURE 4 | Importance matrix plot of the XGBoost model. The top 20 important features regarding the development of the final predictive model are depicted.

ischemia-modified albumin levels, which implies decreased risk
of in-hospital mortality.

LIME was employed to explore the feature contributions of
the predictions. The test dataset comprised two patients, whereby
correct predictions had been formulated by the XGBoost model.
Figure 7A, shows the correct prediction of in-hospital mortality
pertaining to patient 1 from the “True Positive” group; this
prediction was formed based on the patient receiving medical
treatment, and having TA-AAD without Marfan syndrome
association. In the “True Negative” group, patient 2 was also
correctly predicted as survival (Figure 7B). The data for patient 2
showed low ischemia-modified albumin level (<=72.50 µ/ml),
surgical treatment, and no indication of diabetes, all of which
aided the negative prediction.

It is important to understand the reason behind incorrect
interpretations. Therefore, patient 3 was included with a

“False Positive” prediction—this patient was an in-hospital
mortality patient who was incorrectly predicted to have a high
likelihood of survival. Diagnosis of TA-AAD, the occurrence
of stroke, and low systolic blood pressure (<=127.0 mmHg)
were deemed to be the most influential features leading to
the XGBoost model’s prediction error (Figure 8A). In addition,
patient 4 was included with a “False Negative” prediction,
who was a survival patient but incorrectly predicted to
have a high probability of in-hospital mortality (Figure 8B).
It was found that low ischemia-modified albumin level
(<=72.50 µ/ml), surgical treatment, and the presence of
Marfan syndrome chiefly led to the prediction error in the
XGBoost model.

In general, the interpretation results of SHAP and LIME
are consistent. They show that the three most important
characteristics that impact on the in-hospital mortality risk of
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FIGURE 5 | Standard bar charts of the average absolute SHAP values of each feature in the XGBoost model (A) and DT model (B).

patients with AAD are treatment strategy, type of AAD, and
ischemia-modified albumin levels.

DISCUSSION

To date, this study is the first of its kind to apply ML to
predict in-hospital mortality of patients with AAD. The study

comprised 41 relevant features, whereby five ML models were
successfully trained and developed to predict the in-hospital
mortality risk of a cohort of patients. Out of the five models,
the XGBoost model exhibited the best performance and the
greatest AUROC for single-model prediction. Moreover, the
predictions generated by the XGBoost model were deemed
to be more reliable and accurate than conventional LR.
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FIGURE 6 | SHAP summary plots of the top 20 features in the XGBoost model (A) and DT model (B). The higher the SHAP value of a feature, the higher the risk of

in-hospital mortality. A dot is shown for each feature attribution value for the model of each patient, and thus, one patient is allocated a single dot for each feature.

Dots are colored based on the values of the features for the respective patient and accumulate vertically to depict density. Treatment was divided into three categorical

features: medical treatment (blue), endovascular treatment (purple), and surgical treatment (red). Type of AAD (Stanford) was divided into two categorical features:

Type A (blue) and Type B (red). For continuous features, red represents higher feature values, whilst blue represents lower feature values.
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FIGURE 7 | LIME results with XGBoost classifiers used for two patients with correct predictions (one true positive [in-hospital mortality] patient and one true negative

[survival] patient). The contribution of various features to the likelihood of in-hospital mortality are shown for each patient. Each column illustrates the contributions of

the features to the probability included in the models. Green represents a positive contribution and red represents a negative contribution. Below the feature, the

depicted value signifies the weight coefficient provided by LIME, which is linked to the feature’s contribution to the model prediction. (A) LIME explanation for true

positive patient 1; (B) LIME explanation for true negative patient 2.

Furthermore, the treatment strategy, type of AAD, and
ischemia-modified albumin levels were identified as the
most important variables linked to the prognosis of patients
with AAD.

Recently, evidence has identified several factors that
could be used to determine the risk of poor outcomes
of AAD; however, their use as predictive factors of in-
hospital mortality remains controversial (6–8). In addition,
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FIGURE 8 | LIME results with XGBoost classifiers used for two patients with incorrect predictions (one in-hospital mortality patient [incorrectly predicted to have high

probability of survival] and one survival patient [incorrectly predicted to have a high probability of in-hospital mortality]). (A) LIME explanation for false positive patient 3;

(B) LIME explanation for false negative patient 4.

traditional LR presents a relatively weak indicator of
predictive performance, such as the use of AUROCs, or
can produce a higher probability of error compared with
ML (23, 24).

As an adjusted dispersed gradient boosting library, XGBoost
transforms the set of weak learners (25) to strong learners
by implementing ML under the Gradient Boosting framework
(26). In this present study, XGBoost produced outstanding
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prediction performance in the context of in-hospital mortality
of a patient sample with AAD. A previous study found
that the superior prediction performance of XGBoost can
facilitate risk discrimination and early treatment of patients
with acute kidney injury with mortality risk (27). Additionally,
the XGBoost model has been shown to be capable of
processing large datasets and can further analyze complex
relationships between variables; in patients with sepsis, this
model showed better prognosis prediction ability compared
with traditional LR model (28). Although several ML models
were tested to predict the mortality risk of patients with
AAD in this study, the XGBoost model showed the most
promising performance, which corroborates the findings of
previous studies. Thus, clinicians and other relevant medical staff
could make effective and individualized therapeutic strategies
based on the predictive results of the XGBoost model, which
would also facilitate more reasonable distribution of medical
resources and would minimize the oftenexcessive medical costs
faced by patients.

To the best of current knowledge, the primary treatment
strategy for AAD is dependent on the type of AAD diagnosed
for each patient. Approximately 1–2% of TA-AAD patients
who do not receive any form of therapy will die every
hour during the first 24 h of hospitalization, whilst almost
50% of patients will die within a week (4). Furthermore, the
mortality rate can reach 20% within the first day due to
severe complications, such as proximal or distal extension,
valvular dysfunction, rupture, and pericardial tamponade; this
can increase to 30% in the first 2 days (29). Over time, data
from the International Registry of Acute Aortic Dissections
(IRAD) has illustrated that the in-hospital mortality rate
of patients with TA-AAD who undergo ascending-aortic-
repair surgery has decreased significantly from 25 to 18%.
However, patients who received medical treatment without
surgery continued to face a high in-hospital mortality rate
of 57% (30). For a long period, medical therapy alone was
recommended as the main treatment strategy for uncomplicated
TB-AAD, whilst thoracic endovascular aortic repair (TEVAR)
was recommended for complicated TB-AAD (18). Yet, as
clinical theory has continued to advance and medical techniques
have become more innovative, the most appropriate therapy
strategy for TB-AAD remains controversial, with endovascular
techniques being used more for initially uncomplicated cases
of TB-AAD. A randomized investigation found an association
between endovascular stent-grafting technique and positive
aortic remodeling, whereby a reduction of 5-years in the
mortality risk was established compared with traditional medical
treatment (31). Also, a considerable number of long-term follow-
up studies have corroborated the finding that endovascular
treatment is a better option for uncomplicated TB-AAD, based
on the ability of early TEVAR to prevent the occurrence of fatal
cardiovascular complications (31–33). Therefore, it is reasonable
to suggest that patients with TA-AAD and patients with TB-AAD
should receive immediate intervention upon diagnosis, including
surgical repair or TEVAR, as this has been proven to improve
patient prognosis drastically.

Under normal circumstances, the Stanford classification
is used to determine the type of AAD: Type A indicates
dissections involving the ascending aorta, as opposed to Type
B which indicates dissections of the descending aorta (18).
Based on previous findings, the anatomical categorization of
AAD is the main indicator of a patient’s prognosis (34).
Under most conditions, TA-AAD is associated with wider
involvement of dissection and an increasingly complicated
pathologic change than TB-AAD. In a study conducted by
Roselli et al. (35), it was found that over 40% of patients
with AAD involving the proximal aorta died immediately,
with an hourly mortality rate of 1–3% of patients. Findings
from an IRAD investigation of patients with TA-AAD showed
that the overall in-hospital mortality was 22%, while in
patients with TB-AAD, the overall in-hospital mortality was 12–
14% (30). In the present study, Stanford Type A dissections
also showed a strong association with a higher risk of in-
hospital mortality compared with Stanford Type B dissections.
Hence, patients diagnosed with TA-AAD were in more
critical conditions and had a greater likelihood of dying
during hospitalization, possibly due to the involvement of the
ascending aorta.

Ischemia-modified albumin was derived from altered the
N-terminus of albumin following exposure to ischemic tissues.
This led to a decrease of metal binding ability (36). Currently,
although ischemia-modified albumin has been mainly used
for diagnostic and prognostic purposes relating to acute
coronary syndrome, elevated levels have also been linked to
a poor outcome of patients experiencing acute chest pain
and severe sepsis (37, 38). Moreover, a recent study depicted
that raised ischemia-modified albumin levels corresponded
with a high risk of in-hospital death in patients with AAD;
this finding was consistent with the results of the current
study (39). Elevated ischemia-modified albumin levels indicate
ischemia-reperfusion and oxidative stress (40), the mechanism
of which has been suggested by several studies. Firstly, the
involvement of related arteries in the dissection of patients
with AAD means that organ ischemia can raise ischemia-
modified albumin levels. Secondly, unstable hemodynamical
conditions caused by systemic tissue hypoxia could also be
reflected in elevated ischemia-modified albumin. In general,
these proposals imply that ischemia-modified albumin is a
biomarker of an upstream process linked to the prognosis of
patients with AAD, and therefore, elevated serum ischemia-
modified albumin levels should be considered carefully
and seriously.

Despite the many promising results of this study, the
study design was somewhat inadequate. Not only was a small
dataset used in this study, but it was also collected from a
single source, thereby risking bias in the results. However, the
source of the data, Second Xiangya Hospital, is an extensive
medical center that provides care to the highest number
of hospitalized patients with AAD in the Hunan Province.
Therefore, the data retrieved from this site and used in this
study is considered to be representative and reliable. A further
restriction was that the features were manually recovered from
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electronic medical registers, which conveys a high likelihood
of introducing observational error. Consequently, future studies
should consider creating a real-time electronic record system
that can record information rapidly and accurately. This study
is also limited as the results cannot be applied to other
nationalities or ethnicities, as the patients were all Chinese.
Therefore, the generalized effectiveness of the model will need
to undergo external testing before it can be deemed universally
applicable. Nonetheless, the findings of this study will be useful
to improve existing predictive models in future research; in
particular, multi-center data should be included and external
tests should be conducted rigorously regarding the predictions.
Finally, to fully determine the black-box nature of the ML
model, this study followed several previous studies (22, 41, 42)
by using the SHAP method for global interpretation and LIME
for local interpretation. Although the results of both types
of interpretation of the XGBoost model were consistent and
credible, improved robustness could be attained by using other
interpretation methods, such as Shapley Lorenz, which is a novel
global interpretation method that provides a global normalized
measure of explainability. This would help to better explain
our prediction model (43) and would improve the quality of
future research.

CONCLUSIONS

Overall, an XGBoost model was successfully developed to
predict in-hospital mortality in patients with AAD; this is a
novel achievement. This model is clinically significant as it
provides a reliable early-risk assessment tool for clinicians and
other relevant health care professionals. The main outcome of
the results is that selection of treatment strategies, the type
of AAD, and ischemia-modified albumin levels are the most
crucial factors to determine in-hospital mortality predictions
of AAD.
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