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Althoughmetabolic remodeling during cardiovascular diseases has been well-recognized

for decades, the recent development of analytical platforms and mathematical tools has

driven the emergence of assessing cardiac metabolism using tracers. Metabolism is

a critical component of cellular functions and adaptation to stress. The pathogenesis

of cardiovascular disease involves metabolic adaptation to maintain cardiac contractile

function even in advanced disease stages. Stable-isotope tracer measurements are a

powerful tool for measuring flux distributions at the whole organism level and assessing

metabolic changes at a systems level in vivo. The goal of this review is to summarize

techniques and concepts for in vivo or ex vivo stable isotope labeling in cardiovascular

research, to highlight mathematical concepts and their limitations, to describe analytical

methods at the tissue and single-cell level, and to discuss opportunities to leverage

metabolic models to address important mechanistic questions relevant to all patients

with cardiovascular disease.
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INTRODUCTION

Measuring the dynamic range of cardiac metabolism has been a corner stone of cardiovascular
research. Understanding how altered metabolism supports cardiac adaptation during stress
and diseases requires a systems-wide approach. Translational models that recapitulate cardiac
pathophysiology are critical to advance our understanding of cardiovascular diseases (CVDs) and
to utilize metabolic vulnerabilities as biomarkers or for the development of therapeutics. Targeted
or untargeted measurements of metabolites allow to assess the metabolic state in an organism in
vivo. Measurements of metabolic changes in a variety of biological samples are feasible due to
advances in chromatographic separation (e.g., hydrophilic interaction chromatography, HILIC;
poroshell columns) and improved detection like nuclear magnetic resonance (NMR) and mass
spectrometry (MS). However, the interpretation of complex disease models or patient derived
samples can be challenging with large scale metabolomics and when a systems-wide understanding
of specific pathways is required. Measuring changes in metabolite concentration do not allow to
draw any conclusions on metabolic rates or the direction of a flux. Changes in metabolite levels can
either result from differential production or utilization of a given intermediate due to increased
flux from synthesizing reactions, decreased flux toward consuming reactions, or alterations in
transporter activities. For example, during ischemia-reperfusion injury, glycolytic intermediates
accumulate despite a reduction in glucose uptake (1–3). Therefore, accurate determination of
metabolic flux is necessary for understanding cellular physiology and the pathophysiology of
diseases. Steady states in cellular systems are defined by constant values of flux and metabolite
concentrations (4). In experimental settings, steady states can be achieved in controlled cell cultures
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or ex vivo perfusions. However, commonly experiments are
performed at pseudo-steady state, where changes in flux
or metabolite concentrations are minimal over the observed
time frame.

What is metabolic flux? Generally, flux describes the
movement of particles across a given area in a specified time.
It is important to distinguish between reaction rates and
metabolic fluxes. A reaction rate describes the velocity of a given
biochemical reaction in response to a substrate and enzyme
in isolation, while metabolic fluxes describe the same reaction
in the context of a biological system and pathway. Measuring
metabolic flux is challenging and cannot be done directly, thus
metabolic fluxes are estimations from measurable quantities.
Tracer-based approaches provide an apparent straight-forward
way of quantitatively assessing dynamic changes in cardiac
metabolism. Especially, stable-isotope tracers allow to administer
probes to a biological system (e.g., animal cells) in cost-efficient
and safe way. At the same time metabolic conversions of labeled

FIGURE 1 | Steps in stable-isotope metabolomics analysis. Stable-isotope tracers to study cardiac metabolism are administered to the model organism or patient

using different delivery approaches including, infusion, injections, diet, or ex vivo perfusion. Heart tissue or biofluids are collected and metabolites are extracted based

on downstream analytical methods. For examples, tissue sample for total metabolite extraction are freeze-clamped in liquid nitrogen and tissue is quenched during

extraction using organic solvents. To assess spatial metabolite abundances, tissue slides need to be prepared. Incorporation of isotopic label into metabolites is

determined using analytical techniques such as NMR or MS. The isotopic enrichment profile of different metabolites is assessed after normalization and correction for

natural abundances. GC, gas chromatography; i.v., intravenous; LC, liquid chromatography, MS, mass spectrometry; NMR, Nuclear magnetic resonance. Figure was

created with BioRender.com.

nutrients or small molecules allow to track the incorporation
of isotopic label (e.g., carbon, nitrogen, or hydrogen) into
downstream products and pathways. The detection of specific
metabolic products then allows to assess total metabolite changes
alongside enzyme activities, flux rates, and overall contribution
of specific pathways to the metabolic profile. Tracer studies in
isolated perfused murine hearts are commonly used to evaluate
metabolic changes in model systems that resemble in vivo
conditions as closely as possible (5). In vitro models using
cultured cardiomyocytes have also shown to provide valuable
information albeit with a limited scope. The selection of a
specific method largely depends on the biological question and
inherent limitations of models. Radioactive probes are a stable
of both clinical cardiology and basic cardiovascular research
(e.g., 18F, 3H, 14C) and are used to study in vivo or ex vivo
metabolic changes in the heart. There are several clinically
relevant radiopharmaceuticals such as 99mtechnetium-sestamibi
(99mTC-MIBI, or CardioLite) (6) or [18F]-Fluorodeoxyglucose
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([18F]-FDG) (7) for interrogating metabolic parameters such
as nutrient uptake rates. These probes allow safe, non-invasive
tracing of metabolic changes in vivo. However, readouts of these
measurements are serving as surrogates for multiple metabolic
pathways. The desire to measure more in-depth metabolic
changes in the heart have led to increased application of stable-
isotope tracers in clinical studies (8–10). Stable isotope probes
(e.g., 2H, 13C, 15N) are less sensitive than radioactive probes,
but in a single experiments stable isotope labeling approaches
allow to assess multiple pathways simultaneously over longer
experimental time periods. Like radiopharmaceuticals, stable-
isotope tracers allow flux assessments, but at the same time
these probes provide more in-depth analysis of metabolism
both using targeted and untargeted discovery oriented analytical
approaches. Increased availability and advancements in analytical
techniques for metabolomics have made stable isotope tracers
increasingly popular in studying cardiac metabolism in vivo and
ex vivo. In this review, we describe recent advances in applying
stable isotope tracers in cardiovascular research and discuss
important aspects to consider during data analysis allowing
accurate assessments of metabolic changes (Figure 1).

STABLE-ISOTOPE TRACER METHODS
FOR MEASURING CARDIAC METABOLISM
IN VIVO AND EX VIVO

Multiple techniques are available for the in vivo or ex vivo
delivery of stable-isotope tracers including oral administration
via diets, gavage or drinking water, direct intravenous infusion,
injection, or perfusion of the heart (Figure 1). Each experimental
method has its limitation thus the choice for the specific
delivery needs to be driven by the biological question. In
ex vivo heart perfusions, tracers are delivered via the perfusion
buffer. The perfusion technique itself determines how close to
physiologic conditions flux rates and metabolic changes can
be measured. Two ex vivo perfusion techniques for studying
cardiac metabolism and muscle physiology are the method
of choice: (1) the Langendorff method and (2) the working
heart preparation. The aortic perfusion of Langendorff remains
a standard preparation and is popular to this date due to
its simpler technical requirements and perfusion apparatus
(11–14). However, hearts in this preparation do little or no
external work and may require external stimulation which can
obfuscate metabolic measurements. The more advanced working
heart preparation allows arterial perfusion of the heart. This
preparation maintains the physiologic contractile function of the
heart and prevents periods of anoxia that may occur during
Langendorff preparations (15). Several recent studies applied
perfusion techniques in a diverse range of disease models to
assess cardiac metabolism (Table 1). Regardless of the perfusion
technique, tracers are applied through the chemically defined
perfusion buffer and allow collection of samples in small time
intervals which facilitates dynamic measurements of cardiac
metabolism (Table 1).

Infusion techniques are likely the most advanced method
for the delivery of tracers. Stable isotope tracers are introduced

intravenously into the systemic circulation of an animal (e.g.,
mouse, rat) or human participant. Blood or tissue samples
are collected before and after tracer infusion, and isotopic
enrichment is then analyzed. Another important factor during
stable-tracer experiments is the dynamics of tracers and the
determination of metabolite pool sizes (e.g., extracellular vs.
intracellular), as well as turnover (or half-life) of metabolites (37).
For example, the circulatory system or tubing in heart perfusions
can be considered as a single pool. Tracers can be administered
(1) continuously or (2) in a bolus. Constant infusion of tracer
allows to start sample collections once an isotopic equilibrium is
reached, while bolus injection results in an initial increase over
time followed by an exponential decrease (37). In either case,
pool sizes and compartmentalization of metabolites need to be
considered for the estimation of intracellular fluxes (37). Recent
studies have shown that pool sizes for metabolites need to be
treated as parameters and measured as accurately as possible to
improve quality of flux estimations from non-stationary fluxes
(38). In metabolomics studies, control and monitoring of the
nutrient environment is important. For in vivo, special attention
needs to be paid to feeding, fasting, diet composition and number
of animals per cage. For ex vivo studies, special care for the
composition of perfusion buffers and reagent purities needs to be
taken. For both in vivo and ex vivo studies it is important to assess
if any anesthetic agents may obfuscate metabolic measurements
through alterations of plasma metabolite concentrations. The
duration of labeling depends on the pathway of interest and
whether steady-state data needs to be achieved. In ex vivo heart
perfusions, steady-state labeling can be reached within 10 to
20min for key metabolic pathways (39), whereas in vivo labeling
may require longer timeframes depending on the pathways of
interest and tracer (10).

Selecting the right tracer depends on the scope of the study
and ultimately which metabolic readout is required for a given
biological question. The substrate class (e.g., carbohydrate, amino
acid, fatty acid), type of atoms (e.g., 13C, 15N), number of labeled
atoms (e.g., uniform vs. single) and position of labeled atoms
will determine which products and pathways will incorporate
the label. Any of these options increase the complexity of the
experimental design and subsequent data analysis. Selecting the
right combination of tracers allows delivering multiple probes
and interrogation of multiple pathways simultaneously. Parallel
tracing experiments are limited to few applications, but recent
advances in high resolution mass spectrometry and development
of new probes show promise. For a comprehensive overview
of stable-isotope tracers and their readouts, readers are referred
to Table 2 in (78). In uniformly labeled tracers, all atoms of
interest are substituted with a stable isotope, while single or select
position labeled tracers only carry isotopes at specific atoms. The
advantage of uniform labeling is better coverage of a variety of
different pathways while select position labeling allows to target
specific reaction.

Considering the diversity and versatility of stable isotope
tracers, which criteria can we apply to select the optimal probe
for a given experiment? The chemical properties, including
kinetics, specificity, and turnover, are critical components of
tracer selection. Tracer kinetics must be almost identical to
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TABLE 1 | Overview of recent in vivo and ex vivo stable-isotope tracer studies in cardiovascular research, including administration methods, analytical platform, and chromatographic modes.

Disease/model Organism System Tracer Administration method Analysis Chromatographic

Mode

Mathematical

Model

Measurement References

Glucose

Type II Diabetes Mouse Cardiac progenitor

cells

[U-13C] glucose Replacement of glucose in

cell culture medium

FT-ICR MS N/A Incorporation of 13C into

different metabolites

(16)

Assessing pentose

phosphate pathway flux

Mouse Heart, Liver [2,3-13C]-glucose Adminstration during ex vivo

Langendorff perfusion

NMR N/A Incorporation of carbons

into glutamine intermediates

(17, 18)

Hexosamine biosynthesis

pathway

Mouse Heart [U-13C]-

glucosamine

Administration during ex

vivo working heart and

Langendorff perfusion

LC-MS HILIC Incorporation of carbons

into different metabolites

(19)

[U-13C] glucose

Mitochondrial pyruvate

carrier

Mouse Heart [U-13C]-glucose Administration during ex

vivo Lagendorff perfusion

LC-MS HILIC Incorporation of carbons

into different metabolites

(20)

GC-MS GC

Fatty acids

Type II Diabetes Mouse Heart [U-13C] glucose Administration during ex

vivo Lagendorff perfusion

LC-MS HILIC Incorporation of 13C into

different metabolites

(21)

[U-13C] palmitate

Absorption of dietary lipids

during infancy and

adulthood

Mouse Multiple internal

organs

[U-13C]-trolein Intragastric administration of

lipid bolus

GC-MS GC Incorporation of carbons

and hydrogen into fatty

acids

(22)

[U-2H]-oleate

[1,2,3,4-13C]-

stearate

[U-13C]-palmitate

Doxycyline mediated

cardiac dysfunction

Rat H9C2 [U-13C] glucose Replacement of glucose in

cell culture medium

LC-MS HILIC Incorporation of carbons

into different metabolites

(23)

Perinatal myocardial

glucose metabolism

Sheep Heart [U-13C] glucose Infusion through fetal tibial

artery/inferior vena cava and

fetal brachial artery/coronary

sinus

NMR N/A Determination of

AV-differences in the

incorporation of carbons

into different metabolites

(24)

Nutrient utilization Rat neontal

cardiomyocytes

[U-13C] glucose Replacement of glucose in

cell culture medium

FT-ICR MS N/A Incorporation of carbons

into different metabolites

(25)

Glucose/fatty acids

Primary carnitine deficiency Human whole body

assessment

[U-13C]-palmitate continuous intra venous

infusion into cubital vein

GC-MS GC Measurement of 13CO2 to

determine total fatty acid

and palmitate oxidation

rates

(26)

[2-2H]-glucose Bolus intra venous infusion

into cubital vein

(Continued)
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TABLE 1 | Continued

Disease/model Organism System Tracer Administration method Analysis Chromatographic

Mode

Mathematical

Model

Measurement References

Influence of dietary fats Human Plasma/breath [2-2H]-palmitate Continuous intra venous

infusion into antecubital vein

GC-MS GC Incorporation of hydrogen

into NEFA, TAG and

lipoprotein-TAG fractions

(27)

Plasma 2H2O Drinking water Incorporation of hydrogen

into VLDL-TAG palmitate

Plasma/breath [U-13C]palmitate Measurement of 13CO2 to

determine palmitate

oxidation rates;

Incorporation of carbons

into NEFA, TAG, and

lipoprotein-TAG fraction

Propionate-mediated

pertubance of cardiac

metabolism

Rat Heart, Liver [U-13C] glucose Administration during ex

vivo Langendorff and liver

perfusion

GC-MS GC Incorporation of carbons

into different metabolites

(28)

[1-13C]-palmitate

[1-13C]-octanoate

[U-13C]-propionate

Hexokinase II function Mouse Heart [U-13C] glucose Administration during ex

vivo Lagendorff perfusion

GC-MS GC Incorporation of carbons

into lactate, pyruvate, and

Krebs cycle intermediates

(2)

[U-13C] palmitate

Amino acids

Insulin-resistance Mouse Multiple internal

organs

[U-13C]-BCAA 13C-BCAA infusion at

∼20% of rate of appearance

LC-MS Amide Column Modeling of tissue

and organ

oxidation flux

Incorporation of carbons

into tissues and proteins

(10)

Type II Diabetes Rat cardiomyocytes [U-13C]-leucine Replacement of leucine in

cell culture medium

GC-MS GC Incorporation of leucine

derived carbons into

different metabolites

(29)

Multiple tracer

Hypertrophy Rat Adult

Cardiomyocytes

[U-13C]-FA mix replacement of nutrients in

cell culture medium

GC-MS GC Enrichment of different

metabolites in

cardiomyocytes or tissue

sample and determination

of pathway activities

(3)

Mouse Heart [U-13C] glucose 13C6-glucose injection after

sham/TAC surgery,

replacement of nutrients in

cell culture medium

LC-MS HILIC

Rat Adult

Cardiomyocytes

[U-15N]-aspartate replacement of nutrients in

cell culture medium

LC-MS Amide Column

(Continued)
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TABLE 1 | Continued

Disease/model Organism System Tracer Administration method Analysis Chromatographic

Mode

Mathematical

Model

Measurement References

Ischemia reperfusion injury Mouse Heart [U-13C]-aspartate Administration during ex

vivo heart perfusion

LC-MS reversed phase Enrichment of different

metabolites

(30)

[U-13C]-glucose

[U-
13C/15N]glutamine

Oxidative stress Rat Neontal

cardiomyocytes

[U-13C] glucose Replacement of glucose

and glutamine in cell culture

medium

GC-MS GC Incorporation of 13C into

different metabolites

(31)

[U-13C]glutamine

Nutrient utilization Rat Heart [U-13C]-glucose Administration during ex

vivo Langendorff perfusion

LC-MS C18 reversed

phase

Prediction model

of isotopomer

distribution and

experimental

validation

Incorporation of 13C into

different metabolites

(32)

[U-13C]-TAG mix

Modeling of perfused

working hearts

Mouse Heart [U-13C]-lacate Administration during

working heart perfusion

GC-MS GC 13C-Metabolic flux

analysis

Incorporation of carbons

into different metabolites

(33, 34)

[U-13C]-pyruvate

[U-13C]-glucose

[U-13C]-oleate

Absorption of dietary lipids

during infancy and

adulthood

Mouse Multiple internal

organs

[U-13C]-trolein Intragastric administration of

lipid bolus

GC-MS GC Incorporation of carbons

and hydrogen into fatty

acids

(22)

[U-2H]-oleate

[1,2,3,4-13C]-

stearate

[U-13C]-palmitate

Myocardial Sodium

elevation

Mouse Heart [U-13C]glucose;

[1-H]

Administration during ex

vivo Langendorff perfusion

NMR N/A Flux balance

analysis using

CardioNet

Incorporation of carbons

and hydrogen into

metabolic intermediates

(38, 39)
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TABLE 2 | Resources for network reconstruction, simulation and visualization of metabolic flux analysis using stable-isotope tracers.

Details Resource link References

Metabolic networks of cardiac metabolism

CardioNet Genome-scale metabolic network of mammalian/human cardiac

metabolism

https://karlstaedtlab.github.io/cardionet/

cardionet

(35, 36)

CardioGlyco Kinetic model of myocardial glycolysis and oxidative

phosphorylation

https://karlstaedtlab.github.io/cardionet/

resources;

https://www.ebi.ac.uk/biomodels/

MODEL1910170001

(39)

iCardio Metabolic network of cardiac metabolism based on proteomics

information from the human protein atlas and existing human

metabolic network reconstructions

https://github.com/csbl/iCardio (40)

Reactome Comprehensive open-source pathway database that allows

visualization, data integration and interpretation across different

data types and organisms

https://reactome.org (41)

Recon3D Genome-scale network reconstruction of human metabolic

functions; network captures information across organ systems

http://bigg.ucsd.edu/models/Recon3D;

https://www.vmh.life/

(42)

TSEM Tissue-Specific Encyclopedia of Metabolism (TSEM) using the

metabolic Context-specificity Assessed by Deterministic Reaction

Evaluation (mCADRE)

https://hood-price.isbscience.org/research/

tsem/

(43)

Databases

Uniprot Database for protein sequence and functional information https://www.uniprot.org/ (44)

Human

metabolome

Comprehensive resource and coverage of the human metabolome

with biofluid or tissue concentration data, annotation of

compounds to reference spectra, chemical structure visualization,

chemical taxonomy, and interactive pathway maps

https://hmdb.ca/ (45)

Brenda Enzyme information database including classification,

nomenclature, reaction and specificity, structures, and

organism-related information

https://www.brenda-enzymes.org/ (46–48)

KEGG Kyoto Encyclopedia of Genes and Genomes; database resource

for understanding biological systems

https://www.genome.jp/kegg/ (49–52)

Tools for correction of naturally occurring isotopes

MIDcor Tool for the correction of raw MS spectra for naturally occurring

isotopes and overlapping peaks; Requires R

https://github.com/seliv55/mid_correct (53)

IsoCorrectoR R-base tool comprising several correction functions http://bioconductor.org/packages/release/

bioc/html/ IsoCorrectoR.html

(54)

IsoCor Open-source tool for the correction of MS data for naturally

occurring isotopes

https://isocor.readthedocs.io/en/latest/#;

https://github.com/MetaSys-LISBP/IsoCor/

(55, 56)

Software for metabolic flux analysis

13CFLUX2 Simulation of 13C-MFA; allows network modeling, isotope labeling

states, parameter estimation and statistical analysis;

implementation of cumomer and EMU simulation algorithms

https://www.13cflux.net/13cflux2/ (57, 58)

SumoFlux Tool integrates modeling and machine learning algorithms to

estimate flux ratios from measurable 13C-data

https://gitlab.ethz.ch/z/sumoflux (59)

OpenFLUX MATLAB-base modeling software for 13C-MFA; includes EMU

simulation algorithm

https://github.com/lakeeeq/OpenFLUX (60)

Influx_s Open-source tool for metabolic flux estimation and metabolite

concentrations from stationary and instationary labeling (MFA and

INST-MFA)

https://metasys.insa-toulouse.fr/software/

influx/

(61)

INCA-MFA Isotopomer Network Compartmental Analysis (INCA) MFA suite is

a MATLAB-based package for isotopomer network modeling and

metabolic flux analysis; INCA-MFA allows INST-MFA and

constrained based analysis of stable-isotope data

https://mfa.vueinnovations.com/ (62, 63)

SpaceM SpaceM is an open-source method for in situ single-cell

metabolomics that integrates microscopy with MALDI-imaging

mass spectrometry.

https://github.com/alexandrovteam/SpaceM (64)

(Continued)
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TABLE 2 | Continued

Details Resource link References

COBRA Toolbox Constraint-based reconstruction analysis (COBRA) allows the

reconstruction, modeling, topological analysis, strain and

experimental design, network analysis, and network integration of

chemoinformatic, metabolomic, proteomic, and thermochemical

data; integration with MATLAB, Gurobi or python

https://github.com/opencobra/cobratoolbox/ (65)

MATLAB Matlab is a commercial programming and numeric computing

platform; Optimization ToolboxTM provides functions for

optimization problems including solvers for linear programming,

mixed-integrer linear programming, and constrained linear least

squares

https://www.mathworks.com (66)

Solvers

Gurobi Optimizer Commercial optimization solver for linear programming, quadratic

programming, and mixed integer quadratic programming

optimization problems

https://www.gurobi.com (67)

IBM-ILOG CPLEX Commercial optimization studio to solve complex optimization

models

https://www.ibm.com/analytics/cplex-

optimizer

(68)

Programming languages

R R is a programming language for statistical computing and

graphics

https://www.r-project.org/ (69)

Perl 5 Perl is a family of high-level, general-purpose, interpreted, dynamic

programming languages

https://www.perl.org/ (70)

Python Python is a high-level, general-purpose, interpreted, dynamic

programming languages

(71)

Network visualization and data integration

Cytoscape Open source platform for the visualization of complex networks

and multi-omics data analysis

https://cytoscape.org/ (72)

Metaboverse Interactive desktop tool for visualization and multi-omics data

integration across different species; reactome database integration

https://github.com/Metaboverse/

Other useful resources for data analysis and sharing of metabolomics data

ChemRich Tool to analyze metabolomics data based on chemical similarity.

ChemRich utilizes chemical ontologies and structural similarity to

group metabolites

https://chemrich.idsl.me/;

https://chemrich.fiehnlab.ucdavis.edu/

(73)

Chemical

Translation Service

Tool for single or batch conversion of metabolite; allows

annotation between over 200 databases

http://cts.fiehnlab.ucdavis.edu/ (74)

PubChem

Identifier

Exchange Service

Tool for single or batch conversion of metabolite within the

PubChem database

https://pubchem.ncbi.nlm.nih.gov/

idexchange/idexchange.cgi

(75)

Metabolomics

Workbench

International open-access curated repository for metabolomics

metadata and experimental data across various species and

experimental platforms, metabolite standards, metabolite

structures, protocols, tutorials, and educational resources

http://www.metabolomicsworkbench.org/ (76)

MetaboLights

repository

Open-access curated repository for metabolomics studies, their

raw experimental data and associated metadata

http://www.ebi.ac.uk/metabolights (77)

unlabeled compounds and probes should not accumulate in
tissue. Non-specific binding to other proteins and lipids is
generally a concern when using radionucleotides but similar
demands need to be met by stable isotope tracers. Lastly,
turnover time and tissue concentration of tracers should follow
the range of non-labelled metabolites to avoid mass effects
and optimal signal-to-noise ratios. Selection of tracers can
also be based on metabolic read-outs and targeted toward
a pathway of interest. Uniformly labeled tracers of common
nutrients (e.g., glucose, fatty acids, or amino acids) can be
used to determine how these nutrients are utilized in multiple
pathways. Combination with single labeled tracers in parallel

experiments then allows to detect specific metabolic fluxes.
Different labeling strategies are best described using glucose
because of its high abundance, commercial availability, and ease
of use in experimental settings. For example, [1-13C]glucose can
be used to measure the decarboxylation of 6-phosphogluconate
to ribulose 5-phosphate in the oxidative branch of the pentose
phosphate pathway and the decarboxylation of pyruvate to
acetyl-CoA by pyruvate dehydrogenase in the Krebs cycle
(Figure 2A). Pentoses produced via the oxidative pentose
phosphate pathway can reenter glycolysis via the non-oxidative
pentose phosphate pathway branch. Resolution of both glycolysis
and pentose phosphate pathway fluxes can be achieved using
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FIGURE 2 | 13C and 2H distribution from labeled glucose in glycolysis and Krebs cycle. (A,B) 13C-glucose is decarboxylated at different steps in the Krebs cycle and

oxidative pentose phosphate pathway. Colored circles indicate 13C label for selected metabolic intermediates. [2-13C]glucose and [3-13C]glucose are associated with

pyruvate dehydrogenase (PDH) activity producing m+2 and m+3 acetyl-CoA, respectively. Using [1,2-13C]glucose allows to distinguish between glycolysis and

oxidative pentose phosphate pathway (PPP) flux. (C) [3-2H]glucose enters the PPP via glucose 6-phosphate (G6P) and decarboxylated to ribulose 5-phosphate

(R5P), which generates 2H-NADPH. DHAP, dihydroxyacetone phosphate; G6P, glucose 6-phosphate; G3P, glyceraldehyde 3-phosphate; IDH, isocitrate

dehydrogenase; α-KG, α-ketoglutarate; α-KGDH, α-Ketoglutarate dehydrogenase; PDH, pyruvate dehydrogenase; PPP, pentose phosphate pathway; 6PG,

6-phosphogluconate; 2PG, 2-Phosphoglycerate; PEP, phosphoenolpyruvate; R5P, ribulose 5-phosphate.

[1,2-13C]glucose tracer (Figure 2B). When glucose is converted
through glycolysis, unlabeled (m + 0) and twice labeled
(m + 2) pyruvate is produced. Conversion of glucose through
glycolysis and the oxidative pentose phosphate pathway produces
unlabeled (m + 0), single (m + 1) and twice labeled (m + 2)
pyruvate. These flux alterations can occur in the background
of increased pentose production via the non-oxidative pentose
phosphate pathway which will make it difficult to detect
changes in pyruvate labeling (79, 80). Parallel labeling using
[1-13C], [1,2-13C], and [U-13C]glucose can improve detection
of subtle, aberrant changes in metabolic flux (Figure 2B) (81).
Alternatively, [3-2H]glucose can also be used to determine
redox changes in central carbon metabolism by gaining insight
into the de novo NADPH synthesis in the oxidative pentose
phosphate pathway (Figure 2C) (82). Likewise [2-13C] and
[3-13C]glucose can be used to evaluate the decarboxylation of
isocitrate to α-ketoglutarate by isocitrate dehydrogenase and α-
ketoglutarate to succinyl-CoA by α-ketoglutarate dehydrogenase
(Figure 2A), respectively. Additionally, [2-13C] and [3-13C]
glucose enable determining acetyl-CoA and fatty acid synthesis in

the mitochondria and cytosol. The measurement of transporter
activities can be achieved by using chemical analogs as
tracers. Chemical analogs are compounds that have chemical
structures like natural substrates, but with modifications at key
positions. These modifications limit how these molecules can be
metabolized and lead to accumulation of substrates in tissues.
For example, the analog 2-deoxyglucose is transported across
the cell membrane and phosphorylated by hexokinase in the
same manner as glucose, but because the second carbon has
been replaced by a hydrogen it cannot undergo further reactions.
As such, 2-deoxyglucose competitively inhibits phosphoglucose
isomerase and limits glycolysis. Using analogs 2-deoxyglucose
or methyl-D-glucose allows determining uptake flux of glucose.
In combination with other tracers it is possible to determine
the overall utilization (uptake and metabolization) of glucose.
To gain insight into the systems-wide response during disease
development, it is also necessary to assess how metabolic
alterations are linked to protein dynamics and posttranslation
modifications (83, 84). Stable isotope tracers enable measuring
posttranslational modifications of proteins. Protein methylation
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FIGURE 3 | Isotope tracing to measure metabolic fluxes. (A,B) Example of isotopomer distribution analysis using mass spectrometry (MS) for 13C-lactate. Ion counts

for different isotopologues (IC) are determined by measuring the area under the curve (AUC). Mass distribution vectors (MDVs) for lactate (Xm) are determined by

dividing each IC by the total counts (TC). Measured MDVs are then corrected for naturally occurring isotopes (B). Actual MDVs for lactate can now be used for further

data analysis such as metabolic flux analysis. (C) Flux balance analysis allows estimating flux distributions at steady state. Optimization functions are defined based on

biological questions and applied to a network. Constraints for each flux vector are defined as lower bonds (LB) and upper bonds (UB) which allow to define flux

solution spaces. (D) Schematic of carbon atom distribution in a simplified model of glycolysis using [U-13C]-glucose infusion. Network reactions can be further

reduced to a define a final reduced EMU model. Flux distributions are estimated by minimizing the sum of least-squared residuals (SSR) between the measured rates

and model predicted rates subject to stoichiometric constrain.

and acetylation can be determined by combining 13C-glucose
with 15N or 13C-alpha ketoacids and 11C acetate, respectively.
The methionine analog, azidohomoalanine, is enables labeling
newly synthesized proteins during a short pulse-labeling period
(85). The advantage of amino acid analogs compared to 13C or
15N-labeled amino acids is high sensitivity even at early time
points when protein alterations are difficult to identify and often
obscured by higher abundant proteins (e.g., structural proteins).

A prerequisite for accurate metabolic measurements is the
sample collection and preparation. Metabolites have different
turnover rates and differences in their abundance can easily
lead to obfuscation of experimental data. For example, rapid
degradation of NADPH and CoA derivatives during sample
preparation have been well-documented (86, 87). Developing

methods and additives to preserve metabolites remains an area
of active research. For tissue specimens, freeze clamping using the
Wollenberger technique allows rapid freezing of tissue in liquid-
nitrogen (88–90). In contrast to flash freezing, this technique
has been shown to be superior in homogenously freezing tissue
sample and preserving metabolic data. Tissue specimen can then
be stored at −80◦C for further processing. Similar, metabolite
extractions using organic solvents (e.g., methanol:water, 80:20
w/w) quench metabolic profiles and help to reduce enzymatic
activities. Measuring more instable metabolites such as NADPH
or AMP, a mixture of acetonitrile:methanol:water (40:40:20, w/w)
with 0.1M formic acid can effectively capture and preserve
readouts (86, 91). Additionally, adding internal standards during
sample extraction can help tracking sample loss and allows
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correction between batches (87). Independent of the model
system or delivery technique, special attention needs to be paid
toward standardization of experimental conditions, and sample
collection and preparation to ensure rigor and reproducibility of
metabolic tracer experiments (76).

MATHEMATICAL MODELING OF
METABOLIC FLUX DISTRIBUTIONS

Mathematical modeling and computer simulations can help
to understand the complex dynamics and interactions of
biological processes. A network of biochemical reactions within
an organism can be represented bymathematical equations based
on established knowledge or extrapolation from other systems.
Metabolic models or networks can help to conceptualize and
test biological hypothesis in silico. In the context of stable-
isotope tracer analysis, models are required to estimate flux
distributions and explain labeling states for specific metabolites.
These modeling approaches can describe the metabolic state
of a biological system, but they cannot predict or explain it
by identifying regulatory enzymes or principles (e.g., feedback
interactions) (4).

Tracer studies can be analyzed using different approaches and
level of depth. Most studies determine the relative incorporation
of tracer into metabolites and assess qualitative changes in
pathway activities. Isotopomers are defined as isomers of a given
metabolite that differ only in the mass shift of their individual
atoms, for example, 13C vs. 12C and 2H vs. 1H in carbon-
and hydrogen-labeling studies, respectively. Stable-isotopomer
measurements are interpreted by defining mass-distribution
vectors (MDVs) that reflect the incorporation of label from a
tracer into downstream metabolites (Figure 3A) (57, 92). MDVs
are defined as follows:

→

X = {X0, X1, . . . ,Xn} (1)
n

∑

j = 0

Xj = 1 (2)

Where each component Xj (with j = 0, 1,. . . , n) represents
the fraction of a metabolite’s pool that corresponds to the jth
labeled isotopolog and n is the maximum number of labeled
atoms that a metabolite can incorporate. The fractional isotope
enrichments, Xj, and their sum equal 1 or 100%. In stable isotope
labeling, incorporation of j labeled atoms causes a mass shift of j
atomic units nominal to the mass M of the unlabeled metabolite.
Therefore, the MDV is often denoted as follows:

→

Xm = {Xm0, Xm1, . . . ,Xmn} (3)

Xmj =
ICj

TC

Where IC denotes the isotopolog count for a given metabolite j
and TC denotes the sum of all isotopolog counts. For example,
the MDV for 13C-labeled glucose can be determined as:

→

X glucose =
{

Xm0, Xm1,Xm2, Xm3, Xm4, Xm5, Xm6

}

(4)

with n = 6, because a glucose molecule has six carbon atoms
where 13C-label can be incorporated. Xm0 represents the fraction
of unlabeled glucose within the total metabolite pool, and Xm2 =

0.1 would indicate that 10% of the total glucose pool carries two
13C-labeled carbons. Based on theMDV it is not possible to assess
where the incorporation of label occurred.

When using stable isotope labeling it is important to correct
for natural occurrence of stable isotopes of all atoms within
a metabolite. This correction is particularly important when
derivatization agents are used during sample preparation (e.g.,
GC-MS requires derivatization using TBDMS), highly abundant
metabolites (e.g., glucose), or single labeled tracers (n = 1) are
being used. For instance, carbon appears in the form for two
stable isotopes, 12C and 13C, with a natural occurrence of ∼98.9
and 1.1%, respectively. When using 13C-tracers, measurements
need to be corrected for this natural occurrence. Several tools
have been developed (see Table 2) (53–56) that allow automatic
correction of labeled isotopologues of a given metabolite by
solving a linear equation as follows:

→

Xm =
−→

M a ·
=

L (5)

where
→

Xm and
−→

M a depict the measured MDV and actual
MDVs for a metabolite, respectively. The jth row of the

matrix
=

L contains the theoretically predicted MDV for the
jth labeled isotopolog. Determining the actual MDVs for each
metabolite is a critical step prior to further data analysis
and flux interpretation (Figure 3B). To achieve quantitative
information about metabolic conversion rates or flux rates
different mathematical approaches need to be applied depending
on the scope of the study and data type. Techniques in
mathematical modeling can be broadly divided into ordinary
differential equation and constrained based modeling. For a
comprehensive compilation of differentmodeling techniques and
applications, the reader is further referred to Klipp et al. (93).

Flux balance analysis (FBA) is a constrained-based modeling
technique that relies on balancing fluxes around metabolites
within a network stoichiometry (Figure 3C). Flux distributions
in FBA are estimated based on (1) the steady-state assumption,
(2) constraints derived from the metabolic environment (e.g.,
nutrient supply, oxygen consumption), and (3) an objective
function such as biomass synthesis, energy provision or another
cellular function that is critical for the organ system. Several
groups have successfully applied this algorithm and integrated
metabolomics data to study cardiac metabolism (35, 36, 40,
94). One limitation of FBA is the requirement for stationary
flux patterns without any integration of thermodynamic
feasibility. Several methods have been developed to allow
inclusion of thermodynamic constraints and even dynamic
optimization (95, 96).

13C-Metabolic flux analysis (13C-MFA) is most widely used
in assessing flux in stable-isotope tracer experiments (92). In
13C-MFA, isotopomer distributions from labeled substrates (e.g.,
13C-glucose) are incorporated into a mathematical model of
atom transfers and combined with measurements of nutrient
uptakes and secretions, and biomass function. The distribution
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of fluxes throughout a cellular metabolism is mathematically
estimated by iteratively solving a least-square regression problem
of isotope labeling measurements and extracellular exchanges
rates. The models applied to data regression comprise mass
balances and isotopomer balances on all network components,
thus often encompasses hundreds of equations. The sum of
squared residuals (SSR) is defined as follows:

Minimize SSR =
∑ (x − xm)2

σ 2
x

+
∑ (r − rm)2

σ 2
r

(6)

N × v = 0 (7)

R× v = r (8)

fisotopomer (v) = 0 (9)

Stationary fluxes (v) are estimated by the assumption of a steady
state (equation 7) and minimizing SSRs between simulated (x)
and experimentally derived (r) MDVs for a given metabolite
S. The stoichiometry matrix of a given metabolic network is
represented by N. Uncertainties, σ, can be estimated based on
the root-mean square error of unenriched control samples and
the standard error of measurement of technical MS replicates.
For a metabolite S, steady state implies that the total rate at
which it is supplied is equal to the total rate at which it is
removed (see Figure 3). If the whole system is in a steady state
these reaction rates are identical to the corresponding fluxes.
Therefore, reaction rates and flux are often used interchangeably
(97). In studies using direct infusion or ex vivo perfusion
techniques, relative fluxes can be converted to absolute fluxes
using known infusion rates or flow rates for specific tracers. A
prerequisite for applying the above given mathematical concept
is that measurements were conducted after reaching isotopic
steady state.

A given metabolite comprising n atoms may exist in either
labeled or unlabeled states with 2n isotopomers. For example,
glucose (C6H12O6) consists of 64 carbon atom isotopomers
(n = 6, 26), 4,096 hydrogen atom isotopomers (n = 12, 212),
and combined 2.6 × 105 (26 × 212) carbon and hydrogen
isotopomers. Therefore, additional methods have been developed
to allow the integration of multiple isotopic tracer systems
(98). Without these methods, mathematical analysis of tracer
studies is often limited to single isotopic tracers to allow
efficient simulation of flux distributions. In the elementary
metabolite units (EMU) framework labeling information is
broken down into multiple individual sub-problems consisting
of many coupled non-linear equations (98). The method uses a
decomposition algorithm that identifies the minimum amount
of information needed to simulate isotopic labeling within
a given metabolic network. This approach is different from
isotopomer methods, where the model includes all possible
isotopomers resulting in an exponentially larger number of
variables. The EMU framework requires fewer variables, thus
allows the analysis of labeling by multiple isotopic tracers
(Figure 3D). For ametabolite comprising n atoms, (2n – 1) EMUs
are possible. The algorithm allows to identify a minimal set of
EMUs to be considered in the simulation model, which reduces
the overall number of variables and makes the computational

analysis feasible even for multiple-tracer experiments and larger
scale models (98). A given metabolic network is decomposed
into different blocks of EMUs (98–100), which are expressed
as follows:

Ai · Xi = Bi · Yi (10)

where matrices Ai and Bi are strictly linear functions of fluxes.
In case 13C labeling has not reached a steady state, isotopically
non-stationary MFA (INST-MFA) methods can be used (62).
INST-MFA describes the isotopomer balances using ordinary
differential equations (ODEs) rather than linear regression
models (92). The advantage of 13C-MFA is a higher flux precision
and enhanced confidence in the accuracy of estimated fluxes.
A typical tracer experiment using [U-13C]-glucose can result
in 50 to 100 isotopic labeling measurements which are used to
estimate just 20 to 30 independent metabolic flux parameters.
This leads to redundancy in flux information and ultimately
increases confidence.

Several publicly and commercially available software packages
have been developed in recent years to facilitate network
reconstructions and computational analysis of metabolic
network using 13C-MFA and INST-MFA methods (62). Table 2
provides an overview of selected resources and repositories,
which can be used to analyze stable-isotope tracer studies and
may serve as a starting point for readers who are less familiar with
including mathematical modeling into their data interpretation.
Each of the listed resources serve a different purpose during
the metabolomics workflow and in some instances can help
with experimental design and selection of tracer probes or
analytical platforms (Figure 1). For example, genome-scale
reconstructions of cardiac metabolism allow to assess during the
study design which metabolic reactions may be involved in the
phenotype generation (35, 36, 39). In silico simulations can also
determine which tracers are required or which metabolites need
to be measured for the correct assessment of cardiac metabolic
changes. MFA platforms like INCA and SumoFlux allow
simulating tracer kinetics, which can be useful to determine when
a given tracer may reach steady state under the experimental
conditions (59, 63). Here, mathematical modeling can help
narrowing done tracer options and provide unbiased analysis
prior to experiments. EMU approaches can be used to select
tracers for a given network and metabolic pathway by providing
one optimal tracer or a reduced list of feasible tracers depending
on the probe sensitivity, labeling pattern, and complexity of
the metabolic network. Careful consideration of tracer type
and labeling pattern prior to an experiment can help reducing
potential computational burden of data analysis and improve
overall data interpretation by providing clear isotope patterns.

PLATFORMS FOR METABOLOMICS AND
SINGLE-CELL ANALYSIS

The goal of metabolomics is to comprehensively measure the
metabolic composition of a sample in a single analysis. Different
analytical platforms combine unbiased, rapid, reproducible,
and stable analysis of complex samples in a single run. Each
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technology has its advantages and disadvantages in terms of
sensitivity, throughput, reproducibility, robustness, quantitation,
and suitability for specific chemical classes of metabolites. These
analytical chemistry techniques range from high-performance
liquid chromatography (HPLC), gas chromatography-
mass spectrometry (GC-MS), liquid chromatography-mass
spectrometry (LC-MS), gas chromatography combustion
isotope ratio mass spectrometry (GC-C-IRMS), capillary
electrophoresis-mass spectrometry (CE-MS), Fourier transform-
ion cyclotron-mass spectrometry (FT-ICR-MS), and nuclear
magnetic resonance (NMR). Broadly, analytical chemistry
techniques can be divided into (i) separation, (ii) identification,
and (iii) quantification of metabolites from a complex
sample (e.g., tissue, blood). The separation of metabolites is
accomplished using chromatography (GC, HPLC) or CE. Sample
detection is then achieved using fluorescence, ion conductivity,
or spectrometry (MS, NMR, light absorption). MS and NMR
are different types of spectrometers that measure physical
characteristics over a given spectrum. MS measures masses
within a chemical sample through their mass-to-charge ratio
(m/z), while NMR measures the variation of nuclear resonant
frequencies. Both detection techniques can be combined with
a different separation method allowing customized application
methods for a specific type of sample and compound. MS and
NMR are widely used in metabolomics to detect and analyze
stable isotope tracer studies, such as 1H, 13C, 14N, and 31P. A MS
instrument consists of three main components: an ion source, a
mass analyzer, and a detector. The ion source ionizes the sample,
producing ions and fragment ions, then accelerated through
the mass analyzer. Perpendicular magnetic fields deflect ions
traveling through the mass analyzer according to their mass
allowing to sort and detect ions based on their mass-to-charge
ratio (m/z). The output is presented as a mass spectrum where
each peak represents a different ion with a specific m/z, and the
peak length corresponds with a relative abundance. Combining
MS with separation techniques like GC or LC enables analysis
of complex samples based on separation times (or retention
times) and m/z ratios. The variable ionization of compounds, ion
suppression, and instrument cycling times inherently limit the
number and type of metabolites that can be distinguished in a
single run. Different ionization techniques have been developed
including electron ionization (EI) and chemical ionization (CI)
for compounds in gas-phase, as well as electrospray ionization
(ESI) and matrix-assisted laser desorption/ionization (MALDI)
which are suitable for thermally labile and non-volatile analytes
(101). After ionization, the mass analyzer sorts the ions by their
m/z ratio using magnetic or electrical fields. Common analyzers
use time of flight (TOF), quadrupole mass filter, quadrupole ion
trap, Fourier transform-ion cyclotron or orbitrap. Each separated
ion induces a specific charge which is finally measured in the
detector. The advantage of MS over NMR is higher throughput,
sensitivity, analysis speed, and a broader range of applications.
Continuous improvements in instrumentation design and
reduced running costs have led to increased accessibility and
implementation of MS in research studies. The sensitivity and
resolution of NMR instruments depend on the magnetic field
strength, which has been improved in the past decade. 1H

NMR spectra have a small chemical shift range, which leads
to overlapping peaks in complex samples, limiting detection,
and lowering sensitivity. Combination of one-dimensional
with two-dimensional NMR spectrometry has improved signal
dispersion and compound identifications (102). Implementation
of cryo-or microprobes further reduced scanning times needed
to record a spectrum and greatly improved the sensitivity.
Another advantage of NMR spectrometry is the quantitation
and more uniform detection system, which can be directly
used to identify and quantify metabolites both ex vivo and in
vivo. In addition, the non-destructive nature of NMR methods
leads to simplified sample preparation or even enables direct
measurement of samples from body fluids (e.g., urine). Another
advantage over MS is quantifying multiple compounds without
the need for calibration curves for each compound.MS andNMR
spectrometry have evolved as the most common techniques in
stable isotope tracer and metabolomics studies. However, there
is no single analytical platform that can achieve a complete
quantification and identification of all molecules within a
sample. Therefore, more than one method must be employed
for comprehensive metabolic profiling. When deciding on an
analytical avenue, the choice primarily depends on the focus of
the research study and the nature of the samples, and instrument
and know-how accessibility.

Single-cell analysis is a powerful tool to interrogate
cellular heterogeneity within the same tissue, allowing for
refined assessment of phenotypes and biomarker discovery.
Metabolomics at the single-cell level holds the promise to obtain
precise spatial and temporal information allowing to assess cell
differentiation and division, cell-cell interactions, metabolic
cooperation between cell populations and a detailed stress
response analysis. In comparison to other omics technology,
single-cell metabolomics faces several challenges because of the
chemical diversity of metabolites, wide range of concentrations,
sample stability, and lack of amplification (103). Recent studies
have tried to circumvent challenges in single-cell metabolomics
by using co-immunoprecipitation of proteins followed by
MS to capture metabolic features (104). These strategies raise
the question how much of metabolic regulation is dependent
on protein abundance changes. The relationship between
enzyme function and metabolites is multifactorial and dynamic,
which explains poor correlation between individual proteins
and metabolites (105, 106). Integration of proteomics and
transcriptomics data with mathematical modeling and machine
learning algorithms may improve the predictive value of these
methods (107). Metabolomics at the single-cell level includes
several pre-processing and sample conditioning steps, including
desalting, to decomplexify the sample. These additional steps
increase robustness but can also lead to sample loss. The
limiting factor in stable-isotope labeling for single-cell analysis is
sensitivity and isotopic resolution of a given analytical platform.
Detection of metabolites in small sample volumes has been
achieved with both NMR and MS (108). However, the sample
volume for NMR application is larger than the single-cell level,
thus NMR is commonly used with tissue samples or body fluids
(e.g., plasma, urine). In recent years, progress has been made
to facilitate mass spectrometry-based single-cell metabolomics
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through increased instrument sensitivities and enhanced
technologies. Mass spectrometry Imaging (MSI)-based methods
are currently the most sensitive, thus preferred analytical
platforms for single-cell metabolomics (103). MSI is a logic
progression of laser microdissection technology and combines
high-resolution microscopy with MS, which can be applied
to thin tissue section or dispersed cell population attached to
a grid. MALDI-MSI and ESI-MSI are the two conventional
platforms applied for single-cell metabolomics. Both techniques
allow spatial resolution of very small sample amounts (µl to
pL range), analysis in the attomole ranges, and integration
with automation. Recent studies demonstrate that these MS
technologies can be applied to identify metabolic alterations in
endothelial cell migration (109), tumor cell metastasis (110),
and even to the single organelle level (111). The complementary
nature of single-cell approaches enables spatial characterization
of different cell types, reproducible measurement of metabolic
states and organelle analysis when combined with other
electrophysiological (e.g., patch clamping) techniques. However,
single organelle analysis remains challenging due to limitations
in reproducibility, low analyte abundances, limited sample
volumes, and interference from sample impurities (103). Single-
cell metabolomics is feasible across different platforms due
to recent advance in MS technology, which enables enough
resolution for monoisotopic detection. For studies that do not
require a spatial resolution but molecular characterization at
the single-cell level, separation-based methods like capillary
electrophoresis (CE), LC, or GC combined with MS or
fluorescent tagging approaches can provide sufficient sensitivity
for certain applications (112). Analytical platforms like CE-
ESI-MS allow qualitative and quantitative analyses of single
cells and subcellular compartments with high resolving power
and low sample input (<1 µl). CE is a powerful platform and
can be coupled with optical, electrochemical, or MS-based
detection expanding its applications (112). Compared to other
application, one limitation of CE is its low throughput (113).
Separations using CE can last up to 1 h, which limits the
number of cells that can be assayed from one population (114).
Therefore, recent methods have been introduced that directly
inject cells into the capillary for lysis and separation reducing
the time between cell rupture and analysis. Further advances
in MSI and separation-based MS for single-cell metabolomics

will offer unique approaches to classify cell types and identify
subpopulation thus enhance our understanding of metabolic
remodeling during cardiovascular diseases.

CONCLUDING REMARKS AND FUTURE
CHALLENGES

Understanding how reprogrammedmetabolism supports cardiac
adaptation during stress and diseases requires a systems-
wide approach. Translational models that recapitulate cardiac
pathophysiology are critical to advance our understanding of
CVDs and to utilize metabolic vulnerabilities through the
development of novel therapeutics or biomarker identification.
Stable-isotope labeling and mathematical modeling require
multidisciplinary collaborations to bridging animal models into
patients. Likewise, clinical studies should inform animal models
for mechanistic hypothesis-driven testing. Challenges persist in
accurate estimations of fluxes from stable-isotope tracers and
integration into clinical trials. Evidence indicates that metabolic
phenotypes are a key determinate of disease development and
progression. Advancements in analytical methods to quantify
metabolic phenotypes in vivo will be critical to identify metabolic
vulnerabilities. Ultimately, these efforts may help clinicians to
tailor therapeutic interventions based on the metabolic profile of
the intact heart.

AUTHOR CONTRIBUTIONS

AK designed and wrote the manuscript.

FUNDING

This research was supported by R00-HL-141702 and institutional
funds from Cedars-Sinai Medical Center to AK.

ACKNOWLEDGMENTS

The author acknowledges many fruitful discussions with Arpana
Vaniya, Heidi Vitrac, and Aleksandr Stotland at UC Davis,
Tosoh Biosciences, and Cedars-Sinai Medical Center. Figures
were created with BioRender.com.

REFERENCES

1. Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty

acid and carbohydrate oxidation–a novel therapeutic intervention in the

ischemic and failing heart. Biochim Biophys Acta. (2011) 1813:1333–50.

doi: 10.1016/j.bbamcr.2011.01.015

2. Nederlof R, Denis S, Lauzier B, Rosiers CD, Laakso M, Hagen J, et al.

Acute detachment of hexokinase II from mitochondria modestly increases

oxygen consumption of the intact mouse heart.Metabolism. (2017) 72:66–74.

doi: 10.1016/j.metabol.2017.04.008

3. Ritterhoff J, Young S, Villet O, Shao D, Neto FC, Bettcher LF, et al.

Metabolic remodeling promotes cardiac hypertrophy by directing

glucose to aspartate biosynthesis. Circ Res. (2020) 126:182–96.

doi: 10.1161/CIRCRESAHA.119.315483

4. Heinrich R, Rapoport SM, Rapoport TA. Metabolic regulation

and mathematical models. Prog Biophys Mol Biol. (1977) 32:1–82.

doi: 10.1016/0079-6107(78)90017-2

5. Ruiz M, Gelinas R, Vaillant F, Lauzier B, Des Rosiers C. Metabolic

tracing using stable isotope-labeled substrates and mass spectrometry

in the perfused mouse heart. Methods Enzymol. (2015) 561:107–47.

doi: 10.1016/bs.mie.2015.06.026

6. Hage FG, Aljaroudi WA. Review of cardiovascular imaging in the journal of

nuclear cardiology in 2016: part 2 of 2-myocardial perfusion imaging. J Nucl

Cardiol. (2017) 24:1190–9. doi: 10.1007/s12350-017-0875-2

7. Pirro M, Simental-Mendia LE, Bianconi V, Watts GF, Banach M, Sahebkar

A. Effect of statin therapy on arterial wall inflammation based on 18F-FDG

PET/CT: a systematic review and meta-analysis of interventional studies. J

Clin Med. (2019) 8:118. doi: 10.3390/jcm8010118

Frontiers in Cardiovascular Medicine | www.frontiersin.org 14 November 2021 | Volume 8 | Article 734364

https://BioRender.com
https://doi.org/10.1016/j.bbamcr.2011.01.015
https://doi.org/10.1016/j.metabol.2017.04.008
https://doi.org/10.1161/CIRCRESAHA.119.315483
https://doi.org/10.1016/0079-6107(78)90017-2
https://doi.org/10.1016/bs.mie.2015.06.026
https://doi.org/10.1007/s12350-017-0875-2
https://doi.org/10.3390/jcm8010118
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Karlstaedt Tracing Cardiac Metabolism

8. Kim IY, Williams RH, Schutzler SE, Lasley CJ, Bodenner DL, Wolfe RR,

et al. Acute lysine supplementation does not improve hepatic or peripheral

insulin sensitivity in older, overweight individuals.Nutr Metab. (2014) 11:49.

doi: 10.1186/1743-7075-11-49

9. Kim IY, Schutzler S, Schrader A, Spencer H, Kortebein P, Deutz NE,

et al. Quantity of dietary protein intake, but not pattern of intake, affects

net protein balance primarily through differences in protein synthesis

in older adults. Am J Physiol Endocrinol Metab. (2015) 308:E21–8.

doi: 10.1152/ajpendo.00382.2014

10. Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ,

et al. Quantitative analysis of the whole-body metabolic fate of

branched-chain amino acids. Cell Metab. (2019) 29:417–29 e414.

doi: 10.1016/j.cmet.2018.10.013

11. Bleehen NM, Fisher, R.B. The action of insulin on the isolated rat heart. J

Physiol. (1954) 123:260. doi: 10.1113/jphysiol.1954.sp005049

12. Morgan HE, Henderson MJ, Regen DM, Park CR. Regulation of glucose

uptake in muscle. I. The effects of insulin and anoxia on glucose transport

and phosphorylation in the isolated, perfused heart of normal rats. J Biol

Chem. (1961) 236:253–61. doi: 10.1016/S0021-9258(18)64348-0

13. Williamson JR, Krebs HA. Acetoacetate as fuel of respiration in the perfused

rat heart. Biochem J. (1961) 80:540–7. doi: 10.1042/bj0800540

14. Opie LH. Coronary flow rate and perfusion pressure as determinants of

mechanical function and oxidative metabolism of isolated perfused rat heart.

J Physiol. (1965) 180:529–41. doi: 10.1113/jphysiol.1965.sp007715

15. Taegtmeyer H, Hems R, Krebs HA. Utilization of energy-providing

substrates in the isolated working rat heart. Biochem J. (1980) 186:701–11.

doi: 10.1042/bj1860701

16. Salabei JK, Lorkiewicz PK, Mehra P, Gibb AA, Haberzettl P, Hong KU, et al.

Type 2 diabetes dysregulates glucose metabolism in cardiac progenitor cells.

J Biol Chem. (2016) 291:13634–48. doi: 10.1074/jbc.M116.722496

17. Lee MH, Malloy CR, Corbin IR, Li J, Jin ES. Assessing the pentose phosphate

pathway using [2, 3-(13) C2 ]glucose. NMR Biomed. (2019) 32:e4096.

doi: 10.1002/nbm.4096

18. Jin ES, Lee MH, Malloy CR. 13C NMR of glutamate for monitoring the

pentose phosphate pathway in myocardium. NMR Biomed. (2021) 34:e4533.

doi: 10.1002/nbm.4533

19. Olson AK, Bouchard B, Zhu WZ, Chatham JC, Des Rosiers C. First

characterization of glucose flux through the hexosamine biosynthesis

pathway (HBP) in ex vivo mouse heart. J Biol Chem. (2020) 295:2018–33.

doi: 10.1074/jbc.RA119.010565

20. Zhang Y, Taufalele PV, Cochran JD, Robillard-Frayne I, Marx JM, Soto J,

et al. Mitochondrial pyruvate carriers are required for myocardial stress

adaptation. Nat Metab. (2020) 2:1248–64. doi: 10.1038/s42255-020-00288-1

21. Zhang H, Uthman L, Bakker D, Sari S, Chen S, Hollmann MW,

et al. Empagliflozin decreases lactate generation in an NHE-1 dependent

fashion and increases alpha-ketoglutarate synthesis from palmitate in

Type II diabetic mouse hearts. Front Cardiovasc Med. (2020) 7:592233.

doi: 10.3389/fcvm.2020.592233

22. Ronda O, Van De Heijning BJM, Martini IA, Koehorst M, Havinga R,

Jurdzinski A, et al. An early-life diet containing large phospholipid-coated

lipid globules programmes later-life postabsorptive lipid trafficking in high-

fat diet- but not in low-fat diet-fed mice. Br J Nutr. (2021) 125:961–71.

doi: 10.1017/S0007114520002421

23. Wust RCI, Coolen BF, Held NM,DaalMRR, Alizadeh Tazehkandi V, Baks-Te

Bulte L, et al. The antibiotic doxycycline impairs cardiac mitochondrial and

contractile function. Int J Mol Sci. (2021) 22:4100. doi: 10.3390/ijms22084100

24. Ragavan M, Li M, Giacalone AG, Wood CE, Keller-Wood M, Merritt

ME. Application of carbon-13 isotopomer analysis to assess perinatal

myocardial glucose metabolism in sheep. Metabolites. (2021) 11:33.

doi: 10.3390/metabo11010033

25. Gibb AA, Lorkiewicz PK, Zheng YT, Zhang X, Bhatnagar A, Jones SP,

et al. Integration of flux measurements to resolve changes in anabolic and

catabolic metabolism in cardiac myocytes. Biochem J. (2017) 474:2785–801.

doi: 10.1042/BCJ20170474

26. Madsen KL, Preisler N, Rasmussen J, Hedermann G, Olesen JH,

Lund AM, et al. L-carnitine improves skeletal muscle fat oxidation in

primary carnitine deficiency. J Clin Endocrinol Metab. (2018) 103:4580–8.

doi: 10.1210/jc.2018-00953

27. Parry SA, Rosqvist F, Mozes FE, Cornfield T, Hutchinson M, Piche ME, et al.

Intrahepatic fat and postprandial glycemia increase after consumption of

a diet enriched in saturated fat compared with free sugars. Diabetes Care.

(2020) 43:1134–41. doi: 10.2337/dc19-2331

28. Wang Y, Christopher BA, Wilson KA, Muoio D, Mcgarrah RW,

Brunengraber H, et al. Propionate-induced changes in cardiac metabolism,

notably CoA trapping, are not altered by l-carnitine. Am J Physiol Endocrinol

Metab. (2018) 315:E622–33. doi: 10.1152/ajpendo.00081.2018

29. Renguet E, Ginion A, Gelinas R, Bultot L, Auquier J, Robillard Frayne I, et al.

Metabolism and acetylation contribute to leucine-mediated inhibition of

cardiac glucose uptake.Am J Physiol Heart Circ Physiol. (2017) 313:H432–45.

doi: 10.1152/ajpheart.00738.2016

30. Zhang J, Wang YT, Miller JH, Day MM, Munger JC, Brookes PS.

Accumulation of succinate in cardiac ischemia primarily occurs

via canonical krebs cycle activity. Cell Rep. (2018) 23:2617–28.

doi: 10.1016/j.celrep.2018.04.104

31. Watanabe K, NagaoM, Toh R, Irino Y, ShinoharaM, Iino T, et al. Critical role

of glutamine metabolism in cardiomyocytes under oxidative stress. Biochem

Biophys Res Commun. (2021) 534:687–93. doi: 10.1016/j.bbrc.2020.11.018

32. Lindsay RT, Demetriou D, Manetta-Jones D, West JA, Murray AJ, Griffin

JL. A model for determining cardiac mitochondrial substrate utilisation

using stable (13)C-labelled metabolites. Metabolomics. (2019) 15:154.

doi: 10.1007/s11306-019-1618-y

33. Khairallah M, Labarthe F, Bouchard B, Danialou G, Petrof BJ, Des Rosiers

C. Profiling substrate fluxes in the isolated working mouse heart using

13C-labeled substrates: focusing on the origin and fate of pyruvate and

citrate carbons. Am J Physiol Heart Circ Physiol. (2004) 286:H1461–70.

doi: 10.1152/ajpheart.00942.2003

34. Crown SB, Kelleher JK, Rouf R, Muoio DM, Antoniewicz MR.

Comprehensive metabolic modeling of multiple 13C-isotopomer data

sets to study metabolism in perfused working hearts. Am J Physiol Heart

Circ Physiol. (2016) 311:H881–91. doi: 10.1152/ajpheart.00428.2016

35. Karlstadt A, Fliegner D, Kararigas G, Ruderisch HS, Regitz-Zagrosek

V, Holzhutter HG. CardioNet: a human metabolic network suited for

the study of cardiomyocyte metabolism. BMC Syst Biol. (2012) 6:114.

doi: 10.1186/1752-0509-6-114

36. Aksentijevic D, Karlstaedt A, Basalay MV, O’brien BA, Sanchez-Tatay

D, Eminaga S, et al. Intracellular sodium elevation reprograms cardiac

metabolism.Nat Commun. (2020) 11:4337. doi: 10.1038/s41467-020-18160-x

37. Wolfe RR, Park S, Kim IY, Moughan PJ, Ferrando AA. Advances in stable

isotope tracer methodology part 2: new thoughts about an “old” method-

measurement of whole body protein synthesis and breakdown in the fed

state. J Investig Med. (2020) 68:11–5. doi: 10.1136/jim-2019-001108

38. Heise R, Fernie AR, Stitt M, Nikoloski Z. Pool size measurements facilitate

the determination of fluxes at branching points in non-stationary metabolic

flux analysis: the case of Arabidopsis thaliana. Front Plant Sci. (2015) 6:386.

doi: 10.3389/fpls.2015.00386

39. Karlstaedt A, Khanna R, Thangam M, Taegtmeyer H. Glucose 6-phosphate

accumulates via phosphoglucose isomerase inhibition in heart muscle. Circ

Res. (2020) 126:60–74. doi: 10.1161/CIRCRESAHA.119.315180

40. Dougherty BV, Rawls KD, Kolling GL, Vinnakota KC, Wallqvist A, Papin JA.

Identifying functional metabolic shifts in heart failure with the integration

of omics data and a heart-specific, genome-scale model. Cell Rep. (2021)

34:108836. doi: 10.1016/j.celrep.2021.108836

41. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The

reactome pathway knowledgebase. Nucleic Acids Res. (2020) 48:D498–503.

doi: 10.1093/nar/gkz1031

42. Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Drager A, Mih N, et al.

Recon3D enables a three-dimensional view of gene variation in human

metabolism. Nat Biotechnol. (2018) 36:272–81. doi: 10.1038/nbt.4072

43. Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic

models for 126 human tissues using mCADRE. BMC Syst Biol. (2012) 6:153.

doi: 10.1186/1752-0509-6-153

44. Uniprot C. UniProt: the universal protein knowledgebase in 2021. Nucleic

Acids Res. (2021) 49:D480–9. doi: 10.1093/nar/gkaa1100

45. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R,

et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids

Res. (2018) 46:D608–17. doi: 10.1093/nar/gkx1089

Frontiers in Cardiovascular Medicine | www.frontiersin.org 15 November 2021 | Volume 8 | Article 734364

https://doi.org/10.1186/1743-7075-11-49
https://doi.org/10.1152/ajpendo.00382.2014
https://doi.org/10.1016/j.cmet.2018.10.013
https://doi.org/10.1113/jphysiol.1954.sp005049
https://doi.org/10.1016/S0021-9258(18)64348-0
https://doi.org/10.1042/bj0800540
https://doi.org/10.1113/jphysiol.1965.sp007715
https://doi.org/10.1042/bj1860701
https://doi.org/10.1074/jbc.M116.722496
https://doi.org/10.1002/nbm.4096
https://doi.org/10.1002/nbm.4533
https://doi.org/10.1074/jbc.RA119.010565
https://doi.org/10.1038/s42255-020-00288-1
https://doi.org/10.3389/fcvm.2020.592233
https://doi.org/10.1017/S0007114520002421
https://doi.org/10.3390/ijms22084100
https://doi.org/10.3390/metabo11010033
https://doi.org/10.1042/BCJ20170474
https://doi.org/10.1210/jc.2018-00953
https://doi.org/10.2337/dc19-2331
https://doi.org/10.1152/ajpendo.00081.2018
https://doi.org/10.1152/ajpheart.00738.2016
https://doi.org/10.1016/j.celrep.2018.04.104
https://doi.org/10.1016/j.bbrc.2020.11.018
https://doi.org/10.1007/s11306-019-1618-y
https://doi.org/10.1152/ajpheart.00942.2003
https://doi.org/10.1152/ajpheart.00428.2016
https://doi.org/10.1186/1752-0509-6-114
https://doi.org/10.1038/s41467-020-18160-x
https://doi.org/10.1136/jim-2019-001108
https://doi.org/10.3389/fpls.2015.00386
https://doi.org/10.1161/CIRCRESAHA.119.315180
https://doi.org/10.1016/j.celrep.2021.108836
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1038/nbt.4072
https://doi.org/10.1186/1752-0509-6-153
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/nar/gkx1089
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Karlstaedt Tracing Cardiac Metabolism

46. Schomburg I, Chang A, Schomburg D. BRENDA, enzyme data

and metabolic information. Nucleic Acids Res. (2002) 30:47–9.

doi: 10.1093/nar/30.1.47

47. Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, et al.

BRENDA, the enzyme information system in 2011. Nucleic Acids Res. (2011)

39:D670–6. doi: 10.1093/nar/gkq1089

48. Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, et al.

BRENDA, the ELIXIR core data resource in 2021: new developments

and updates. Nucleic Acids Res. (2021) 49:D498–508. doi: 10.1093/nar/gka

a1025

49. Kanehisa M. The KEGG database. Novartis Found Symp. (2002) 247:91–101;

discussion 101–103 119–128, 244–152. doi: 10.1002/0470857897.ch8

50. Kanehisa M. Molecular network analysis of diseases and drugs in KEGG.

Methods Mol Biol. (2013) 939:263–75. doi: 10.1007/978-1-62703-107-3_17

51. Kanehisa M. KEGG bioinformatics resource for plant genomics

and metabolomics. Methods Mol Biol. (2016) 1374:55–70.

doi: 10.1007/978-1-4939-3167-5_3

52. Kanehisa M. Enzyme annotation andmetabolic reconstruction using KEGG.

Methods Mol Biol. (2017) 1611:135–45. doi: 10.1007/978-1-4939-7015-5_11

53. Selivanov VA, Benito A, Miranda A, Aguilar E, Polat IH, Centelles JJ, et al.

MIDcor, an R-program for deciphering mass interferences in mass spectra

of metabolites enriched in stable isotopes. BMC Bioinformatics. (2017) 18:88.

doi: 10.1186/s12859-017-1513-3

54. Heinrich P, Kohler C, Ellmann L, Kuerner P, Spang R, Oefner PJ,

et al. Correcting for natural isotope abundance and tracer impurity

in MS-, MS/MS- and high-resolution-multiple-tracer-data from stable

isotope labeling experiments with IsoCorrectoR. Sci Rep. (2018) 8:17910.

doi: 10.1038/s41598-018-36293-4

55. Millard P, Letisse F, Sokol S, Portais JC. IsoCor: correcting MS

data in isotope labeling experiments. Bioinformatics. (2012) 28:1294–6.

doi: 10.1093/bioinformatics/bts127

56. Millard P, Delepine B, Guionnet M, Heuillet M, Bellvert F, Letisse F.

IsoCor: isotope correction for high-resolution MS labeling experiments.

Bioinformatics. (2019) 35:4484–7. doi: 10.1093/bioinformatics/btz209

57. Wiechert W, Mollney M, Petersen S, De Graaf AA. A universal

framework for 13C metabolic flux analysis. Metab Eng. (2001) 3:265–83.

doi: 10.1006/mben.2001.0188

58. Weitzel M, Noh K, Dalman T, Niedenfuhr S, Stute B,

Wiechert W. 13CFLUX2–high-performance software suite for

(13)C-metabolic flux analysis. Bioinformatics. (2013) 29:143–5.

doi: 10.1093/bioinformatics/bts646

59. Kogadeeva M, Zamboni N. SUMOFLUX: a generalized method for targeted

13C metabolic flux ratio analysis. PLoS Comput Biol. (2016) 12:e1005109.

doi: 10.1371/journal.pcbi.1005109

60. Quek LE, Wittmann C, Nielsen LK, Kromer JO. OpenFLUX: efficient

modelling software for 13C-based metabolic flux analysis. Microb Cell Fact.

(2009) 8:25. doi: 10.1186/1475-2859-8-25

61. Sokol S, Millard P, Portais JC. influx_s: increasing numerical stability

and precision for metabolic flux analysis in isotope labelling experiments.

Bioinformatics. (2012) 28:687–93. doi: 10.1093/bioinformatics/btr716

62. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G.

An elementary metabolite unit (EMU) based method of isotopically

nonstationary flux analysis. Biotechnol Bioeng. (2008) 99:686–99.

doi: 10.1002/bit.21632

63. Young JD. INCA: a computational platform for isotopically non-

stationary metabolic flux analysis. Bioinformatics. (2014) 30:1333–5.

doi: 10.1093/bioinformatics/btu015

64. Rappez L, Stadler M, Triana S, Gathungu RM, Ovchinnikova K, Phapale P,

et al. SpaceM reveals metabolic states of single cells. Nat Methods. (2021)

18:799–805. doi: 10.1038/s41592-021-01198-0

65. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A,

et al. Creation and analysis of biochemical constraint-based models

using the COBRA Toolbox v.3.0. Nat Protoc. (2019) 14:639–702.

doi: 10.1038/s41596-018-0098-2

66. Matlab. version 9.10.0 (R2021a). Natick, MA: The MathWorks, Inc. (2021)

67. Gurobi Optimization Llc. Gurobi Optimizer Reference Manual, Version

9.1 (2021). Available online at: https://www.gurobi.com/documentation/9.1/

refman/index.html

68. Cplex II. V12. 1: User’s Manual for CPLEX. Int Bus Mach Corp.

(2009) 46:157. Available online at: https://www.ibm.com/docs/en/icos/12.10.

0?topic=cplex-users-manual

69. R Core Team. R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing (2017).

70. Wall L.a.C, Tom, Orwant J. Programming Perl. Sebastopol, CA: O’Reilly

Media, Inc. (2000).

71. Van Rossum G, Drake FL. Python Reference Manual. Amsterdam: Centrum

voor Wiskunde en Informatica (1995).

72. Otasek D, Morris JH, Boucas J, Pico AR, Demchak B. Cytoscape automation:

empowering workflow-based network analysis. Genome Biol. (2019) 20:185.

doi: 10.1186/s13059-019-1758-4

73. Barupal DK, FiehnO. Chemical similarity enrichment analysis (ChemRICH)

as alternative to biochemical pathway mapping for metabolomic datasets. Sci

Rep. (2017) 7:14567. doi: 10.1038/s41598-017-15231-w

74. Wohlgemuth G, Haldiya PK, Willighagen E, Kind T, Fiehn O.

The chemical translation service–a web-based tool to improve

standardization of metabolomic reports. Bioinformatics. (2010) 26:2647–8.

doi: 10.1093/bioinformatics/btq476

75. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021:

new data content and improved web interfaces. Nucleic Acids Res. (2021)

49:D1388–95. doi: 10.1093/nar/gkaa971

76. Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, et al. Metabolomics

Workbench: An international repository for metabolomics data and

metadata, metabolite standards, protocols, tutorials and training, analysis

tools. Nucleic Acids Res. (2016) 44:D463–70. doi: 10.1093/nar/gkv1042

77. Salek RM, Haug K, Conesa P, Hastings J, Williams M, Mahendraker T, et al.

Themetabolights repository: curation challenges inmetabolomics.Database.

(2013) 2013: bat029. doi: 10.1093/database/bat029

78. Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing. Cell.

(2018) 173:822–37. doi: 10.1016/j.cell.2018.03.055

79. Liu H, Huang D, Mcarthur DL, Boros LG, Nissen N, Heaney AP. Fructose

induces transketolase flux to promote pancreatic cancer growth. Cancer Res.

(2010) 70:6368–76. doi: 10.1158/0008-5472.CAN-09-4615

80. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-

Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through

regulation of anabolic glucose metabolism. Cell. (2012) 149:656–70.

doi: 10.1016/j.cell.2012.01.058

81. Moon SJ, Dong W, Stephanopoulos GN, Sikes HD. Oxidative pentose

phosphate pathway and glucose anaplerosis support maintenance of

mitochondrial NADPH pool under mitochondrial oxidative stress. Bioeng

Transl Med. (2020) 5:e10184. doi: 10.1002/btm2.10184

82. Lewis CA, Parker SJ, Fiske BP, Mccloskey D, Gui DY, Green CR,

et al. Tracing compartmentalized NADPH metabolism in the cytosol

and mitochondria of mammalian cells. Mol Cell. (2014) 55:253–63.

doi: 10.1016/j.molcel.2014.05.008

83. Simithy J, Sidoli S, Yuan ZF, Coradin M, Bhanu NV, Marchione DM, et al.

Characterization of histone acylations links chromatin modifications with

metabolism. Nat Commun. (2017) 8:1141. doi: 10.1038/s41467-017-01384-9

84. Lund PJ, Kori Y, Zhao X, Sidoli S, Yuan ZF, Garcia BA. Isotopic labeling and

quantitative proteomics of acetylation on histones and beyond.Methods Mol

Biol. (2019) 1977:43–70. doi: 10.1007/978-1-4939-9232-4_5

85. Mcclatchy DB, Ma Y, Liu C, Stein BD, Martinez-Bartolome S, Vasquez

D, et al. Pulsed azidohomoalanine labeling in mammals (PALM) detects

changes in liver-specific LKB1 knockout mice. J Proteome Res. (2015)

14:4815–22. doi: 10.1021/acs.jproteome.5b00653

86. Lu W, Wang L, Chen L, Hui S, Rabinowitz JD. Extraction and quantitation

of nicotinamide adenine dinucleotide redox cofactors.Antioxid Redox Signal.

(2018) 28:167–79. doi: 10.1089/ars.2017.7014

87. Trefely S, Liu J, Huber K, Doan MT, Jiang H, Singh J, et al.

Subcellular metabolic pathway kinetics are revealed by correcting

for artifactual post harvest metabolism. Mol Metab. (2019) 30:61–71.

doi: 10.1016/j.molmet.2019.09.004

88. Wollenberger A, Ristau O, Schoffa G. [A simple technic for extremely rapid

freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen

Tiere. (1960) 270:399–412. doi: 10.1007/BF00362995

89. Wollenberger A, Halle W, Kallabis E, Kleitke B, Hinterberger U,

Schulze W. Cultivation of beating heart cells from frozen heart cell

Frontiers in Cardiovascular Medicine | www.frontiersin.org 16 November 2021 | Volume 8 | Article 734364

https://doi.org/10.1093/nar/30.1.47
https://doi.org/10.1093/nar/gkq1089
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1002/0470857897.ch8
https://doi.org/10.1007/978-1-62703-107-3_17
https://doi.org/10.1007/978-1-4939-3167-5_3
https://doi.org/10.1007/978-1-4939-7015-5_11
https://doi.org/10.1186/s12859-017-1513-3
https://doi.org/10.1038/s41598-018-36293-4
https://doi.org/10.1093/bioinformatics/bts127
https://doi.org/10.1093/bioinformatics/btz209
https://doi.org/10.1006/mben.2001.0188
https://doi.org/10.1093/bioinformatics/bts646
https://doi.org/10.1371/journal.pcbi.1005109
https://doi.org/10.1186/1475-2859-8-25
https://doi.org/10.1093/bioinformatics/btr716
https://doi.org/10.1002/bit.21632
https://doi.org/10.1093/bioinformatics/btu015
https://doi.org/10.1038/s41592-021-01198-0
https://doi.org/10.1038/s41596-018-0098-2
https://www.gurobi.com/documentation/9.1/refman/index.html
https://www.gurobi.com/documentation/9.1/refman/index.html
https://www.ibm.com/docs/en/icos/12.10.0?topic=cplex-users-manual
https://www.ibm.com/docs/en/icos/12.10.0?topic=cplex-users-manual
https://doi.org/10.1186/s13059-019-1758-4
https://doi.org/10.1038/s41598-017-15231-w
https://doi.org/10.1093/bioinformatics/btq476
https://doi.org/10.1093/nar/gkaa971
https://doi.org/10.1093/nar/gkv1042
https://doi.org/10.1093/database/bat029
https://doi.org/10.1016/j.cell.2018.03.055
https://doi.org/10.1158/0008-5472.CAN-09-4615
https://doi.org/10.1016/j.cell.2012.01.058
https://doi.org/10.1002/btm2.10184
https://doi.org/10.1016/j.molcel.2014.05.008
https://doi.org/10.1038/s41467-017-01384-9
https://doi.org/10.1007/978-1-4939-9232-4_5
https://doi.org/10.1021/acs.jproteome.5b00653
https://doi.org/10.1089/ars.2017.7014
https://doi.org/10.1016/j.molmet.2019.09.004
https://doi.org/10.1007/BF00362995
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Karlstaedt Tracing Cardiac Metabolism

suspensions. Naturwissenschaften. (1967) 54:174. doi: 10.1007/BF005

90855

90. Janiszewski E, Wollenberger A. [Freezing preservation of heart cells and

heart fragments]. Acta Biol Med Ger. (1972) 29:135–47.

91. Davogustto GE, Salazar RL, Vasquez HG, Karlstaedt A, Dillon

WP, Guthrie PH, et al. Metabolic remodeling precedes mTORC1-

mediated cardiac hypertrophy. J Mol Cell Cardiol. (2021) 158:115–27.

doi: 10.1016/j.yjmcc.2021.05.016

92. Wiechert W. 13C metabolic flux analysis. Metab Eng. (2001) 3:195–206.

doi: 10.1006/mben.2001.0187

93. Klipp E,LW, Wierling C, Kowald A. Systems Biology. Weinheim: Wiley-

VCH (2016).

94. Karlstaedt A, Zhang X, Vitrac H, Harmancey R, Vasquez H, Wang JH,

et al. Oncometabolite d-2-hydroxyglutarate impairs alpha-ketoglutarate

dehydrogenase and contractile function in rodent heart. Proc Natl Acad Sci

USA. (2016) 113:10436-41. doi: 10.1073/pnas.1601650113

95. Henry CS, Broadbelt LJ, Hatzimanikatis V. Thermodynamics-

based metabolic flux analysis. Biophys J. (2007) 92:1792–805.

doi: 10.1529/biophysj.106.093138

96. Hoppe A, Hoffmann S, Holzhutter HG. Including metabolite concentrations

into flux balance analysis: thermodynamic realizability as a constraint

on flux distributions in metabolic networks. BMC Syst Biol. (2007) 1:23.

doi: 10.1186/1752-0509-1-23

97. Cornish-Bowden A. Metabolic control analysis in theory and practice. Adv

Mol Cell Biol. (1995) 11:21–64. doi: 10.1016/S1569-2558(08)60247-7

98. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Elementary metabolite

units (EMU): a novel framework for modeling isotopic distributions. Metab

Eng. (2007) 9:68–86. doi: 10.1016/j.ymben.2006.09.001

99. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Determination

of confidence intervals of metabolic fluxes estimated from

stable isotope measurements. Metab Eng. (2006) 8:324–37.

doi: 10.1016/j.ymben.2006.01.004

100. Antoniewicz MR, Stephanopoulos G, Kelleher JK. Evaluation of regression

models in metabolic physiology: predicting fluxes from isotopic data

without knowledge of the pathway. Metabolomics. (2006) 2:41–52.

doi: 10.1007/s11306-006-0018-2

101. Cramer R. Maldi Ms. Methods Mol Biol. (2009) 564:85–103.

doi: 10.1007/978-1-60761-157-8_5

102. Bingol K, Zhang F, Bruschweiler-Li L, Bruschweiler R. Quantitative analysis

of metabolic mixtures by two-dimensional 13C constant-time TOCSY NMR

spectroscopy. Anal Chem. (2013) 85:6414–20. doi: 10.1021/ac400913m

103. Taylor MJ, Lukowski JK, Anderton CR. Spatially resolved mass spectrometry

at the single cell: recent innovations in proteomics and metabolomics. J Am

Soc Mass Spectrom. (2021) 32:872–94. doi: 10.1021/jasms.0c00439

104. Hartmann FJ, Mrdjen D, Mccaffrey E, Glass DR, Greenwald NF, Bharadwaj

A, et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat

Biotechnol. (2021) 39:186–97. doi: 10.1038/s41587-020-0651-8

105. Fendt SM, Buescher JM, Rudroff F, Picotti P, Zamboni N, Sauer U.

Tradeoff between enzyme and metabolite efficiency maintains metabolic

homeostasis upon perturbations in enzyme capacity. Mol Syst Biol. (2010)

6:356. doi: 10.1038/msb.2010.11

106. Zelezniak A, Sheridan S, Patil KR. Contribution of network connectivity in

determining the relationship between gene expression and metabolite

concentration changes. PLoS Comput Biol. (2014) 10:e1003572.

doi: 10.1371/journal.pcbi.1003572

107. Zeleniak AE, Huang W, Fishel ML, Hill R. PTEN-dependent

stabilization of MTSS1 inhibits metastatic phenotype in pancreatic

ductal adenocarcinoma.Neoplasia. (2018) 20:12–24. doi: 10.1016/j.neo.2017.

10.004

108. Comi TJ, Do TD, Rubakhin SS, Sweedler JV. Categorizing cells on the basis

of their chemical profiles: progress in single-cell mass spectrometry. J Am

Chem Soc. (2017) 139:3920–9. doi: 10.1021/jacs.6b12822

109. Wu D, Harrison DL, Szasz T, Yeh CF, Shentu TP, Meliton A, et al.

Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic

burst in motile endothelial cells. Nat Metab. (2021) 3:714–27.

doi: 10.1038/s42255-021-00390-y

110. Ferraro GB, Ali A, Luengo A, Kodack DP, Deik A, Abbott KL, et al. Fatty acid

synthesis is required for breast cancer brain metastasis. Nat Cancer. (2021)

2:414–28. doi: 10.1038/s43018-021-00283-9

111. Zhu H, Li Q, Liao T, Yin X, Chen Q, Wang Z, et al. Metabolomic

profiling of single enlarged lysosomes. Nat Methods. (2021) 18:788–98.

doi: 10.1038/s41592-021-01182-8

112. Kleparnik K. Recent advances in the combination of capillary electrophoresis

with mass spectrometry: from element to single-cell analysis. Electrophoresis.

(2013) 34:70–85. doi: 10.1002/elps.201200488

113. Marc PJ, Sims CE, Allbritton NL. Coaxial flow system for chemical

cytometry. Anal Chem. (2007) 79:9054–9. doi: 10.1021/ac7017519

114. Chen S, Lillard SJ. Continuous cell introduction for the analysis of

individual cells by capillary electrophoresis. Anal Chem. (2001) 73:111–8.

doi: 10.1021/ac0009088

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Karlstaedt. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 17 November 2021 | Volume 8 | Article 734364

https://doi.org/10.1007/BF00590855
https://doi.org/10.1016/j.yjmcc.2021.05.016
https://doi.org/10.1006/mben.2001.0187
https://doi.org/10.1073/pnas.1601650113
https://doi.org/10.1529/biophysj.106.093138
https://doi.org/10.1186/1752-0509-1-23
https://doi.org/10.1016/S1569-2558(08)60247-7
https://doi.org/10.1016/j.ymben.2006.09.001
https://doi.org/10.1016/j.ymben.2006.01.004
https://doi.org/10.1007/s11306-006-0018-2
https://doi.org/10.1007/978-1-60761-157-8_5
https://doi.org/10.1021/ac400913m
https://doi.org/10.1021/jasms.0c00439
https://doi.org/10.1038/s41587-020-0651-8
https://doi.org/10.1038/msb.2010.11
https://doi.org/10.1371/journal.pcbi.1003572
https://doi.org/10.1016/j.neo.2017.10.004
https://doi.org/10.1021/jacs.6b12822
https://doi.org/10.1038/s42255-021-00390-y
https://doi.org/10.1038/s43018-021-00283-9
https://doi.org/10.1038/s41592-021-01182-8
https://doi.org/10.1002/elps.201200488
https://doi.org/10.1021/ac7017519
https://doi.org/10.1021/ac0009088
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles

	Stable Isotopes for Tracing Cardiac Metabolism in Diseases
	Introduction
	Stable-Isotope Tracer Methods for Measuring Cardiac Metabolism in vivo and ex vivo
	Mathematical Modeling of Metabolic Flux Distributions
	Platforms for Metabolomics and Single-Cell Analysis
	Concluding Remarks and Future Challenges
	Author Contributions
	Funding
	Acknowledgments
	References


