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Coronary artery disease (CAD) represents one of the most important causes of death

around the world. Multimodality imaging plays a fundamental role in both diagnosis and

risk stratification of acute and chronic CAD. For example, the role of Coronary Computed

Tomography Angiography (CCTA) has become increasingly important to rule out CAD

according to the latest guidelines. These changes and others will likely increase the

request for appropriate imaging tests in the future. In this setting, artificial intelligence

(AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and

nuclear imaging, making multimodality imaging more efficient and reliable for clinicians,

as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians

in identifying early predictors of adverse outcome that human eyes cannot see in the fog

of “big data.” AI algorithms applied to multimodality imaging will play a fundamental role

in the management of patients with suspected or established CAD. This study aims to

provide a comprehensive overview of current and future AI applications to the field of

multimodality imaging of ischemic heart disease.

Keywords: artificial intelligence, coronary artery disease, multimodality imaging, machine learning, deep learning,

radiomics

INTRODUCTION

Cardiovascular disease represents one of the leading causes of morbidity and mortality in the
world (1). In 2017, coronary artery disease (CAD) affected 1.72% of the global population and
was recognized as the leading cause of death (1).

This highlights the need of an effective and efficient diagnostic-therapeutic path for the diagnosis
and risk stratification of CAD patients.

CAD management has dramatically changed over the past few decades. Currently, invasive
coronary angiography remains the gold standard for patients with a high risk of CAD allowing
for both the diagnosis and potential for therapeutic intervention. However, this strategy is time
consuming and prone to intra- or periprocedural risks (e.g., bleeding risk, puncture site bleeding,
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coronary artery dissection, radiation exposure, and contrast
induced nephrotoxicity) and thus is typically not recommended
as a first line strategy for patients at low-to-intermediate risk
for CAD.

In this category of patients, multimodality imaging is
assuming an increasingly important role, as outlined in the
latest ESC guidelines on the management of chronic coronary
syndromes (CCS) (2), with the aim of both improving the early
detection of significant asymptomatic CAD and making the
diagnostic workflow more efficient; for example, by avoiding a
large number of negative invasive coronary angiograms.

With the increasing availability of powerful computers and
large datasets, the implementation of artificial intelligence (AI)
in the current workflow of multimodality imaging for CAD
diagnosis appears a promising tool in aiding cardiologists
and radiologists in the growing demand of cardiovascular
imaging examinations.

In this review, we will explore the current AI applications
of multimodality imaging applied to CAD management,
highlighting the great potential and possible pitfalls of this new
frontier in CAD management.

BASIC CONCEPTS OF ARTIFICIAL
INTELLIGENCE

The term AI outlines the ambitious attempt to replicate with
a machine the most distinctive feature of the human being,
its ability to think. In order to simulate the characteristics of
human thought, an AI algorithm must be able to perform
tasks considered distinctive of a human being: to understand a
language, to recognize images, to identify known objects, to solve
problems, and to learn from its own mistakes.

The concept of AI was first mentioned in 1956 (3). At that
time its implementation in real life appeared to most people as
a distant futuristic utopia. However, AI applications are rapidly
entering everyday life (4–6) and the medical field, possibly
representing a new frontier for the evolution of our society.

AI algorithms can be developed with the increasing
availability of large amounts of data (“big-data”) and powerful
computational machines.

AI applications are based on two main methods: machine
learning (ML) and deep learning (DL).

ML is a technique that provides AI algorithms the
ability to learn when exposed to large datasets of correctly
classified features. Beyond the quality of the algorithm
itself, the quality of the characterization of the data and
their heterogeneity are crucial factors for the real-world
application of the algorithm. For this reason, ML applications
are first developed on training and validation datasets
and then tested in an independent dataset to verify their
adaptability for use outside the domain in which they
were developed.

Two main models of ML have been developed to date:
supervised and unsupervised learning. The main difference
between these two methods resides in the presence or absence
of a prefixed outcome. In supervised learning the AI model

navigates the dataset to find the best combination of features that
fits with the prefixed outcome; while in unsupervised learning
the algorithm simply tries to discover any potential consistent
pattern concealed in the dataset (6).

Examples of ML supervised learning methods are regression
analysis, support vector machines (SVM) and random forests
(RF); while unsupervised learning is funded on principal
component and cluster analysis approaches. A more detailed
explanation of these concepts goes beyond the scope of this
review (6).

DL can be considered a particular subset of ML that uses
multiple artificial neural networks to directly interrogate
datasets to make predictions. In the medical imaging
context, the most widely DL network is represented by
Convoluted Neural Network (CNN), a network of multiple
interconnected layers that roughly mimics the functioning of
the visual human cortex (6). In the context of cardiovascular
imaging both ML and DL have been applied. The former
has mainly been used to predict diagnostic or prognostic
outcomes and bases the analysis on datasets of manually
labeled image features; while the latter have directly been
applied to images in order to automatically obtain diagnoses
(6, 7).

Early-stage AI applications were deployed to automate time-
consuming medical tasks to reduce workload (e.g., to shorten
image acquisition, image analysis and reporting time); more
recently their development has been focused to more complex
duties, such as to perform autonomous diagnoses and risk-
stratification (8).

In this context, in recent years a new technique called
radiomics has emerged as a new tool to combine with traditional
AI applications to dig deep into the images to identify possible
risk predictors or unearth features that can lead to early
diagnoses. Radiomics is able to convert every voxel of a digital
medical image in a high amount of quantitative mathematical
imaging data that can be later analyzed by high-performance
computers and AI algorithms (9, 10). This analysis can aid the
human operator to see beyond the limit of its eye, revealing
textures concealed behind medical images; when combined
together, this information can be automatically quantified and
analyzed by AI with a process called “texture analysis” that can
lead to new diagnostic tools or prognostic models.

AI APPLICATIONS IN THE CLINICAL
WORKFLOW OF CAD PATIENTS

The most recent ESC guidelines on CCS base the choice of the
diagnostic tool for CAD detection on the pre-test individual
clinical likelihood of disease, in order to select the most
appropriate invasive or non-invasive diagnostic test to perform,
according to individual patient characteristics (2).

Figure 1 highlights AI applications deployed in all the steps
of the diagnostic definition of CAD, from pre-test risk definition
to their implementation in individual imaging methods used in
clinical practice for CAD assessment.
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FIGURE 1 | AI applications to the coronary artery disease (CAD) clinical workflow. The figure describes the stages of the clinical CAD workflow in which AI have found

applications. PTP, pre-test probability; CCTA, coronary computed tomography angiography; ICA, invasive coronary angiography.

AI APPLICATIONS IN CAD PRE-TEST
LIKELIHOOD DEFINITION

The last ESC Guidelines base the definition of the pre-test
individual likelihood of CAD from a pooled analysis of clinical
and demographic characteristics (i.e., age, sex, and the nature of
symptoms) of 15,815 patients symptomatic for chest pain (2).
Many clinical models that incorporate information on clinical
risk factors for CVD, resting ECG changes, or coronary artery
calcification have improved the identification of patients with
obstructive CAD and the Guidelines recognize these factors as an
integrated part of cardiovascular risk evaluation, to better identify
a personalized clinical likelihood of CAD.

In addition, imaging parameters such as coronary artery
calcium (CAC) score and epicardial adipose tissue (EAT)
quantification are assuming a role of increasing importance in
the quantification of cardiovascular risk.

In this paragraph, we will summarize the principal AI
applications developed for the automatic quantification of CAC
and EAT (Table 1).

AI Applications for Coronary Artery CAC
Scoring
CAC score is a well-established predictor of obstructive CAD,
particularly useful in identifying patients with high CV risk,
independent of clinical risk assessment scores.

CAC scoring requires dedicated software for semi-automatic
image segmentation and time demanding manual measurement
by trained experts on a dedicated ECG-gated cardiac CT. This

time-consuming approach is not feasible for everyday clinical
practice and hinders the application of CAC score on non-
targeted routine chest CT, despite the demonstration of its good
reliability on non-targeted CT exams (20), thus limiting the large-
scale application of CAC score as a screening method for CAD.

The application of AI algorithm for CAC scoring in

dedicated non-contrast-enhanced, ECG-gated CT scans is
feasible, as demonstrated by Sandstedt et al. (14), who

demonstrated an excellent comparability of a fully automated

CAC score AI application vs. a traditional semi-automated
measurement in 315 CAC-scoring dedicated CT scans (r = 0.935

for Agatston score assessment between the two methods).
Similarly, Wolterink et al. (12), developed a ML approach
that automatically quantified total patient and per coronary
artery calcifications and selected the most complex cases to
be reviewed by experts. This system led to an excellent intra-
class correlation coefficient between the manual and the AI
determined coronary artery CAC volume of 0.95. Similar
results were obtained for CAC volume for each epicardial
coronary artery.

CAC score analysis can express its full potential as a screening
tool if applied on a large scale, even in examinations not aimed
at cardiac analysis, as in the case of patients undergoing low-dose
chest CT for cancer screening or follow-up.

In this context, the application of ML and DL algorithms
has proven their efficacy in ensuring automatic measurement
of CAC score values in large datasets of low-dose, non-ECG
gated CT scans (>1,500 CT scans) performed for lung cancer
screening (11, 13).
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TABLE 1 | Main AI powered imaging methods for the definition of the pre-test likelihood of CAD.

References Summary Performance

CAC scoring

Takx et al. (11) Automated CAC scoring on

non-contrast-enhanced, non-gated chest CT

recorded for lung cancer screening

k = 0.85 for Agatston risk categories between the

automated and reference scores

Wolterink et al. (12) Automated per patient and per coronary artery CAC

scoring

High ICCs (0.98 for LAD; 0.69 for LCx and 0.95 for

RCA) for CAC volume scoring compared with

manual scoring

Lessmann et al. (13) Automated CAC scoring on low-dose chest CT

recorded for lung cancer screening

k coefficient = 0.9 for risk category assignment

based on per subject coronary artery calcium

Sandstedt et al. (14) Automated CAC scoring on non-contrast CT

images

High correlation (ρ = 0.935) between AI and

traditional Agatston score determination

van Velzen et al. (15) Automated CAC scoring automatically adapting to

non-contrast CT scans performed with multiple

acquisition protocols

ICCs of 0.79–0.97 for CAC scoring among different

scan types and k = 0.9 in patients’ risk stratification

according to Agatston score

Zeleznik et al. (16) Automated CAC scoring on CT scans performed

with multiple acquisition protocols and in different

clinical scenarios

High correlation (ρ = 0.92) with manually measured

CAC scores; accurate risk stratification for CVE

across CT scans acquired with different protocols,

in patients with different clinical presentations*

EAT analysis

Commandeur et al. (17) Automated EAT quantification High correlation (ρ = 0.97) with manual

quantification

Commandeur et al. (18) Prediction of hard CVE though a ML algorithm Higher AUC for the AI application compared to

clinical risk scores (0.82) and CAC score (0.77)

Eisenberg et al. (19) MACE prediction through a fully automated EFV and

attenuation quantification

Increased EAT volume and decreased EAT

attenuation were both independently associated

with MACE (HR 1.35 and 0.83, respectively)

AUC, area under the curve; CAC, Coronary artery calcium; CVE, cardiovascular events; EAT, epicardial adipose tissue; EFV, epicardial fat volume; HR, hazard ratio; k, correlation

coefficient; ICCs, intra class correlations; MACE, major cardiovascular events; ρ, Spearman correlation coefficient.

*In the context of both primary and secondary CAD prevention and both in patients with acute and chronic chest pain.

Based on the demonstration that AI applications were reliable
in quantifying CAC on CT scans not targeted for that scope, Van
Velzen et al. (15) demonstrated how a DL method can adapt
to different types of CT examinations and acquisition protocols,
if trained to do so. In this study, the authors elaborated a DL
algorithm composed of two consecutive CNN. The algorithm
was then trained on large datasets of more than 7,000 CT
acquired with different CT protocols. The DL application showed
a remarkable correlation with manual CAC scoring, both in
correctly identifying CAC among different scan types (internal
class correlation comprised between 0.79 and 0.97) and in
correctly risk stratifying patients according to their Agatston
score (k correlation for all test= 0.9).

Recently, a study by Zeleznik et al. (16) confirmed the
possibility to broadly use AI applications to use CTs acquired in
different clinical scenarios to screen for CAD using CAC score.
The authors first developed a DL application trained to identify
and quantify CAC based on manual segmentations performed
by expert CT readers on 1,636 cardiac CT scans. Two CNN
were trained for the correct localization and segmentation of the
heart and then tested among CT scans acquired with different
protocols. The DL application not only demonstrated high
correlation with manually measured CAC scores (rho = 0.92)
in a cohort of 5,521 patients, but accurately stratified the risk
for cardiovascular events across a large test cohort of 19,421

patients with different clinical presentations (from primary to
secondary CAD prevention and acute to chronic chest pain
settings) and different CT scan acquisition protocols (predicted
AUC for automated and manual CAC score event prediction
were 0.74 and 0.75, respectively, p= 0.544).

AI powered CAC score has the potential to become a
fundamental tool for risk stratification of patients with suspected
acute or chronic CAD, helping the clinician in correctly defining
the cardiovascular risk profile of each individual patient.

AI Applications for Epicardial and
Pericoronary Adipose Tissue
Characterization
Interest has grown toward the correct quantification and analysis
of the epicardial adipose tissue (EAT), namely the fat layer
located between the myocardium and the visceral pericardium
(Figure 2), due to the emerging evidence that identified its role
in atherosclerosis development and consequently in obstructive
CAD (21). An even more important role in atherosclerosis seems
to be played by the pericoronary adipose tissue (PCAT), the EAT
layer directly surrounding the coronary arteries.

In physiological conditions it is fundamental in maintaining
the homeostasis of the vascular wall; while when dysfunctional
(e.g., in inflammatory conditions) it plays a key role in
atherogenesis by the production of pro-inflammatory cytokines.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 September 2021 | Volume 8 | Article 736223

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Maragna et al. AI in CAD Multimodality Imaging

FIGURE 2 | Localization of epicardial adipose tissue at cardiac CT scan. The

figure depicts an example of visualization of the epicardial adipose tissue with

a cardiac CT scan. The asterisk identifies the hypodense area of adipose

tissue; while the arrow identifies the visceral pericardium.

Various cardiac imaging modalities are capable of quantifying
EAT, ranging from traditional echocardiography to CMR and
cardiac computed tomography. The latter has recently become
the key modality in this field due to its ability not only to visualize
and precisely quantify EAT, but also to assess the coronary
arteries and the PCAT simultaneously.

A paper by Antonopoulos et al. (22) demonstrated the
possibility to identify this inflammatory process with CCTA via
an imaging biomarker called “fat attenuation index (FAI).” The
authors showed that PCAT signal attenuation was a biomarker
of adipose tissue inflammation and also demonstrated that FAI
correlated with the presence of CAD and was associated with
stenosis >50%.

AI applications have been developed to automate the
processes of EAT and PCAT quantification and characterization.

Since conventional EAT measurement by semi-automated
software can be time-consuming, several AI applications have
been developed to shorten this process (17, 23, 24), proving
their ability to correctly quantify EAT from non-contrast cardiac
CT scans.

In 2020, two studies demonstrated the ability of AI powered
solutions to improve patients cardiovascular risk stratification
with the implementation of information regarding EAT in the
analysis of non-contrast cardiac CT.

Commandeur et al. (18) created a ML algorithm that
integrated clinical variables, CAC score and EAT quantification
to predict hard cardiovascular events (i.e., MI or CV death)
during a mean follow-up of 14.5 years in a large population
of 1,912 asymptomatic subjects from the EISNER trial. The AI
algorithm clearly outperformed both well-established clinical risk
scores and CAC score in CV event prediction.

Similarly, Eisenberg et al. (19) confirmed the predictive
value of the DL assessment of EAT volume as an independent

cardiovascular risk factor; additionally, they found that
the detection of EAT attenuation by their DL algorithm
demonstrated a significant inverse correlation with the
occurrence of cardiovascular events at follow-up.

Finally, two other studies used a combined AI powered
radiomics approach to demonstrate the incremental value
of assessing PCAT attenuation over traditional CCTA based
cardiovascular risk prediction tools (25, 26).

AI-powered detection of imaging biomarkers shows the
potential to impact individual cardiovascular risk stratification,
a fundamental process to guide the selection of the most
appropriate invasive or non-invasive diagnostic testing for
CAD patients.

AI APPLICATIONS FOR CAD DIAGNOSIS
AND RISK STRATIFICATION

Functional non-invasive ischemia testing is recommended in
patients with high PTP (i.e.,>15%) or known CAD; according to
the last ESC Guidelines, non-invasive functional imaging should
be primarily used to detect ischemia (2).

Myocardial ischemia can be detected through rest or
stress induced wall motion abnormalities (RWMA) with stress
echocardiograph and areas of reduced myocardial perfusion with
stress cardiac magnetic resonance (S-CMR) and with nuclear
radiology techniques.

In this section, we will summarize the principal AI
applications developed for functional imaging.

AI APPLICATIONS TO REST AND STRESS
ECHOCARDIOGRAPHY

Echocardiography is the most available imaging tool for
the management of CAD patients. As aforementioned, stress
echocardiography is recommended as one of the functional non-
invasive imaging tests of choice for the detection of new onset
coronary artery disease in the follow-up of CCS patients (2).

The impact of AI applications in echocardiography has
been steadily growing: first applications served to improve
image quality; gradually, the focus shifted to automatic
diagnostic echocardiographic window classification and
measures assessment (27).

AI solutions have mainly focused in reducing the high
inter-observer variability in the evaluation of regional
wall motion abnormalities (RWMA) with rest and stress
echocardiography (Table 2).

The detection of RWMAon rest echocardiograms was initially
attempted using ML methods, which demonstrated high levels
of accuracy in distinguishing between normal and infarcted
echocardiographic images by correctly identifying the presence
of RWMAs (28, 33).

Kusunose et al. (29) demonstrated the application of DL
in assessing RWMAs. The authors applied five different DL
models to the rest echocardiograms of 300 known CAD patients
and 100 age-matched controls. Known CAD patients had an
equal distribution of scar myocardium in the territory of left
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TABLE 2 | Main AI applications to rest and stress echocardiography.

References Summary Performance

Rest echocardiography

Raghavendra et al. (28) Automated detection of RWMAs on rest

echocardiograms to identify CAD

96% sensibility and specificity in detecting RWMAs

Kusunose et al. (29) Automated detection of RWMAs on rest

echocardiograms to identify CAD

The DL algorithm performed similar to expert

cardiologists in RWMAs detection (AUC 0.99 vs.

0.98; p = 0.15) and significantly outperformed the

ability of resident physicians (AUC 0.99 vs. 0.9;

p = 0.002

Stress echocardiography

Mansor et al. (30) Automated detection of RWMAs on rest and stress

echocardiograms to identify CAD

80–85% accuracy in classifying RWMAs

Chykeyuk et al. (31) Automated detection of RWMAs on rest and stress

echocardiograms to identify CAD

93% accuracy in classifying RWMAs

Omar et al. (32) Comparison of ML and DL algorithms for the

automated detection of RWMAs on rest and stress

echocardiograms to identify CAD

DL application demonstrated the best accuracy in

detecting RWMAs (75% accuracy), followed by the

RF (72%) and SVM (71%).

CAD, coronary artery disease; ML, machine learning; DL, deep learning; RF, random forest; RWMAs, regional wall motion abnormalities; SVM, support vector machine.

anterior descending, left circumflex and right coronary artery.
The five DLmodels performed similarly to expert cardiologists in
detecting RWMAs (AUC 0.99 vs. 0.98; p= 0.15) and significantly
outperformed the ability of resident physicians (AUC 0.99 vs. 0.9;
p= 0.002).

Initial attempts to apply AI to stress echocardiography were
made using techniques of supervised ML. The first examples
date back to 2008 and 2011, when Mansor et al. (30) used a
HiddenMarkovModel (HMM) to develop a cardiac wall segment
model for a normal and an abnormal heart and tested it on
rest, stress and combined rest and stress sequences in a relatively
small dataset of 44 dobutamine stress echocardiograms (DSE),
reaching an accuracy in classifying RWMA of 80–85% with the
analysis of combined rest and stress sequences. Few years later,
Chykeyuk et al. (31) improved this result using a Relevance
Vector Model in a dataset of 173 DSE reaching an accuracy
of 93%.

Omar et al. (32) compared different ML and DL algorithms in
detecting RWMAs at stress echocardiography. A DL application
using a CNN demonstrated the best accuracy by achieving a 75%
accuracy, followed by the RF (72%) and SVM (71%).

AI applications (both with ML and DL) to rest and
stress echocardiography have shown good results in detecting
RWMAs for CAD diagnosis. In particular, they demonstrated
high accuracy both with rest and stress images, improving
on the high inter-observer variability experienced in human
evaluation. Further developments and test cohorts are required
for the wide-spread clinical implementation of AI in real-life
echocardiographic workflow for CAD diagnosis.

AI APPLICATIONS TO STRESS CARDIAC
MAGNETIC RESONANCE

S-CMR is a powerful diagnostic tool that allows a comprehensive
evaluation of known or suspected CAD patients.

Different from other techniques, S-CMR combines the
evaluation of global cardiac function with an accurate and
reproducible definition of regional myocardial viability by
combining information on cardiac muscle function, tissue
characterization, persistent and inducible ischemia (34).

Below, we will summarize AI applications to S-CMR for the
assessment of cardiac function, tissue characterization and rest
and stress myocardial perfusion (Table 3).

Cardiac Function
The first AI applications to S-CMR were focused on semi-
automated myocardial segmentation on cine CMR images, in
order to speed-up the manual time-consuming process of endo-
and epicardial border definition. Many applications have sought
to automate the analysis of cine CMR images (36, 48).

Although highly accurate, the majority of these applications
were tested on small training datasets, thus limiting their real-
life applicability. Bai et al. (35) overcame this limitation by
applying a DL algorithm for myocardial segmentation in the
UK Biobank, thus training the CNN on the cine CMR images
of more than 4,500 patients. When applied on a test set of
600 patients, the DL application showed excellent correlation
with manual measurements, with a mean absolute difference of
∼6mL for left ventricular end-diastolic volume (LVEDV), 5mL
for left ventricular end-systolic volume (LVESV) and 7 g for left
ventricular mass.

Tissue Characterization
The correct identification and quantification of the areas of late
gadolinium enhancement (LGE) on CMR images portends a
well-established prognostic role in CAD patients (49).

Some authors have successfully applied DL algorithms to
perform automated LGE quantification (Figure 3).

Xu et al. (38) proposed an end-to-endDL algorithm composed
of three function layers capable of detecting the MI area at the
pixel level, thus automatically obtaining the extension, position,
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TABLE 3 | Main AI applications to stress cardiac magnetic resonance (S-CMR).

References Summary Performance

Assessment of cardiac function

Bai et al. (35) Automated myocardial segmentation using a DL

algorithm trained in a huge dataset (>4,500

subjects)

Excellent correlation with manual measurement

(Dice’s coefficient 0.94 for the LV cavity, 0.88 for the

LV myocardium and 0.90 for the RV cavity)

Curiale et al. (36) Automated LV quantification using DL Good accuracy for myocardial segmentation (Dice’s

coefficient 0.9); high correlation index for LVEDV and

LVESV (0.99), LV EF (0.95), and for SV and CO

(0.93).

Tissue characterization

Kotu et al. (37) Arrhythmic risk stratification of CAD patients

through the radiomic analysis of the scar tissue

Highly accurate (94%) classification of CAD patients

in high- and low arrhythmic risk groups

Xu et al. (38) Automated detection of MI 94% overall accuracy in detecting the MI area

extension, position and shape

Larroza et al. (39) Distinction of acute and chronic MI on CMR-LGE

and non-enhanced CMR through an ML model

combined with radiomics

High AUC, sensitivity and specificity in the

distinction between acute and chronic MI both on

CMR-LGE (0.86, 0.81, and 0.84, respectively) and

on non-enhanced CMR (0.82, 0.79, and 0.80,

respectively)

Larroza et al. (40) Automated identification of myocardial transmural

scar on non-enhanced CMR

Sensitivity of 92% for transmural scar identification

Baessler et al. (41) Automated scar detection on non-enhanced CMR

images with a combined ML and radiomics

algorithm

Identification of five independent texture features,

which allowed scar identification. The best features

combination allowed an AUC of 0.93 and 0.92 for

diagnosing large and small MI, respectively

Moccia et al. (42) Comparison of two DL scar segmentation protocols

for automated scar detection on CMR-LGE images

88% median sensitivity and 71% DICE similarity

coefficient by the protocol that limited the analysis

to the myocardial region.

Zabihollahy et al. (43) Semiautomated DL method for LV myocardial scar

segmentation from 3D CMR-LGE images.

94% DICE similarity coefficient for LV myocardial

scar segmentation

Zhang et al. (44) Automated detection, localization and quantification

of myocardial fibrosis on non-enhanced CMR

No difference between non-enhanced cardiac cine

and CMR-LGE analyses: number of scar segments

(p = 0.38), mean per-patient scar area (p = 0.27)

percentage of damaged myocardial tissue

(p = 0.17)

Ma et al. (45) Combination of radiomics and T1 mapping for the

automated identification of MVO

Radiomics combined with T1 values compared to

T1 values alone better identified MVO (AUC 0.86)

and showed higher predictive value for LV

longitudinal systolic myocardial contractility recovery

(AUC 0.77).

Perfusion S-CMR

Scannell et al. (46) Automated processing and segmentation

myocardial perfusion data on S-CMR

High accuracy compared to manual processing and

segmentation (Dice similarity coefficient for

myocardial segmentation 0.8)

Xue et al. (47) Automated assessment of MBF on S-CMR High accuracy compared to manual analysis in

myocardial segmentation (Dice similarity coefficient

0.93). No difference in the per-sector MBF

identification (p = 0.92)

CAD, coronary artery disease; CO, cardiac output; EF, ejection fraction; LGE, late-gadolinium enhancement; LV, left ventricle; LVEDV, left ventricle end diastolic volume; LVESV, left

ventricle end systolic volume; MBF, myocardial blood flow; MI, myocardial infarction; MVO, microvascular obstruction; SV, stroke volume; SVM, support vector machine.

and shape of the MI area for each of the 114 patients analyzed,
with a classification accuracy of 94%.

Two other authors developed different DL algorithms, both
obtaining high DICE similarity coefficients in LGE quantification
when compared to manual segmentation. In the first case,
Moccia et al. (42) successfully modified and trained an existing
DL application based on two CNN (ENet) to segment scar

tissue on enhanced CMR images of 30 patients with known
CAD. In the second case, Zabihollahy et al. (43), demonstrated
an accurate three-dimensional segmentation of myocardial
fibrotic tissue by using a semiautomated method using a
3D CNN.

Albeit promising, these studies are still based on small cohorts,
thus limiting the applicability in the routine S-CMR workflow.
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FIGURE 3 | Tissue characterization with Cardiac Magnetic Resonance (CMR).

The figure shows an example of tissue characterization in a patient with a

history of antero-septal myocardial infarction. (A) Depicts a transmural

myocardial scar (asterisks) in the antero-septal region with concomitant

evidence of subendocardial areas of microvascular obstruction (MVO, arrows).

(B) Shows the automatic identification and quantification of late gadolinium

enhancement and the semi-automatic identification of MVO areas on CMR

images.

Zhang et al. (44) successfully developed a DLmodel capable to
detect, localize and quantify myocardial areas of fibrosis in non-
enhanced cine CMRof 212 CADpatients and 87 healthy controls.
Notably, the authors did not find any difference between non-
enhanced cardiac cine and LGE CMR analyses in the number
of scar segments (p = 0.38), in the mean per-patient scar area
(p = 0.27), and in the percentage of damaged myocardial tissue
(p = 0.17). If confirmed on larger sample sizes, the ability of an
AI model to correctly quantify myocardial LGE on unenhanced
cine CMR images paves the way to the possibility to perform
tissue characterization in patients with end stage renal disease on
dialysis, which represents a contraindication to perform contrast
enhanced CMR.

Other authors developed AI applications capable of assessing
myocardial viability and scar area without the use of LGE with
the combination of traditional AI models and radiomics. In
two consecutive studies Larroza et al. (39) demonstrated the
possibility to use a support vector machine (SVM) combined
with radiomics texture analysis to distinguish between acute
and chronic MI with similar sensitivity and specificity between
analyses conducted on enhanced and non-enhanced cine CMR

images and to identify non-viable myocardial segments (i.e.,
segments with LGE ≥ 50% transmural extension) in non-
enhanced cine MRI sequences with a sensitivity of 92% (40).

Similarly, Baessler et al. (41) used a ML algorithm to select
five independent texture analysis features to differentiate between
ischemic scar and normal myocardium on non-enhanced cine
MR images of 120 patients with chronic or subacute MI.

A recent study by Ma et al. (45) has also proven the ability
of texture analysis combined with native T1 mapping values
to better identify microvascular obstruction (MVO, Figure 3)
compared to T1 mapping alone in a small group of patients with
recent ST-segment-elevation MI. Combined radiomics features
and native T1 values also provided a higher predictive value
for LV longitudinal systolic myocardial contractility recovery
compared to T1 values in a subset of patients that underwent
6-months follow up CMR.

Finally, Kotu et al. (37) provided an interesting proof of
concept of how radiomics can help in CAD risk stratification.
The authors successfully created a radiomic algorithm able to
perform a correct risk-stratification for the occurrence of life-
threatening arrhythmias in 34 known CAD patients on the basis
of the radiomic analysis of the scar tissue.

Albeit deeply interesting, radiomics studies applied to CMR
are still based on small datasets and currently does not appear
feasible for large-scale routine use. Further investigations on
larger CMR datasets are needed to broaden the spectrum of use.

Perfusion S-CMR
S-CMR can detect hemodynamically significant CAD through
the assessment of myocardial ischemia through the evaluation
of perfusion defects. In routine clinical practice, the analysis of
S-CMR images is performed qualitatively, through the visual
assessment of S-CMR images by an expert reporting physician.

First pass gadolinium enhanced CMR perfusion imaging has
shown the potential to delineate a fully quantitative assessment of
myocardial blood flow (MBF). Fully automatic MBF maps have
been validated against gold standard perfusion techniques, such
as positron emission tomography (50).

Albeit highly accurate in CAD diagnosis (51), quantitative S-
CMR perfusion is time consuming and therefore restricted to
research purposes (52).

In recent years, innovative AI applications have been
developed to allow fully automated perfusion mapping
approaches to enter clinical practice.

Preliminary work by Scannell et al. (46) successfully developed
a DL algorithm to fully automatize image processing for
myocardial perfusion assessment.

More recently, Xue et al. (47) validated a CNN model on
more than 1,800 CMR rest and stress scans from 1,034 patients.
The DL model showed excellent mean Dice similarity coefficient
ratio of automatic and manual myocardial segmentation (0.93 ±
0.04) and did not differ significantly from per-sectorMBFmanual
assessment (p = 0.92). The same group of authors demonstrated
(53) that MBF and myocardial perfusion reserve (MPR, i.e., ratio
of stress to rest MBF) automatically assessed using their DL
model were independently associated with death and MACE in
a cohort of >1,000 patients.
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TABLE 4 | Main AI applications to nuclear imaging for the detection of ischemia.

References Summary Performance

Identification of patients with obstructive CAD

Arsanjani et al. (56) Comparison of automated quantification of

myocardial perfusion SPECT to expert visual

analysis

AUC for TPD was significantly better compared to

visual evaluation of two expert analysis (0.91 vs.

0.87 and 0.89, P < 0.01).

Arsanjani et al. (57) Comparison of automated quantification of

myocardial perfusion SPECT integrated with clinical

information to expert visual analysis and traditional

TPD quantification

ML diagnostic accuracy (87%) was similar to Expert

1 (86%), but superior to TPD quantification (83%)

and Expert 2 (82%) (P < 0.01).

Betancur et al. (58) Automated prediction of obstructive CAD by DL

algorithm on SPECT as compared with total

perfusion deficit (TPD)

DL AUC for disease prediction was higher than for

TPD (per patient analysis: 0.80 vs. 0.78; per vessel

analysis: 0.76 vs. 0.73: p < 0.01)

Otaki et al. (59) Automated prediction of obstructive CAD by

externally validated DL algorithm on SPECT as

compared to expert visual analysis and with total

perfusion deficit (TPD)

DL AUC for obstructive CAD detection was higher

than for TPD and visual assessment (0.80 vs. 0.73

and 0.65, respectively). The algorithm was

self-explainable and externally validated

Prognostic evaluation

Arsanjani et al. (60) Application of ML algorithm to SPECT analysis to

predict early revascularization in patients with

suspected CAD

The ML algorithm showed similar sensitivity for

prediction of revascularization to expert visual

assessment (74% for both) with a better specificity

he specificity of ML (75 vs. 67%, P < 0.05)

Betancur et al. (61) MACE risk prediction with a ML application

integrated with clinical and SPECT imaging features

3-years MACE prediction by ML application

combined with clinical data outperformed ML with

imaging data alone (AUC: 0.81 vs. 0.78) and

showed also higher predictive accuracy compared

with expert evaluation and automated TPD (AUC:

0.81 vs. 0.65 vs. 0.73, respectively)

Hu et al. (62) Efficacy of per-vessel prediction of early

revascularization compared among ML application,

expert evaluation and standard TPD quantification

The per-vessel and per-patient AUC of early

revascularization prediction (0.79 and 0.81,

respectively) was higher than by TPD (p < 0.001)

and outperformed qualitative experts’ interpretation

AUC, area under the curve; CAD, coronary artery disease; SPECT, single positron emission tomography; TPD, total perfusion deficit.

This large, multicenter study paves the way for automatic
assessment of MBF and MPR from quantitative CMR perfusion
mapping to enter the routine diagnostic workflow of patients
undergoing S-CMR.

AI APPLICATIONS TO NUCLEAR IMAGING
FOR THE DETECTION OF ISCHEMIA

Nuclear radiology has been one of the first imaging
methods applied to ischemia assessment in CAD patients
and still represents the most widely used test to detect
myocardial ischemia.

Single-photon emission computed tomography (SPECT) and
positron emission tomography (PET) represent the two main
tools of nuclear imaging applied to cardiology.

Despite its relative low cost and discrete accuracy in detecting
CAD, the detection of ischemia by SPECT analysis mostly relies
on qualitative methods and appears prone to possible CAD
underestimation, especially in patients with non-obstructive
multivessel coronary artery disease. PET is able to provide
robust quantitative analysis of myocardial blood flow and can
detect microvascular ischemia. However, the utilization of PET

analysis is limited by its high technical complexity and high
costs (54).

Apart from those aimed at image pre-processing and
segmentation (55), the major AI applications to myocardial
perfusion SPECT focused on boosting the power of
cardiac nuclear imaging in two principal tasks: to identify
patients with obstructive CAD and to define their prognosis
(Table 4).

In 2013, Arsanjani et al. published two different studies on
relatively large populations. The first one (56) demonstrating
that a fully automated quantification of myocardial perfusion
SPECT was equivalent on a per-patient level and superior
on a per-vessel level, in detecting significant coronary artery
stenosis (i.e., ≥ 70%) when compared with expert visual
analysis. The second paper (57) analyzed the application
of a ML LogitBoost model which integrated quantitative
perfusion and clinical data to a dataset of 1,181 myocardial
perfusion SPECTs. The AI application significantly outperformed
the visual qualitative analysis of two expert readers who
were provided with the same imaging, quantitative, and
clinical data.

More recently, Betancur et al. (58) introduced the possibility
to use a DL algorithm for the analysis of myocardial perfusion
SPECT. The authors trained their application on a large
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dataset of more than 1,500 myocardial perfusion SPECT polar
maps. As previously demonstrated for the ML applications
proposed by Arsanjani et al., the DL algorithm improved the
identification of patients with obstructive CAD, compared to
standard clinical evaluation.

Finally, Otaki et al. (59) recently introduced a novel DL
algorithm for the detection of obstructive CAD following
SPECT myocardial perfusion imaging. The AI application was
first developed in a dataset of more than 2,000 patients and
then externally tested in 555 patients with excellent AUC
compared to traditional TPD quantification and expert visual
assessment (AUC 0.80, 0.73, and 0.65, respectively). External
validation of AI applications represents a fundamental step to
obtain the fast implementation of AI algorithms in clinical
practice and will soon be required for every newly developed
AI algorithm.

ML and DL models have also been applied to myocardial
perfusion SPECT to improve its prognostic value.

Arsanjani et al. (60) demonstrated how aML application could
improve the prediction of early revascularization in patients
with suspected CAD undergoing perfusion SPECT. The authors
developed a ML LogitBoost model that integrated clinical data
and quantitative features derived from perfusion SPECT. When
tested on 713 rest perfusion SPECT scans, the ML application
showed comparable or better performance with respect to expert
readers in predicting early revascularization.

Recently, Hu et al. (62) provided a more robust example of
a ML algorithm able to perform a per-vessel prediction of early
coronary revascularization (i.e., within 90 days) after SPECT
myocardial perfusion imaging. To do so, the authors developed
and tested ∼2,000 patients using a ML algorithm that integrated
multiple clinical, stress test and SPECT imaging variables and
compared its performance with standard quantitative SPECT
analysis (i.e., total perfusion deficit, TPD) and expert evaluation.
The LogitBoost application outperformed automatic myocardial
perfusion quantitation by TPD and expert’s interpretation.

Finally, Betancur et al. (61) developed a robust ML application
integrated with clinical and imaging features. This model
demonstrated high predictive accuracy to determine the risk
of major cardiovascular adverse events (MACE) in a large
population of 2,619 patients followed for∼3 years. The algorithm
demonstrated its superiority over all existing visual or automated
perfusion assessments.

AI APPLICATIONS FOR CORONARY
COMPUTED TOMOGRAPHY
ANGIOGRAPHY

Initial applications of CCTA in CAD management were on
the anatomical detection or exclusion of obstructive CAD,
with CCTA progressively assuming the role of gatekeeper to
unnecessary ICAs. Due to its high negative predictive power,
CCTA has been indicated as the preferred test to rule out CAD
in low to intermediate clinical PTP patients by the most recent
ESC Guidelines on the management of CCS (2).

However, CCTA has rapidly advanced beyond the qualitative
anatomical assessment of the presence of obstructive CAD and
is now capable of offering a complete anatomical and functional
characterization of CAD, thus providing important diagnostic
and prognostic (63) information for patients’ management.

In this section, we will review the principal AI applications
developed for the anatomical and functional assessment of CAD
with CCTA (Table 5).

Coronary Stenoses Grading
The degree of luminal stenosis and the localization of CAD with
CCTA has a defined prognostic role (63). AI applications are
trying to automate and standardize the process of coronary image
reconstruction, segmentation and stenosis degree quantification,
which currently relies on visual assessment and is troubled by
high inter operator variability (79). Recently AI applications have
also focused to significantly shorten reporting time (80), also with
non-optimal images, i.e., in the presence of heavy calcifications or
in the case of scarce image quality (81).

In 2011, Kelm et al. (64) developed one of the first examples
of an AI algorithm capable of correctly analyzing CCTA images
to detect, grade and classify as significant coronary stenoses
caused by all types of plaques. The ML algorithm was composed
of a multistep approach that included automatic centerline
verification and lumen cross section estimation and showed good
values of sensitivity and specificity (i.e., 95 and 67%, respectively)
when compared with expert qualitative evaluation. Importantly,
the time required for the ML algorithm to analyze each case was
only 1.8 s.

Later, Kang et al. (65) used a different ML algorithm, which
showed an even improved accuracy in CAD detection, despite
a further reduction in the time required for analysis (only 1 s
per case).

In 2019, Hong et al. (67), validated a DL algorithm with CNN
across a dataset of 156 CCTAs. The application automatically
performed coronary lumen and plaque segmentation and
computed minimal luminal area (MLA), percent diameter
stenosis (DS) and percent contrast density difference (CDD)
with excellent correlation to expert readers (r = 0.984 for
MLA; r = 0.957 for DS; and r = 0.975 for CDD, p < 0.001
for all).

Recently, Muscogiuri, et al. (68) demonstrated good results
of a DL CNN in classifying CCTAs examinations in the
correct category of an existing reporting system (namely the
Coronary Artery Disease Reporting and Data System, CAD-
RADS) (Figure 4). If confirmed on larger datasets, this study
paves the way to the use of a CNN algorithm in clinical practice to
rule out the presence of CAD in a relatively short time, reducing
referring physicians’ workload and helping them in focusing only
on pathological CCTAs.

An alternative approach for assessing the presence of
hemodynamically significant coronary artery stenosis is the
one proposed by Zreik et al. (66), who demonstrated that
a DL algorithm could perform an automatic analysis of the
LV myocardium in a single CCTA scan acquired at rest,
without assessment of the anatomy of the coronary arteries, to
identify patients with functionally significant coronary artery
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TABLE 5 | Main AI applications to Coronary Computed Tomography Angiography (CCTA).

References Summary Performance

Coronary stenoses grading

Kelm et al. (64) Automated ML detection, grading and stenoses grading on

CCTA images

Good sensitivity and specificity (95 and 67%) compared to

expert evaluation to correctly detect significant coronary

artery stenoses

Kang et al. (65) Automated ML detection of coronary artery stenoses on

CCTA images

High sensitivity (93%), specificity (95%), and accuracy (94%),

with AUC (0.94) for coronary artery stenoses detection

compared to experts’ visual assessment

Zreik et al. (66) Automated LV myocardium analysis to identify patients with

significant coronary artery stenoses

The DL application correctly performed LV segmentation

(Dice similarity coefficient 0.91) and identified patients with

significant coronary artery stenosis with an AUC value of 0.74

Hong et al. (67) Automated DL coronary artery stenoses grading (plaque

segmentation, MLA and percent DS quantification) on CCTA

images

Excellent correlation of ML performance to expert readers

(ρ = 0.984 for MLA; ρ = 0.957 for DS p < 0.001 for all)

Muscogiuri et al. (68) Automated DL classification of coronary artery stenoses

according to CAD-RADS

The DL algorithm showed its best performance in

differentiating between CADRADS 0 (i.e., no coronary

atherosclerosis) vs. CADRADS > 0 (i.e., detectable coronary

atherosclerosis) with a sensitivity of 66% and a specificity of

91%, compared to experts’ analysis

Plaque phenotype characterization

Dey et al. (69) Automated distinction between calcified and non-calcified

plaques

Strong correlation between automated plaque analysis and

expert readers (ρ = 0.94, for NCP volume; ρ = 0.88, for CP

volume; ρ = 0.90 for NCP and CP composition)

Kolossváry et al. (70) Identification of radiomic features associated to the presence

of NRS in coronary artery plaques

Identification of NRS through radiomic analysis with an AUC

> 0.92. One radiomic feature reached a remarkable AUC of

0.92 for NRS identification

Masuda et al. (71) Automated ML algorithm for the detection of fibrous or

fibro-fatty coronary artery plaques

The ML algorithm identified high risk coronary plaques better

than intravascular ultrasound evaluation (AUC 0.92 vs. 0.83)

Zreik et al. (72) DL application to perform a complete anatomical coronary

artery assessment (stenosis grading associated to plaque

features analysis)

Good accuracy in plaque phenotype characterization (AUC

0.77) and in determining its anatomical significance (i.e.,

stenosis degree above or below 50%, AUC 0.80)

Han et al. (73) Automated ML algorithm to identify RPP The ML model that included clinical variables, qualitative and

most importantly quantitative plaque features showed the

highest performance in identifying patients at risk of RPP

(AUC 0.83)

Choi et al. (74) DL application to perform a complete anatomical coronary

artery assessment (stenosis grading associated to plaque

features analysis) and CAD-RADS classification

Accuracy compared to three expert readers’ analysis for

stenoses >70%: 99.7%; accuracy for stenoses>50%:

94.8%. Excellent concordance in CAD-RADS classification

with expert readers: agreement within one CAD-RADS

category: 98% exams per-patient; 99.9% vessels on a

per-vessel basis.

AI powered CT-FFR

Coenen et al. (75) Definition of the diagnostic accuracy of a ML application to

CT-FFR

In the per-vessel analysis, ML-CT-FFR improved diagnostic

accuracy by 20% compared to CTA (from 58 to 78%). The

per-patient accuracy improved by 14% compared to CTA

(from 71 to 85%). Seventy-three percent false-positive CTA

results were correctly reclassified by ML-CT-FFR

Nous et al. (76) Feasibility of ML-CT-FFR application in patients with DM Overall diagnostic accuracy of ML-CT-FFR in diabetic patients

was higher (83%) than in non-diabetic patients (75%); AUC

0.88 and 0.82 for diabetic and non-diabetic patients,

respectively

Baumann et al. (77) Differences in ML-CT-FFR application between patients of

different genders

ML-FFR-CT equally performed in both genders, not showing

significative difference in the AUC between males (0.83) and

females (0.83)

Tesche et al. (78) Feasibility of ML-CT-FFR application in the presence of heavy

calcifications

No statistically significant differences in the diagnostic

accuracy, sensitivity, or specificity of ML-CT-FFR were

observed across CT scans of patients attributed to different

Agatston score categories

CAD-RADS, Coronary Artery Disease Reporting and Data System; DM, diabetes mellitus; CP, calcified plaque; DS, diameter stenosis; FFR, fractional flow reserve; MLA, minimal luminal

area; NCP, non-calcified plaque; NRS, Napkin ring sign; RPP, rapid plaque progression.
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FIGURE 4 | AI applications to cardiac CT. The figure depicts two examples of AI workflow applied to the automatic analysis of coronary artery stenoses by Coronary

Computed Tomography Angiography (CCTA). (A) Schematizes the algorithm proposed by Zreik et al. (72) and composed of a 3D convolutional neural network (CNN)

used for coronary artery features extraction and a subsequent recurrent neural network for a two-task classification of plaque phenotype and stenosis degree. (B)

Schematizes the algorithm applied by Muscogiuri et al. (68) for the fully automatic CAD-RADS classification of CCTA scans with a CNN.

stenosis with an AUC value of 0.74. When applied to a
dataset of 100 CCTAs with intermediate grade coronary artery
stenosis (82), the implementation of this DL application to the
quantification of stenosis degree outperformed the traditional
method of anatomical stenosis evaluation alone (AUC 0.76 and
0.68, respectively).

Plaque Phenotype Characterization
One of the key advantages of CCTA for the assessment of CAD is
the ability to fully characterize coronary plaque phenotype.

Not all coronary lesions imply the same cardiovascular risk.
In particular, the detection of prevalent fibrotic composition and
other specific plaque features at CCTA (Figure 5) have been
associated with an increased risk of cardiovascular events (83).
These high-risk features are represented by spotty calcifications,
positive remodeling, low attenuation, and the napkin-ring sign
(NRS) (83).

AI applications have been developed to automate this process,
in order to provide the clinician a full set of information to guide
patient management.

One of the first AI approaches demonstrated the ability of
an automated algorithm to correctly classify calcified and non-
calcified lesions compared to expert manual quantification (69).

Masuda et al. (71) applied a ML histogram algorithm for the
automatic detection of fibrous or fibro-fatty coronary plaques
with CCTA. The ML method significantly outperformed the
conventional CT parameters in the identification of high-risk
plaques, when compared to intravascular ultrasound (IVUS)
evaluation (AUC 0.92 vs. 0.83, respectively; p= 0.001).

Another feature correlated with high risk of cardiovascular
events is rapid plaque progression (RPP), defined as an
annual progression of percentage atheroma volume ≥1.0%.
The study by Han et al. (73) provided an interesting
demonstration of how a ML framework that incorporated
clinical information together with qualitative and quantitative
CCTA plaque parameters could better discriminate at risk
patients compared to traditional risk scores and also ML
models that incorporated only clinical or clinical and qualitative
variables together.

This and other ML integrated clinical and CCTA
parameter risk scores have shown the potential
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FIGURE 5 | High risk features of coronary artery plaques. The figure shows

clinical examples of high-risk plaque feature. (A) Depicts an example of a

Napkin-ring sign. The asterisk identifies the hypodense necrotic core; the

arrow identifies the hyperdense ring-like thin cap. (B) Depicts a high-risk

coronary plaque with spotty calcifications and low attenuation (i.e., attenuation

<30 HU). (C,D) Depict a coronary artery plaque with positive remodeling (i.e.,

a positive ratio between diameter of the vessel outside the plaque and its

internal diameter) in short and long axis, respectively.

to clearly outperform traditional CCTA risk score
evaluations (73, 84) when applied in large cohorts with
long follow-up.

In the future, the application of these AI empowered risk
scores will enhance risk prediction in CAD patients, ultimately
boosting the power of CCTA and other imaging exams.

Zreik et al. (72) developed a comprehensive anatomical DL
application trained to analyze both the presence of significant
CAD (i.e., the presence of stenoses with ≥50% of luminal
narrowing) and to classify the phenotype of coronary artery
plaques. To do so, the DL application was structured with
a 3D CNN used to extract features of each coronary artery
and with a recurrent neural network used to perform the two
simultaneous classification tasks (Figure 4). The algorithm was
validated on CCTA scans of 163 patients and reached good levels
of accuracy in plaque phenotype characterization (0.77) and in
determining its anatomical significance (0.80). If validated on
larger cohorts, this comprehensive approach allows the clinician
tomaximize the anatomical evaluation of coronary artery plaques
with CCTA.

Recently also Choi et al. (74) (CIT) proposed a new AI
application capable of performing a comprehensive anatomical
plaque quantification with impressive value of accuracy when
compared to the analysis of three expert readers (accuracy
for stenoses >70%: 99.7%; accuracy for stenoses>50%: 94.8%).
Notably, the algorithmwas also able to classify patients according
to the CAD-RADS score with an excellent concordance with
expert readers agreement within one CAD-RADS category

in 98% exams per-patient and 99.9% vessels on a per-
vessel basis.

Another innovative approach to coronary plaque
characterization has been represented by the combination
of radiomics with AI applications, which has shown the
potential to provide useful information on high-risk coronary
plaque features.

Kolossvary et al. (70) detected more than 400 radiomic
features that significantly differed between plaques with and
without napkin-ring sign, reaching an AUC > 0.8. Among these,
one parameter called “short run low gray-level emphasis” reached
an impressive AUC of 0.92 in NRS plaque identification.

The same authors expanded the previous observation by
demonstrating that CCTA radiomics could identify invasive
and radionuclide imaging markers of plaque vulnerability
significantly better than traditional quantitative and qualitative
CT parameters (85).

AI FOR FUNCTIONAL ISCHEMIA
ASSESSMENT BY CARDIAC CT

AI Powered CT-FFR
Traditional CCTA techniques only provide anatomical
assessment of CAD. In cases of coronary atherosclerosis
of uncertain hemodynamic significance, current guidelines
support the use of an ischemia test to assess the need for
revascularization (2).

In recent years, the development of a non-invasive method
to calculate CT-derived fractional flow reserve has permitted
the evaluation of the anatomical and functional hemodynamic
significance of coronary artery lesions (86–90). This approach
has been validated in numerous studies (86, 91) against
gold standard invasive FFR and resulted in high diagnostic
accuracy in detecting hemodynamically significant stenosis
and in determining their prognostic impact (92), especially
when combined with information regarding coronary plaque
phenotypes (54, 93).

Importantly, Rabbat et al. (94) studied 431 patients who
underwent a CCTA alone vs. CCTA + FFRCT diagnostic
pathway and demonstrated the safe deferral of ICA in patient
with stable CAD who underwent the CCTA + FFRCT strategy.
FFRCT was feasible with a conclusive result in >90% of patients.
Among those who deferred ICA, there were no major adverse
cardiac events. A high proportion of those who underwent ICA
were revascularized, resulting in higher diagnostic ICA yield and
more efficient utilization of catheterization lab resources.

Multiple AI applications have been developed in recent years
to automate the assessment of CT-FFR (75, 95).

Notably, the application of ML to CT-FFR has been clinically
validated in a retrospective trial called MACHINE Registry
that involved five different centers in Europe, USA and Asia.
The ML based computation of CT-FFR outperformed CCTA in
terms of diagnostic accuracy; when compared to invasive FFR,
ML CT-FFR showed 78% accuracy in comparison to the 58%
accuracy of visual CTA alone and the AUC for the detection of
hemodynamically significant coronary artery stenosis favored the
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ML CT-FFR approach (AUC 0.84 vs. 0.69 for CCTA alone). ML
CT-FFR was capable of correctly reclassifying 73% false-positive
CTA results.

The ML application to CT-FFR in the MACHINE registry
were later confirmed in multiple sub-studies that investigated
their reproducibility in different clinical scenarios: in particular,
ML CT-FFR proved its feasibility in the presence of heavy
coronary calcifications (78); in patients with diabetes mellitus
(76) and between genders (77).

Poor image quality and high heart rate represent potential
limitations to CT-FFR (96).

CT Perfusion Analysis
The study of myocardial perfusion through cardiac CT is a
powerful and promising tool, since it can provide combined
anatomical and functional information for every coronary
territory with a single test. CT perfusion (CTP) is able to detect
obstructive CAD better than CCTA alone (97) and is non-
inferior to CMR in the functional evaluation of hemodynamically
significant coronary artery stenosis (98).

Despite the great potential of this technique, to date only a
few examples of AI applications to CTP exist in the literature
and are based on the ML algorithm’s ability to assess defects of
myocardial perfusion fromCTA images acquired at rest (99, 100).

In the future, AI applications have the potential to
dramatically impact the field of CTP with applications focused
on automatic myocardium segmentation and perfusion defect
identification. A particular advantage of this algorithm will be
the possibility to directly correlate the presence of anatomically
detectable obstructive CAD with the functional evaluation of
specific lesions with CTP sequences.

This approach has particular potential in complex
CCTAs analysis, for example in the presence of previously
revascularized vessels.

DISCUSSION

The implementation of AI applications to the multimodality
imaging applied for the diagnosis and risk stratification of
CAD patients represents a new frontier in cardiology. The
implementation of AI in the clinical workflow will impact
different aspects of the routine clinical workflow.

First, it will offer the possibility to shorten reporting
time and to provide pre-reading evaluation of normal
exams, to save radiologists and cardiologists time only
pathological examinations.

Secondly, it will reduce inter-observer variability in the
evaluation of exams. Moreover, it will provide more accurate
models of prognostication (7), giving the clinician the possibility
to tailor the treatment to the single patient. In this context,
unsupervised learning will probably allow to enable the
so-called “precision cardiology” by allowing the precision
phenotypization of patients, allowing the cardiologist to
go beyond the traditional monolithic disease concepts and
tailor prognostication and therapy on the single patient
features (101).

To spread the application of AI models in real-world clinical
practice, however, some potential limitations, pitfalls and ethical
considerations need to be considered (102).

As a first limitation, we must acknowledge the vast majority
of AI applications have been validated in single-center studies
with a limited number of cases and is therefore still restricted
to research settings. As aforementioned, in fact, a fundamental
principle of AI models is represented by the availability of huge
sets of high-quality data for the algorithms to be developed,
trained and tested.

In the field of cardiovascular imaging, the availability of
large datasets from different centers is particularly crucial to
overcome the biases currently present in the development of
AI applications.

A first bias is represented by the great variability in terms
of exams quality and interpretation (for example in the field of
echocardiography) and in the lack in homogeneity in acquisition
protocols and machine vendors (for example in the field of
cardiac MRI). Therefore, a crucial step to assure AI algorithms
generalizability is to perform their development on datasets
containing information from machines from multiple vendors
and obtained with different acquisition protocols, as in the case
of cardiac MRI.

Secondly, in view of the great interobserver variability in some
methods such as echocardiography, it is particularly important
that the implementation of the training datasets and the quality
control process, although time-consuming and costly, is not
carried out by a single operator, but by teams of experienced
cardiologists, if possible, from different centers. In fact, the risk
is that the implementation of quality control by a single operator
may lead to the unconscious introduction of new biases into the
algorithm, making it usable only within the research group in
which it was developed.

Future collaboration among different research groups and
hardware vendors will constitute the basis for the development
of more generalizable algorithms.

A further possible bias that can limit the general application of
AI algorithms is the prevalence of certain ethnic or gender groups
within the datasets on which AI applications are developed.

Thinking of a future world in which the use of AI should
become routine, it is certainly necessary to ensure that this
technology is equally available for all people, independent of
gender, social class and ethnic origin. In order to make this
possible, several obstacles must be overcome.

First, for AI algorithms to work homogeneously on people of
different genders and ethnicities, they would have to be trained
on heterogeneous datasets, including different ethnic groups and
an equal number of people of both genders. At present, however,
women and people from ethnic minorities have been consistently
underrepresented in large trial databases (103).

This must be avoided, as it could lead to the exclusion of entire
sections of the population from access to the most advanced
medical care, thus exacerbating the inequalities already present
today. In fact, even though AI applications are in most cases still
at an early stage of development, examples have already been
reported in the literature of discrimination between different
ethnic or economic groups by some AI applications (104).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 14 September 2021 | Volume 8 | Article 736223

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Maragna et al. AI in CAD Multimodality Imaging

In order to overcome this possible bias, it is necessary for
regulatory agencies to enforce fair inclusion in AI application
development databases of patients of different gender and
ethnic origin.

Secondly, given the high development costs and the great need
of medical records, AI applications will mainly be implemented
in high-income countries, based on the organizational needs of
their national health systems. This could lead to a substantial
inapplicability of AI algorithms in poorer countries, making
advanced care even more inaccessible to their citizens.

This could be avoided by devoting some of the public
resources allocated to the development of AI algorithms in richer
countries to the implementation of applications that improve the
quality of care in low-income countries.

Once obtained, robust AI applications will also require
validation in large clinical trials to prove benefits in patient care,
the economic sustainability and safety of their implementation in
routine clinical workflow.

AI application validation in clinical trials will in fact help in
overcoming a further issue, which is represented by the medical-
legal aspect. In the future doctors will probably base their
decisions on risk score algorithms and diagnostic tools powered
by AI applications. In this scenario, who will be considered
responsible, in the case of a wrong decision made on the basis
of incorrect information?

This issue seems even more important if we consider that
the majority of AI applications are characterized by a lack
of transparency of their intermedium processes: the human
operator knows the input data and the result of the elaboration,
but can hardly understand the internal algorithm processes.

To overcome this possible pitfall there will be a need to act on
two fronts.

On one side, national and transnational medical regulatory
authorities will need to further regulate laws and protocols in
perspective of a large-scale use of AI algorithms in everyday
clinical workflow.

The European Commission on medical AI (105) published a
white paper that sought to establish founding principles (such as
safety, privacy, data governance transparency, diversity and non-
discrimination) for the development of future AI applications,
opening up the possibility of supplementing legislation already
in place to better protect the health and safety of its citizens.

On the other side, AI developers will need to work
on algorithms’ self-explicability and internal transparency, to
produce so-called explainable AI applications, namely AI
software able to provide justification for every stage of their
choices, in order to provide the physician all the information
needed for thoughtful clinical decision making.

CONCLUSIONS

The medical management of patients with coronary artery
disease, one of the most prevalent diseases in the world, is rapidly
progressing with the implementation of multimodality imaging
in diagnostic and prognostic routine workflows.

AI applications have proven the ability to significantly
improve the detection of coronary artery disease with both an
anatomical and a functional imaging approach.

Thus, the application of AI to multimodality imaging
will continue to play a prominent role in every stage
of the diagnostic, risk-stratification and follow-up of
patients affected by coronary artery disease. Larger
clinical validation and research on safety need to be
implemented before large-scale adoption in routine
clinical practice.
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