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Objective: To explore the molecular mechanism and search for the candidate

differentially expressed genes (DEGs) with the predictive and prognostic potentiality that

is detectable in the whole blood of patients with ST-segment elevation (STEMI) and those

with post-STEMI HF.

Methods: In this study, we downloaded GSE60993, GSE61144, GSE66360, and

GSE59867 datasets from the NCBI-GEO database. DEGs of the datasets were

investigated using R. Gene ontology (GO) and pathway enrichment were performed via

ClueGO, CluePedia, and DAVID database. A protein interaction network was constructed

via STRING. Enriched hub genes were analyzed by Cytoscape software. The least

absolute shrinkage and selection operator (LASSO) logistic regression algorithm and

receiver operating characteristics analyses were performed to build machine learning

models for predicting STEMI. Hub genes for further validated in patients with post-STEMI

HF from GSE59867.

Results: We identified 90 upregulated DEGs and nine downregulated DEGs

convergence in the three datasets (|log2FC| ≥ 0.8 and adjusted p < 0.05). They were

mainly enriched in GO terms relating to cytokine secretion, pattern recognition receptors

signaling pathway, and immune cells activation. A cluster of eight genes including ITGAM,

CLEC4D, SLC2A3, BST1, MCEMP1, PLAUR, GPR97, and MMP25 was found to be

significant. A machine learning model built by SLC2A3, CLEC4D, GPR97, PLAUR, and

BST1 exerted great value for STEMI prediction. Besides, ITGAM and BST1 might be

candidate prognostic DEGs for post-STEMI HF.

Conclusions: We reanalyzed the integrated transcriptomic signature of patients with

STEMI showing predictive potentiality and revealed new insights and specific prospective

DEGs for STEMI risk stratification and HF development.
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INTRODUCTION

Acute myocardial infarction (AMI) is a consequence of rupture
or erosion of a vulnerable, lipid-laden, chronic atherosclerotic
coronary plaque, resulting in acute interruption of myocardial
blood flow and ischemic myocardial necrosis, which remains
a common cardiac emergency incidence with substantial
morbidity and mortality worldwide (1, 2). Concurrently, low-
and middle-income countries now cover more than 80% of
deaths from cardiovascular disease worldwide, which contributes
to the societal burden, as assessed by impaired disability-
adjusted life-years (3, 4). The current diagnostic evaluation for
the presence of AMI relies on troponin or creatine kinase
MB-fraction assays in addition to an electrocardiogram (ECG),
which detects necrotic cardiomyocytes (5). However, it has
been recognized for decades that most atherosclerotic lesions
underlying AMI are only partial luminal narrowing prior to acute
plaque rupture and not obstructing the coronary blood flow
(6–8). Consequently, the inability to accurately and temporally
predict the occurrence of AMI impairs our capability to further
improve patient outcomes.

Acute myocardial infarction has traditionally been classified
on the basis of the presence or absence of ST-segment elevation
(STEMI or non-STEMI) on the ECG. It is pertinent to note that a
totally occlusive thrombus typically leads to STEMI and develops
transmural or Q-wave MI, whereas most patients with non-
STEMI have a partial occlusion or occlusion in the presence of
collateral circulation, develop subendocardial, non-transmural,
or non-Q-waveMI (2). However, STEMI is not only amajor killer
in both elderly and non-elderly (age < 65 years) patients (9),
but survivors of acute STEMI are prone to develop progressive
ventricular remodeling and dysfunction that leads to heart failure
(HF) (10–12).

While advances in the contemporary management of STEMI
have improved rates of short-term survival, the subsequent
progression of HF is emerging as a prominent cause of long-term
outcomes, despite sustained potency of the infarct-related artery,
by the successful percutaneous coronary intervention (PCI) (13).
Moreover, recommended HF-associated biomarkers, including
B-type natriuretic peptide (BNP) and N-terminal probrain
natriuretic peptide (NT-proBNP), lack specificity that they can
also exhibit elevated levels in patients with congestive HF, renal
failure, primary aldosteronism, and thyroid disease (14–16).
There are, therefore, novel robust biomarkers with predictive
potentiality for screening the chronic ischemic preconditioning
and the occurrence of STEMI, and also the development of post-
STEMI HF remains a crucial target for scientific advancement in
cardiovascular diseases.

Next generation sequencing (NGS) technology is the
driving force for genome-wide gene expression profiling,
and transcriptome analysis via indispensable bioinformatics
approaches has been extensively used for obtaining novel insights
into mechanisms underlying the development of diseases and
identifying the potential biomarkers (17, 18). In the present
study, we performed an integrated gene expression profiling
analysis and applied a machine-learning algorithm to investigate
the shared molecular patterns and identify prognostic/diagnostic

differentially expressed genes (DEGs) associated with STEMI
and post-STEMI HF, and detectable in the peripheral blood
of patients, which may contribute to the early warning and
optimized risk stratification of AMI.

MATERIALS AND METHODS

Data Resources
Microarray data profiles of GSE60993, GSE61144, GSE66360,
and GSE59867 were downloaded from the Gene Expression
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/), an
international public repository from the National Center for
Biotechnology Information (NCBI) that provides free access to
full sets of genome data submitted by the research community
(19). The GSE60993 dataset, tested on GPL6884 based on
Illumina HumanWG-6 v3.0 Expression BeadChip and the
GSE61144 dataset, tested on GPL6106 based on Sentrix Human-
6 v2 Expression BeadChip, were the blood transcriptome-based
signatures of patients with the acute coronary syndrome (ACS)
and control participants (20). Patients diagnosed with other
subtypes of ACS, including NSTEMI and UAP, were eliminated
from the subsequent analysis. The GSE66360 dataset comprised
the microarray profiles of the circulating endothelial cells (CEC)
from patients experiencing STEMI and healthy cohorts, tested
on GPL570 via Affymetrix Human Genome U133 Plus 2.0
Array (21). Additionally, the GSE59867 dataset contains the
gene expression profiles of peripheral blood mononuclear cells
from nine patients with post-STEMI HF and eight non-HF
controls divided on the basis of plasma NT-proBNP level and
left ventricular ejection fractions (LVEF) (22). After the platform
descriptions matrix files were downloaded, the gene probe was
matched to the corresponding official gene symbol. For the
situation that multiprobes to one gene, we retained the probe
which shows the most significant gene expression value (adjusted
p-value) after deleting the non-mRNA probes. The following
procedures were processed based on the matched matrix files.

Screening and Identification of Significant
DEGs
We used the limma package to screen DEGs in selected samples
from GSE60993, GSE61144, and GSE66360, respectively based
on the R platform (R-project.org). The data of the three datasets
were all normalized using quantile normalization. The value was
log2 transformed and the genes with detection p > 0.1 were
removed at all arrays after quantile normalization. Fold change
(FC) was obtained by calculating the ratio of the expression of
each gene between STEMI and control samples in every dataset.
Logarithmic operations with 2 as the base number were utilized
to make easier calculations and more scientific comparisons.
For a more comprehensive identification, genes with |log2FC|
≥ 0.8 were considered as DEGs, and statistical differences were
defined as threshold values by adjusted p < 0.05, corrected by
the Benjamini-Hochberg method. DEGs with log2FC < 0 were
considered downregulated, whereas those with log2FC > 0 were
considered upregulated. The DEG results were further validated
via GEO2R, the online R-based web application supported by
the GEO database (19). Considering the microarray profiles
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from different datasets were all collected from peripheral blood
samples, including total blood RNA and CEC-derived RNA, we
selected the DEG signature convergence in the three datasets for
further analysis, which also reflected the tissue–cell relationship.

Functional Annotation of DEGs
Gene ontology (GO) analysis refers to determining and
describing the biological characteristics of genome or
transcriptome data in different databases by standard expression
terms (23). The cellular component (CC), molecular function
(MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway annotations of the 99 common DEGs were conducted
via Database for Annotation, Visualization and Integrated
Discovery (DAVID, http://david.ncifcrf.gov/, version 6.8), a
web-based bioinformatics resources with tools for the functional
interpretation of large-scale gene datasets (24). Homo sapiens
were selected to limit the annotation of the species. The
biological process (BP) annotation was conducted and visualized
by ClueGO (version 2.5.7) and CluePedia (version 1.5.7) tool
kits, which can decipher functionally grouped GO and pathway
annotation networks with a hypergeometric test and extract
representative functional correlations among pathways via
Cytoscape software (version 3.8.2) (25–27). A p < 0.05 was
considered statistically significant.

Protein Interaction and Module Analysis
To analyze the internal connection between all the selected
DEGs, a Search Tool for the Retrieval of Interacting Genes
(STRING, http://string-db.org/, version 11.0) was performed
to predict and construct the protein-protein interaction (PPI)
network (28). STRING is a biological database that contains
information from multisources, including text mining in
PubMed, experimental/biochemical evidence, coexpression, and
database association to provide integrated functional interactions
between proteins, which may provide novel insights into the
mechanisms of diseases (29, 30). TheDEGs list was uploaded, and
Homo sapiens was selected as the organism. To further narrow
the candidate gene field, a confidence level of high confidence
(0.70) was assessed. Then, PPI networks were visualized using the
Cytoscape software. The plug-in Molecular Complex Detection
(MCODE, version 1.6.1) algorithm, an automated kit based on
the topology to find densely connected regions as molecular
complexes or clusters in large PPI networks, was used to screen
the hub genes (31). The MCODE parameters criteria were set by
default as follows: degree cut-off = 2, node score cut-off = 0.2,
Max depth= 100, and k-score= 2.

Prediction Model Analysis by Logistic
LASSO Regression
The glmnet package in R software was conducted to calculate
and select the linear models and preserve valuable variables by
the LASSO logistic regression algorithm (32). With the LASSO
method, coefficients of unimportant variables are dropped
exactly to zero, while important variables are retained to reduce
the overfitting (33). The expression levels of hub genes and
the diagnosis of 99 samples were obtained from the probe-
matched matrix file of GSE66360, according to its largest number

of samples among the selected datasets, and the samples were
randomly assigned to a training or testing set in approximately
a 2:1 ratio. We used a binomial distribution variable in the
LASSO classification because of the binary output variable in
the processed data, as well as used the 1 standard error of the
minimum criteria (the 1-SE criteria) lambda value to build the
model with good performance but the least number of variables
for 5-fold cross-validation. The displaying of receiver operating
characteristics (ROC) analysis and the calculation of the area
under the curve (AUC) were conducted by the pROC package in
R (34). Thus, we investigated the feasibility of the cluster genes in
prediction via the AUC value.

Hub Genes Validation in a Post-STEMI HF
Cohort
Microarray profiles of patients with post-STEMI HF (n = 9) and
patients with non-HF (n = 8) at four time points, admission,
discharge, after 1 month, and after 6 months, were collected from
the GSE59867 dataset (22). The expression values of hub genes
were screened in these samples and compared between patients
with post-STEMI HF and patients with non-HF (Wilcoxon rank-
sum test). To identify the discriminatory power of each selected
biomarker correlated to HF progression which may exert clinical
prognostic feasibility, a ROC curve was constructed and the
AUC with 95% confidence interval was calculated. The cutoff
value for each marker was defined as the marker fold change
that corresponds to the point on the ROC curve closest to the
point (0, 1).

RESULTS

Screening and Identification of DEGs
The available numerical expression values of patients with STEMI
and healthy controls from GSE60993, GSE61144, and GSE66360
were used to identify DEGs. As shown in Figure 1, compared
with the control samples, there were 369, 334, 367 upregulated
and 112, 165, 531 downregulated DEGs in the patients with
STEMI of GSE60993, GSE61144, and GSE66360, respectively
(|log2FC| ≥ 0.8, adjusted p < 0.05, and detailed expression data
with gene symbols are listed in Supplementary Tables S1–S3).
Owing to the different sources of the samples, we collected the
DEGs signature convergence in the three datasets to obtain the
common genomic variances, which could be effective in avoiding
bias and selecting solid results. Ninety-nine common DEGs,
including 90 upregulated and nine downregulated, in the three
datasets are summarized in Table 1, and the number of elements
shared by each dataset is shown in Figure 1.

Functional Annotation and Enrichment of
DEGs
Gene ontology analysis of the common DEGs was conducted
via the DAVID database, as well as ClueGO and CluePedia
tool kits in Cytoscape. The significantly enriched molecular
function, cellular component, and KEGG pathway items
were selected and are shown in Figure 2 with the p-value.
The five most enriched molecular function annotations
were: (i) “GO:0004872∼receptor activity” (p = 2.68E−28);
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FIGURE 1 | The overview of the analysis procedure. We downloaded GSE60993, GSE61144, and GSE66360 from the NCBI-GEO database and identified 90

upregulated DEGs and nine downregulated DEGs convergence in the three datasets (|log2FC| ≥ 0.8 and adjusted p < 0.05). Gene ontology and pathway enrichment

were performed via ClueGO (version 2.5.7), CluePedia (version 1.5.7), and the DAVID database. A protein interaction network was constructed via STRING. Enriched

hub genes were analyzed by Cytoscape software. The logistic LASSO regression was performed to build a machine learning model. GSE59867 dataset was utilized

to validate the hub genes in patients with post-STEMI HF.
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TABLE 1 | The DEGs convergence in GSE60093, GSE61144, and GSE66360 in

the comparison of STEMI patients with healthy controls.

DEGs

Up-regulated DEGs

(n = 90)

TMCC3, SLC22A4, AQP9, CSF3R, DIRC2, ANXA3,

CD55, DYSF, CLEC4E, SLC2A3, NCF2, SIPA1L2,

PILRA, TM6SF1, NFIL3, GCA, CYP4F3, MCEMP1,

BST1, CEBPD, LILRA2, CPD, TLR8, PHC2, OSM,

ARG1, DUSP1, IRAK3, SULF2, PFKFB3, DAPK2,

IRS2, CSNK1D, TRIB1, RBP7, BCL6, MME, QPCT,

PELI1, GAB2, SLC11A1, KIF1B, IFRD1, LILRA5,

CREB5, FPR1, VNN3, ITGAM, RGS2, MGAM,

FCGR2A, OSCAR, CLEC4D, ABHD5, CMTM2,

GPR97, PYGL, PLXDC2, LILRB3, SPI1, PADI4,

IL1R2, ACSL1, ANPEP, PANX2, TLR4, ENTPD1,

EMR3, SIGLEC5, LAMP2, MMP25, LRG1, MXD1,

CSF2RA, MANSC1, RNF130, BMX, S100A12,

TREM1, TLR2, CEBPB, VNN2, KCNJ15, CXCL16,

CDA, CRISPLD2, PLAUR, PGD, STK17B, MMP9

Down-regulated DEGs

(n = 9)

SAMD3, GZMA, GZMK, SBK1, NCR3, CD2,

KLRG1, PTPN4, EOMES

DEGs were set as |log2FC| ≥ 0.8 and adjusted p < 0.05.

(ii) “GO:0042803∼protein homodimerization activity” (p =

0.014); (iii) “GO:0017159∼pantetheine hydrolase activity”
(p = 0.016); (iv) “GO:0030246∼carbohydrate binding” (p =

0.019); and (v) “GO:0001875∼lipopolysaccharide receptor
activity” (p = 0.026), containing 14, 10, two, five, and two
DEGs from the query set, respectively. Other highly enriched BP
annotations included “GO:0006954∼inflammatory response,”
“GO:0050776∼regulation of the immune response,” and
“positive regulation of signal transduction.” For the analysis of
enriched KEGG pathway annotations, the five most significantly
enriched pathways were: (i) “hsa04640:Hematopoietic
cell lineage” (p = 4.44E−6); (ii) “hsa04380:Osteoclast
differentiation” (p = 6.50E−5); (iii) “hsa05140:Leishmaniasis”
(p = 0.002); (iv) “hsa05152:Tuberculosis” (p = 0.002); and (v)
“hsa04145:Phagosome” (p = 0.006), containing eight, eight,
five, seven, and six genes from the query set, respectively.
The outcomes of the cellular component analysis are listed
in Figure 2 with specific items and p-value. Please consult
Supplementary Table S4 for detailed information.

As shown in Figure 3A, a total of 66 significant BP terms
(p < 0.05, refer to Supplementary Table S5 for details) were
classified into 10 groups according to the Cohen’s kappa
score based on shared genes between the terms (25). The
leading group terms based on the highest significance and the
percentages of terms per groups were (1) GO:0050663∼cytokine
secretion (p = 1.97E−8, 43.94%); (2) GO:0002221∼pattern
recognition receptor signaling pathway (p = 9.33E−6, 13.64%);
(3) GO:0032655∼regulation of interleukin-12 production (p
= 1.80E−6, 13.64%); (4) GO:0002274∼ myeloid leukocyte
activation (p = 9.82E−29, 9.09%); (5) GO:0002367∼cytokine
production involved in immune response (p = 3.32E−6,
7.58%); (6) GO:0002573∼myeloid leukocyte differentiation
(p = 2.44E−6, 6.06%); (7) GO:0002286∼T cell activation
involved in immune response (p = 2.68E−4, 1.52%); (8)

GO:0090022∼regulation of neutrophil chemotaxis (p =

9.46E−4, 1.52%); (9) GO:0050671∼positive regulation of
lymphocyte proliferation (p = 0.0001, 1.52%); and (10)
GO:0001773∼myeloid dendritic cell activation (p = 0.0005,
1.52%). Additionally, interleukins including IL-1, IL-6, IL-8,
and IL-10 were also annotated with significance. The ontology
relations between different GO terms are shown in Figure 3B.

Protein Interaction and Module Analysis
Search Tool for the Retrieval of Interacting Genes online database
was used to reassess and predict the PPI network of DEGs, and
Cytoscape software was used for the graphical representation of
the network of inferred, weighted protein interactions, which
provides an automated view of functional linkage, facilitating the
analysis of modularity in BP es (30). Based on the high confidence
level of 0.70, a total of 99 DEGs were filtered into the PPI
network, and 55 nodes with 107 edges were identified, including
50 upregulated and five down-regulated DEGs (Figure 4A). The
plug-in kit MCODE was conducted to analyze the significant
module, and an eight-node module with 28 edges was selected
from the PPI network (Figure 4B), the eight-hub genes were
ITGAM (degree= 18), CLEC4D (degree= 9), SLC2A3 (degree=
9), BST1 (degree= 9),MCEMP1 (degree= 9), PLAUR (degree=
8), GPR97 (degree = 7), and MMP25 (degree = 7). The detailed
information and expression changes of the hub gene in each
dataset are shown in Table 2. Functional annotation revealed
that the eight-hub genes were all associated with the components
of the plasma membrane, especially granule membrane proteins
(GO:0042581 and GO:0035579, both p < 0.001). The normalized
expression levels of the eight-hub genes in the samples from
different datasets were displayed via the “heatmaps” package
in the R platform. Parallel heatmaps with carefully designed
annotation graphics are powerful for the efficient visualization
of patterns and relationships among high-dimensional genomic
data (35). As shown in Figure 4C (GSE60993), Figure 4D

(GSE61144), and Figure 4E (GSE66360), it could be identified
that the eight-hub genes were significantly upregulated in STEMI
samples compared with controls, and the clustering results
displayed in the heatmaps also exerted decent performance in
distinguishing the samples from different conditions.

Exploring Candidate STEMI-Related DEGs
by LASSO Regression and ROC Curves
First, the logistic LASSO regression model for the eight-hub
DEGs in the comparison of STEMI with control samples
from GSE60993, GSE61144, and GSE66360 was conducted to
investigate an optimum linear combination in predicting STEMI
(Figures 5A,B), with coefficients 0.3086, 0.2593, 0.2251, 0.2072,
and 0.0541 for SLC2A3, CLEC4D, GPR97, PLAUR, and BST1,
respectively. Then, the ROC curve analysis of the LASSO
regression model was conducted to predict patients with STEMI
in GSE66360 in the training set, testing set, and 5-fold cross-
validation, with the AUC values being 0.9603, 0.8986, and 0.9441,
respectively (Figure 5C), which suggested that it might have
the outstanding potentiality for distinguishing the patients with
STEMI from healthy controls.
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FIGURE 2 | Gene ontology (GO) analysis and significant enrichment of the DEGs. GO analysis classified selected genes into the cellular component (CC), molecular

function (MF), and KEGG pathway group, ranking significant enriched GO terms of the DEGs. The vertical axis on the left and the bar plot represents the gene count

per term, and the vertical axis on the right and the gray dots represent log2 p-value (please consult Supplementary Table S4 for details). A p < 0.05 was considered

statistically significant.

Hub Genes Validation Targeting Potential
Prognostic DEGs for Post-STEMI HF
To evaluate whether the eight-hub genes are differentially
expressed in patients with post-STEMI HF compared with
patients with non-HF or not, we investigated the expression levels
of these hub genes in an external cohort fromGSE59867 [patients
with post-STEMI HF (n = 9), and patients with non-HF (n
= 8)] with no significant gender differences (22). Interestingly,
except for SLC2A3, seven (n = 7) of the hub genes in patients
with post-STEMI HF were observed upregulated on the first
day of STEMI (admission), especially BST1 and ITGAM with
significance, as compared with those who also presented with
STEMI on admission but did not progress to HF during the
6 months of follow-up (Figures 6A–H). We further conducted
ROC analysis to investigate the value of BST1 and ITGAM as
prognostic DEGs of post-STEMI HF, and the analysis showed a
good predictive accuracy (Figures 6I,J). For BST1, the sensitivity
was 77.7778% and specificity was 75% at the best cut-off value
of 10.54105, with the AUC being 80.5556%; for ITGAM, at the
best cut-off value of 11.05525, the sensitivity and specificity were

100% and 75%, respectively, and the AUC was 87.5%. Based on
these results, the expression levels of BST1 and ITGAM could
not only differentiate patients with STEMI from healthy controls
but also highly specific and sensitive DEGs for predicting post-
STEMI HF.

DISCUSSION

As a disease that is predominantly focused in developed
countries, AMI is now becoming growingly common
in developing countries and encompasses a broad and
heterogeneous population. More than 3 million people each year
are estimated to have an acute STEMI globally (36). Diagnosis
of STEMI hinges on physical and laboratory examinations, and
ECG, which may be challenging, and the misinterpretation of
ECG results in lower-quality care in the emergency department,
yet several patients with chest pain but who do not manifest
the diagnostic signs and are discharged can ultimately have dire
consequences (37, 38). Meanwhile, important breakthroughs in
the development of drugs and treatments have led to improved
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FIGURE 3 | Terms of biological process (BP) by GO analysis. (A) Representative functional BP groups selected by the hypergeometric test and the percentage of

terms per group. (B) The ontology relations of the annotated terms. A p < 0.05 was considered statistically significant.
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FIGURE 4 | (A) The construction of the PPI network based on the DEGs. The red ellipse represents upregulated DEGs, the green ellipse represents downregulated

DEGs. (B) The hub gene cluster with the highest scores in the PPI network is displayed by the yellow ellipse. (C–E) The heatmaps with clustering analysis showed the

normalized expression values of hub genes in GSE60993, GSE61144, and GSE66360 datasets, respectively.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 December 2021 | Volume 8 | Article 736497

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Xu and Yang Early Risk Stratification of STEMI

TABLE 2 | Detailed information of the hub genes.

Gene name Description GSE60993 GSE61144 GSE66360

log2FC Adjusted p value log2FC Adjusted p value log2FC Adjusted p value

ITGAM Integrin subunit alpha M 0.8986 1.09E−2 0.8506 1.55E−5 0.9132 3.46E−2

CLEC4D C-type lectin domain family 4 member D 1.5638 1.62E−2 1.7151 3.10E−6 2.6189 2.52E−9

SLC2A3 Solute carrier family 2 member 3 0.9867 4.68E−4 1.0359 3.02E−4 1.1033 3.70E−6

BST1 Bone marrow stromal cell antigen 1 1.1451 4.12E−4 0.9381 4.77E−6 2.0780 2.23E−8

MCEMP1 Mast cell expressed membrane protein 1 1.7537 9.86E−4 1.8760 2.06E−5 1.3833 4.15E−7

PLAUR Plasminogen activator, urokinase receptor 1.0007 6.35E−3 0.8102 4.71E−5 2.3098 1.05E−9

GPR97 Adhesion G protein-coupled receptor G3 1.4664 3.55E−3 1.2396 9.35E−5 1.3983 8.66E−7

MMP25 Matrix metallopeptidase 25 1.1087 1.72E−2 1.5248 8.97E−5 1.2299 6.56E−6

Description of the gene was obtained via Human Genome Resources at NCBI. The log2FC and adjusted p value were calculated in comparison of STEMI patients with healthy controls

in the three datasets.

FIGURE 5 | Construction of LASSO regression model and ROC curves of hub genes. (A) The plot indicates binomial deviance of different numbers of variables

revealed by the LASSO regression model for GSE66360. The red dots represent the value of binomial deviance; the gray lines represent the standard error (SE); the

vertical dotted lines represent optimal values by the minimum criteria and 1-SE criteria. “Lambda” is the tuning parameter. (B) The plot determines the coefficient by

1-SE criteria of LASSO regression model 0.3086, 0.2593, 0.2251, 0.2072, and 0.0541 for SLC2A3, CLEC4D, GPR97, PLAUR, and BST1, respectively. (C) The ROC

curves of the LASSO regression model of training, testing, and 5-fold cross-validation in GSE66360.

outcomes. Therefore, emerging efforts have been focused on
discovering sensitive and specific DEGs to facilitate the early
installment of appropriate risk stratification of patients with
STEMI (39). Unfortunately, recent studies have consistently
shown that inflammation-related markers of plaque instability,
including myeloperoxidase and C-reactive protein, exert very
low diagnostic accuracy when measured with currently available
assays and therefore are not helpful in the early diagnosis of AMI
(40, 41).

Transcriptome analysis enables a deep understanding of the
complicated physiological processes, which has been a promising
tool and applied successfully to numerous diseases including
cardiovascular disorders (42, 43). From the onset of STEMI,
molecular stress responses take place and are reflected by changes
in gene expression, which enables peripheral blood transcriptome
to be a potent predictor to discriminate the acute phase of
STEMI (20). The utilization of blood as a surrogate tissue
that can be collected with a minimally invasive technique is

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 December 2021 | Volume 8 | Article 736497

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Xu and Yang Early Risk Stratification of STEMI

FIGURE 6 | (A–H) Gene variations over time for investigated hub genes in patients with post-STEMI HF and patients with non-HF at different time points after STEMI

(on admission, discharge, 1 month, and 6 months). Red line: HF patients, black line: patients with non-HF. Bars in high and low represent the maximum and minimum

gene expression values, respectively. Statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001, Wilcoxon rank-sum test. (I,J) ROC curves for ITGAM, and BST1,

respectively. AUC, area under the curve; ROC, receiver operating characteristic. The bars represented the area of 95% CI.

an enticing alternative to cardiac biopsy. As the requirement
for specialized cell sorting samples is a barrier for diagnostic
settings, we attempted to move beyond and investigate gene
expression profiles that could be detected from whole blood
which might facilitate the clinical feasibility via the real-time
reverse transcription-polymerase chain reaction (RT-qPCR).
Moreover, the gene signatures reported in previous studies
were not robust enough, which may arise from the relatively
small sample size. Accordingly, we thought it appropriate to
investigate more reliable and reproducible hub genes by merging
the genomic datasets from similar studies. In this study, we
merged gene expression profiles in blood samples of patients with
STEMI from different public datasets to investigate biologically
relevant transcriptional signatures as underlying biomarkers and

applied machine learning to evaluate the predictive potentiality
of the selected features statistically. We further validated the
expression level of hub genes in the patients who developed
HF after STEMI and identified prognostic biomarkers correlated
with STEMI and post-STEMI HF.

Initially, we identified 90 upregulated DEGs and nine
downregulated DEGs convergence in the three selected datasets
by the criteria of |log2FC| ≥ 0.8 and adjusted p < 0.05. We
deliberately relaxed the restrictions to include more variant
transcripts for further analysis. The GO analysis revealed the
biological alterations in the pathogenesis of patients with STEMI.
Noteworthy, cytokine secretion, pattern recognition receptors
(PRRs) signaling pathways, and immune cells activation were
the most prominent terms in the BP annotation of our study.
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Various cytokines have been documented to exert vital regulatory
functions under the physiological and pathophysiological
process of cardiac dysfunction, namely ischemic heart disease,
myocardial infarction, HF, and cardiomyopathies (44–46). It is
pointed out that interleukins such as IL-1, IL-4, IL-6, and IL-8
are involved in the development ofmyocardial infarction, most of
which are released into the circulation and serve as inflammatory
biomarkers (44), and these effects were also reflected in our
results. On the other hand, certain cytokines such as IL-4, IL-
6, IL-8, and IL-10 are also considered to exert beneficial effects
from postischemic tissue repair (44). Pleiotropism of cytokine
function seems to be due to the duration of the disease as
well as the concentrations in the blood. It is indeed a great
challenge to translate promising animal experimental data into
clinical practice, and anticytokine therapies continue to require
further evaluation in humans. Interestingly, regulation of IL-12
production was one of the predominant GO terms in our study.
IL-12 is a proinflammatory cytokine produced by dendritic cells,
macrophages, and B cells in response to microbial pathogens
(47). Evidence from the literature keeps highlighting the impact
of gut bacterial communities on coronary artery disease (48),
and of note that bacterial DNA was detected in the human
atherosclerotic plaques (49). Hence, we hypothesized that from
the perspective of gut microbiota, host PRRs could modulate
microbial recognition to adjust the structure and function of the
mutualistic microbes, which in turn induces cytokine secretion
and the downstream innate immune responses to contribute to
the progression of coronary artery disease and the occurrence of
STEMI (48).

We constructed the PPI network with the common DEGs
shared by the three datasets, which listed the eight upregulated
hub genes including ITGAM, CLEC4D, SLC2A3, BST1,
MCEMP1, PLAUR, GPR97, and MMP25. Surprisingly, all
these eight genes encode cellular membrane proteins which
are instrumental to the delivery of synergistic outside-in
signals, leading to optimal cell adhesion and migration,
and inducing inflammation through damage-associated
molecular patterns and pathogen-associated molecular patterns
(50–52). Additionally, in concert with prior studies, some
of these hub genes are reported to be associated with the
pathogenesis of cardiovascular diseases. Integrin subunit
alpha M (ITGAM) gene encodes Integrin αM (CD11b),
which might promote the development and progression
of abdominal aortic aneurysm via mediating the adhesion
of endothelial cells and the transendothelial migration of
circulating monocytes/macrophages (53). C-type lectin domain
family 4 member D (CLEC4D) and mast cell expressed
membrane protein 1 (MCEMP1) are identified to be potential
prognostic and diagnostic biomarkers for ischemic stroke
(54, 55). Solute carrier family 2 member 3 (SLC2A3) is
reported to correlate with platelet aggregation (56), syndromic
congenital heart disease (57), and chronic thromboembolic
pulmonary hypertension (58). Although it is hard to fully
elucidate the exact function of the upregulated multimolecular
complex both in physiological and pathological situations, our
study provided an overview of their expression and role in
STEMI, which indicated their distinct properties in the disease

progression. We then attempted to evaluate the predictive
power of candidate genes via a machine learning algorithm.
LASSO regression analysis was performed due to its ability
to shrink coefficients of hub genes that do not contribute to
the model to zero (33), and only SLC2A3, CLEC4D, GPR97,
PLAUR, and BST were determined to be significantly predictive
for STEMI. As demonstrated by the ROC curves, the AUC
values were decent suggesting it might have the outstanding
potentiality for early diagnosis of STEMI from the blood samples
of patients.

Acute myocardial infarction is the underlying cause of left
ventricle (LV) systolic dysfunction and HF (59). The prognosis
of patients after AMI primarily depends on the degree of
myocardial damage during the acute phase. Consequently,
we also attempted to identify the hub genes simultaneously
related to HF development in patients post-STEMI, which
may be helpful in identifying DEGs of individuals at high
risk for the development of HF. In the validation cohorts
composed of HF and patients with non-HF post-STEMI,
we observed that the long-term LV dysfunction had a
similar biosignature in blood transcriptome already in the
acute phase of STEMI, especially the significantly upregulated
expression of BST1 and ITGAM simultaneously appeared
on the first day of STEMI. Additionally, the ROC analysis
has indicated that these two transcripts are likely to be
novel biomarkers with high sensitivity and specificity for
the early prognosis of patients with post-STEMI HF. We
postulate that the significant upregulation of these genes
is associated with the more severe initial damage to the
cardiomyocytes, culminating later in HF. To be more important,
the results may also provide useful insights to look for genetic
predisposition to the progression of LV remodeling and HF
after STEMI.

There remain several limitations in this study. First, no
information on gender was included in the datasets, and the post-
STEMI HF cohort is relatively small. Additionally, the databases
of GO will be revised such that our analysis may have to be
repeated as the database becomes more detailed. Moreover, the
results from the gene array and bioinformatic analysis require
further biological proof-of-concept studies to verify. Under these
conditions, large-scale and prospective investigations with strict
follow-up protocols are required in the future to confirm the
clinical feasibility of the proposed biomarkers detectable in
whole blood for earlier identification of STEMI and prognosis of
HF development.

CONCLUSIONS

In summary, our study has the merit of assessing the integrated
transcriptomic signature of patients with STEMI from several
independent cohorts through reanalyzing three publicly available
microarray gene expression profiling. The results reveal that
STEMI is endowed with characteristic gene expression changes
harboring predictive potentiality via machine learning, and
further validation in patients with post-STEMI HF discovers
prospective features for HF development. Our study offers new
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insights and specific biomarkers to be further explored, which
might allow the early risk stratification of STEMI by simple
RT-qPCR at the emergency department.
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