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Although water-based exercise is one of the most recommended forms of physical

activity, little information is available regarding its influence on cardiac workload

and myocardial oxygen supply-to-demand. To address this question, we compared

subendocardial viability ratio (SEVR, the ratio of myocardial oxygen supply-to-demand),

cardiac inotropy (via the maximum rate of aortic pressure rise [dP/dTmax]), and stroke

volume (SV, via a Modelflow method) responses between water- and land-based

exercise. Eleven healthy men aged 24 ± 1 years underwent mild- to moderate-intensity

cycling exercise in water (WC) and on land (LC) consecutively on separate days. In WC,

cardiorespiratory variables were monitored during leg cycling exercise (30, 45, and 60

rpm of cadence for 5min each) using an immersible stationary bicycle. In LC, each

participant performed a cycling exercise at the oxygen consumption (VO2) matched to the

WC. SEVR and dP/dTmax were obtained by using the pulse wave analysis from peripheral

arterial pressure waveforms. With increasing exercise intensity, SEVR exhibited similar

progressive reductions in WC (from 211 ± 44 to 75 ± 11%) and LC (from 215 ± 34 to

78 ± 9%) (intensity effect: P < 0.001) without their conditional differences. WC showed

higher SV at rest and a smaller increase in SV than LC (environment-intensity interaction:

P = 0.009). The main effect of environment on SV was significant (P = 0.002), but that of

dP/dTmax was not (P = 0.155). SV was correlated with dP/dTmax (r = 0.717, P < 0.001).

When analysis of covariance (ANCOVA) was performed with dP/dTmax as a covariate,

the environment effect on SV was still significant (P < 0.001), although environment-

intensity interaction was abolished (P = 0.543). These results suggest that water-based

exercise does not elicit unfavorable myocardial oxygen supply-to-demand balance at

mild-to-moderate intensity compared with land-based exercise. Rather, water-based

exercise may achieve higher SV and better myocardial energy efficiency than land-based

exercise, even at the same inotropic force.

Keywords: water-based exercise, subendocardial viability ratio, myocardial oxygen consumption, aortic

hemodynamics, cardiovascular response
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INTRODUCTION

Aerobic exercise, such as walking, jogging, and cycling is a
beneficial health strategy for non-pharmacologically preventing
and treating cardiovascular disease. However, not all populations,
particularly those with decreased walking ability, musculoskeletal
pain and disorders, and anxiety of falling, can engage in regular
exercise training. All these factors can decrease motivation
and continuation of exercise. Alternatively, water-based exercise
reduces a gravitational load on joints due to buoyancy, and the
risk of falling is lower due to water resistance (1). Therefore,
water-based exercise may be a suitable modality without pain and
discomfort for populations who have difficulty exercising on land
(2, 3).

Stroke volume (SV) increases with water immersion per se
and further with water-based exercise to a greater extent than
land-based exercise (4–6). In water, altered hydrostatic pressure
shifts peripheral venous blood toward the heart and increases
SV based on Frank-Starling’s law. In contrast, the increase in
central blood volume raises the cardiac volume load (preload),
which determines myocardial oxygen consumption regardless of
healthy or diseased conditions (7, 8). Additionally, the exercise-
induced increases in heart rate (HR) and cardiac contractility
may raise myocardial oxygen demand (9). Therefore, the
clinicians have long been concerned that increases in central
blood volume and cardiac preload may not be tolerated by
patients with chronic heart failure and potentially worsen their
symptoms and exercise capacity (10). With this prevailing
concern as a background, Adsett et al. conducted a meta-analysis
to determine the efficacy of aquatic exercise training for patients
with heart failure compared with the traditional land-based
exercise programs. By including eight interventional studies, they
found that, in patients with stable heart failure, aquatic exercise
training could improve exercise capacity, muscle strength, and
quality of life similar to the land-based exercise programs (10).
However, little information is yet available regarding myocardial
oxygen demand and supply balance during water-based exercise
in healthy individuals.

As an initial step to better understand the safety of water-
based exercise, we investigated the impact of mild-to-moderate
intensity, water-based exercise on myocardial oxygen demand
and supply in young, healthy individuals. To address this aim,
we compared the aortic time-tension and diastolic pressure-
time integrals (TTI and DTI; indices of myocardial oxygen
demand and supply) and subendocardial viability ratio (SEVR
= DTI/TTI) (11, 12) during cycling with the matched oxygen
consumption (VO2) in water and on land. We hypothesized that
water-based exercise would be associated with higher myocardial
oxygen demand because it increases central blood volume and
cardiac preload, although myocardial oxygen supply-to-demand
balance would be similar to that during the land-based exercise.

MATERIALS AND METHODS

Participants
Eleven healthy men [age: 24 ± 1 years, height: 174.7 ± 4.5 cm,
weight: 69.1 ± 4.9 kg, body mass index (BMI): 22.6 ± 1.1

kg · m−2] participated in this study. All participants were
nonsmokers, not taking any medication, and had no history of
cardiovascular, respiratory, neuromuscular, or musculoskeletal
disorders or diseases. This study was approved by the Research
Ethics Committee of the University of Tsukuba. All participants
gave informed consent before participation.

Experimental Protocol
Each participant visited the laboratory three times and had the
following measurements on each day: peak oxygen consumption
(VO2peak), water-based cycling (WC) test, and land-based cycling
(LC) test. Participants were instructed to fast for a minimum of
3 h and to refrain from vigorous exercise, alcohol consumption,
and caffeine intake at least 24 h before each visit. All visits were
separated by at least 72 h.

Day 1: VO2peak Measurement
VO2peak was calculated by averaging the 30 s before the finish
of the exercise. The test utilized a recumbent bike (Corival
recumbent, Lobe, BV, Netherlands) and an expiratory gas
analyzer (Aero monitor, MINATO, Osaka, Japan) to assess
oxygen uptake during exercise. The workload started with 60W
and then increased by 20W every 2min. After reaching 160W,
the workload was increased by 10Wuntil the two of the following
criteria are met: (1) 95% HR reserve calculated from the age-
predicted maximum, (2) respiratory exchange ratio >1.2, (3)
unable to maintain cycling at 60± 5 rpm, or (4) rate of perceived
exertion (RPE) higher than 19.

For familiarization, participants practiced 15min of cycling
exercise with no-load (i.e., WC with no paddles and LC with
0W) before each main trial of WC (Day 2) and LC (Day 3). The
cadence increased by 15 rpm every 5min in each environment to
get used to cycling exercise.

Day 2: Water-Based Cycling
Participants wore swim shorts and rested in the seated position
on land for 5min. Then, they moved and sat on a stationary
semi-recumbent bicycle (Hydrorecline, H3Oz company, Italy)
in water (water temperature: 31–32◦C, xiphoid level) for 4min,
and started cycling exercise. The cycling exercise consisted
of three stages at which participants cycled at 30, 45, and
60 rpm incrementally for 5min each. Each participant kept
the cadence according to the metronome sound. To increase
pedaling resistance, three paddles (7 cm× 22 cm× 0.5 cm, made
of plastic) were attached to the bottom bracket axle. During the
exercise test, the cardiorespiratory and hemodynamic variables
were monitored. VO2 recorded at each stage of cycling in water
was used to match VO2 during land-based cycling.

Day 3: Land-Based Cycling
Participants rested in the seated position on land (room
temperature: 25–26◦C) for 5min and rested for another 4min to
match with theWC. After resting, participants conducted 15min
of cycling exercise using a recumbent bicycle (Corival recumbent,
Lode BV, Netherlands). Each participant performed three stages
of a 5-min cycling exercise. They maintained the cadence of
60 rpm while the load was manually adjusted to match VO2
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to the corresponding stages of the WC. The cardiorespiratory
and hemodynamic variables were recorded continuously and
reported, and the data were calculated by averaging the last
continuous and stable 1min of each stage.

Measurements
Body Temperature and Perceived Exercise Intensity
At 2 and 4min of each stage, the RPE scale by using the Borg scale
(13) and tympanic temperature during training was listened to
and measured.

Systemic Hemodynamics
Digital arterial pressure waveform was continuously recorded at
the right middle finger by a non-invasive blood pressure monitor
(Human NIBP Nano System, AD Instrument, Colorado Springs,
CO, USA) and stored on a computer using a data acquisition
system (PowerLab, AD Instrument, Colorado Springs, CO, USA)
at the sampling rate of 1 kHz for offline analysis. Participants
kept their right hand at the heart level (on the side table
outside the bathtub during WC) throughout resting and exercise
testing. The pressure values provided by this type of device
do not significantly differ from those taken directly from the
radial artery under various physiological conditions (14). There
is good agreement in the evaluation of beat-to-beat variations
(15). Beat-to-beat HR and systolic, diastolic, and mean arterial
pressures (SBP, DBP, and MAP) and pulse pressure (PP) were
calculated from pulse waveforms. SV, cardiac output (CO), and
systemic vascular resistance (SVR = MAP/CO) were estimated
by the Modelflow-based add-on program for the data acquisition
system. The validity of this method has been established in a
variety of conditions that include exercise (16, 17).

Aortic Hemodynamics
Aortic blood pressure waveforms were synthesized from
digital artery pressure waveforms via a generalized transfer
function (SphygmoCor, AtCor Medical, Sydney, Australia) as we
previously reported (18–20). We (20) and another group (21)
have confirmed the validity of applying this technique during
exercise. Aortic pressure was calibrated with an oscillometric
SBP and DBP of the brachial artery. A typical aortic pressure
waveform is depicted in Figure 1. Aortic augmentation pressure
(AP) was defined as the difference between the first systolic
peak (or shoulder) and the second systolic peak pressure. Aortic
augmentation index (AIx) was calculated as the percentage ratio
of aortic AP to aortic PP. The companion matric of AIx (AIxC)
being the hypotenuse of the triangle formed by AP and PP
(via the Pythagorean theorem) was also calculated (22). The
aortic compliance index was calculated by dividing SV by aortic
PP (23). Ejection duration was defined as the time from the
systolic foot to the aortic dicrotic notch. The diastolic duration
was calculated as the time of the cardiac cycle minus ejection
duration. Areas under the aortic systolic and diastolic pressure-
time curve (both measured from 0 mmHg) were calculated as
TTI and DTI for estimates of myocardial oxygen consumption
(e.g., demand) and perfusion (e.g., supply) (24–26). SEVR was
then calculated as the ratio of DTI/TTI × 100 (%). This index
is related to the subendocardial-to-subepicardial blood flow ratio

FIGURE 1 | Schema of aortic pulse wave analysis. Augmentation pressure

(AP) is the difference between the first systolic peak (or shoulder) and the

second systolic peak pressure. Augmentation index (AIx) is defined as the AP

as a percentage of pulse pressure. The dicrotic notch (DN) represents the

closure of the aortic valve and is used to calculate ejection duration. Aortic

tension-time index (TTI) and diastolic pressure-time index (DTI) are areas under

the aortic systolic and diastolic pressure-time curve (both measured from 0

mmHg) and reflect the myocardial oxygen demand and the blood supply to

the heart, respectively. The subendocardial viability ratio (SEVR) is the ratio of

DTI to TTI.

and analogous to subendocardial perfusion (12). The dP/dTmax,
the maximal rate of pressure rise in the upstroke portion of the
aortic waveform, was calculated to estimate the left ventricular
inotropic state (27).

Statistical Analysis
Data were calculated by averaging the last 1min of each stage.
For the main effects of environment and exercise intensity
and their interaction effect, a two-way repeated ANOVA was
applied. In the case of a significant interaction effect, a post-hoc
test [Fisher’s least significant difference (LSD)] was performed.
Pearson’s product-moment correlation was used to determine the
relationship between variables of interest. Analysis of covariance
(ANCOVA), using dP/dTmax or HR as a covariate, was used to
analyze the effects of environment and exercise intensity on SV
and AIx, respectively. Exercise-induced changes in AIxC were
compared between the WC and LC, respectively, by using the
paired t-test. All data are reported as mean ± SD. Statistical
significance was a priori defined as a P < 0.05.

RESULTS

The VO2peak and the peak workload were 36.4 ± 4.3 ml · kg−1

· min−1 and 214 ± 17W, respectively. Absolute and relative
VO2 progressively increased in WC and LC with no significant
intensity-environment interaction effect (Table 1), indicating
that VO2 was matched in both conditions at each intensity.
The body temperature response to exercise showed no difference
between the WC and LC. RPE response showed no significant
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TABLE 1 | Change in the body temperature and exercise intensity.

Rest Stage 1 Stage 2 Stage 3 P-value

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Intensity Environment Interaction

Cadence, rpm WC 0 30 45 60

LC 0 60 60 60

Workload, watt WC – – – –

LC 0 ± 0 13 ± 4 45 ± 11 106 ± 17

Body temperature, ◦C WC 35.3 ± 0.5 35.3 ± 0.6 35.4 ± 0.6 35.4 ± 0.5 0.002 0.973 0.801

LC 35.3 ± 0.4 35.4 ± 0.4 35.4 ± 0.4 35.4 ± 0.4

VO2, ml · kg−1
· min−1 WC 3.3 ± 0.5 5.6 ± 0.8 9.0 ± 0.8 16.8 ± 1.8 <0.001 0.165 0.233

LC 3.2 ± 0.4 6.0 ± 0.8 9.4 ± 0.9 17.0 ± 2.3

%VO2peak % WC 9.2 ± 1.8 15.7 ± 3.4 25.0 ± 4.3 46.9 ± 8.0 <0.001 0.187 0.238

LC 8.8 ± 1.4 16.7 ± 3.3 26.3 ± 4.7 47.5 ± 9.8

RPE, a.u. WC 6.5 ± 0.9 7.3 ± 1.1a 9.3 ± 2ab 12.4 ± 1.5abc <0.001 0.844 0.012

LC 6.4 ± 0.9 7.7 ± 1.3a 9.3 ± 2ab 11.6 ± 1.6abc

Data are mean ± SD. WC, cycling in water condition; LC, cycling on land condition; VO2, oxygen consumption; %VO2peak the percent peak oxygen consumption measured by a

land-based incremental cycling test; RPE, rate of perceived exertion. a, b, and c indicate significant differences from rest, stage 1, and stage 2 in the same environment, respectively.

TABLE 2 | Systemic hemodynamics at rest and during exercise.

Rest Stage 1 Stage 2 Stage 3 P-value

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Intensity Environment Interaction

HR, bpm WC 55 ± 9 72 ± 9 82 ± 9 109 ± 15 <0.001 0.012 0.689

LC 63 ± 10 75 ± 13 86 ± 13 113 ± 17

CO, L · min−1 WC 6 ± 0.9 7.3 ± 1.3 9.7 ± 1.6 14.6 ± 2 <0.001 0.021 0.366

LC 5.2 ± 1.1 6.9 ± 1.2 9.1 ± 1.3 13.9 ± 1.8

SVR, mmHg · min−1
· L−1 WC 15 ± 3* 12 ± 3a* 9 ± 3ab* 7 ± 1abc <0.001 <0.001 0.001

LC 19 ± 3 15 ± 2a 11 ± 2ab 7 ± 1abc

SBP, mmHg WC 112 ± 8* 112 ± 9* 117 ± 9ab* 130 ± 11abc* 0.011 0.001 0.001

LC 119 ± 8 123 ± 12 129 ± 10a 145 ± 13abc

DBP, mmHg WC 69 ± 8 67 ± 7 67 ± 6 67 ± 7 0.186 0.001 0.419

LC 82 ± 6 78 ± 8 76 ± 9 73 ± 13

PP, mmHg WC 43 ± 9* 44 ± 10 50 ± 9ab 64 ± 10abc* <0.001 0.532 0.015

LC 37 ± 6 45 ± 9a 53 ± 8ab 72 ± 10abc

Data are mean ± SD. HR, heart rate; CO, cardiac output; SVR, systemic vascular resistance; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure. a, b, and

c indicate significant differences from rest, stage 1, and stage 2 in the same environment, respectively. *indicates significant difference vs. LC at same exercise intensity.

difference between environments (P= 0.844) despite a significant
interaction (P = 0.012).

Systemic hemodynamic variables at rest and during exercise
are shown in Table 2. WC showed significantly higher CO
and lower HR than LC (environment effect: P = 0.021
and 0.012, respectively), and they progressively increased as
exercise intensity increased (intensity effect: P < 0.001 for
both). Environment-intensity interactions were not significant
for HR and CO. SV showed a significant environment-intensity
interaction (P = 0.009, Figure 2). The post-hoc test revealed
that WC was significantly higher than LC at rest to stage 2.
Additionally, SVR showed a significant environment-intensity
interaction (P = 0.001); significantly lower in WC than LC at
rest, stage 1, and stage 2. Brachial SBP and DBP were significantly
lower in WC than LC (environment effect: P = 0.001 for both).

With the increase in intensity, SBP gradually increased (intensity
effect: P = 0.011), and DBP was not affected by the intensity (P
= 0.186).

Aortic hemodynamic variables at rest and during exercise
are shown in Table 3. Aortic SBP was significantly lower in
WC than LC (environment effect: P = 0.002) and gradually
increased (intensity effect: P = 0.085). Aortic PP showed a
significant environment-intensity interaction (P= 0.006); higher
at the baseline (Fisher’s LSD: P = 0.002) and lower at stage 3
(Fisher’s LSD: P = 0.023) in WC. AP was higher in WC than LC
(environment effect: P= 0.004) and progressively decreased with
increasing intensity (P < 0.001). Ejection duration was longer
(environment effect: P = 0.005), and diastolic duration tended
to be longer (environment effect: P = 0.058) in WC than in
LC. These were shortened as the intensity increased (P = 0.003
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TABLE 3 | Aortic hemodynamics at rest and during exercise.

Rest Stage 1 Stage 2 Stage 3 P-value

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Intensity Environment Interaction

Aortic SBP, mmHg WC 97 ± 8 96 ± 8 97 ± 8 104 ± 9 0.085 0.002 0.718

LC 105 ± 7 105 ± 10 107 ± 10 115 ± 12

Aortic PP, mmHg WC 28 ± 5* 27 ± 6 29 ± 4 35 ± 6ab* <0.001 0.488 0.006

LC 22 ± 4 26 ± 5a 30 ± 5ab 39 ± 5abc

Aortic compliance index, ml • mmHg−1 WC 3.88 ± 0.60 3.94 ± 0.73 4.07 ± 0.73 3.91 ± 0.75 0.667 0.042 0.236

LC 3.72 ± 0.56 3.79 ± 0.75 3.59 ± 0.68 3.24 ± 0.34

AP, mmHg WC 2.8 ± 1.9 2.1 ± 3.3 0.2 ± 1.9 −1.9 ± 3.9 <0.001 0.004 0.111

LC 0.6 ± 2.7 −0.4 ± 2.5 −0.6 ± 3.3 −6.6 ± 3.4

Cardiac period, ms WC 1,119 ± 178 850 ± 111 740 ± 80 558 ± 68 <0.001 0.011 0.331

LC 981 ± 154 823 ± 137 712 ± 107 540 ± 72

Diastolic duration, ms WC 796 ± 175 533 ± 105 427 ± 73 273 ± 52 <0.001 0.058 0.277

LC 692 ± 140 518 ± 126 422 ± 87 267 ± 48

Ejection duration, ms WC 323 ± 9* 318 ± 13a 313 ± 16a 286 ± 19abc* 0.003 0.005 0.002

LC 289 ± 18 305 ± 18a 290 ± 40 273 ± 28abc

Data are mean ± SD. WC, cycling in water condition; LC, cycling on land condition; SBP, systolic blood pressure; PP, pulse pressure; SV, stroke volume; AP, augmentation pressure.

a, b, and c indicate significant differences from rest, stage 1, and stage 2 in the same environment, respectively. *indicates significant difference vs. LC at same exercise intensity.

FIGURE 2 | Stroke volume (SV) response at rest and during exercise. Symbols

and error bars are mean and SD. The circle and square indicate water-based

and land-based exercise, respectively. The P-values for the two-way repeated

ANOVA data are presented (environment, intensity, and interaction). a,b,cshow

significant differences from rest, stage 1, and stage 2 of the same environment,

respectively. *indicates a significant difference from land at the same stage.

and P < 0.001, respectively). The aortic compliance index was
higher in WC than in LC (environment effect: P = 0.042), but
the effect of exercise intensity (P = 0.667) and the environment-
intensity interaction (P = 0.236) on aortic compliance index
was not significant. TTI and DTI were lower in WC than LC

(environment effect: P = 0.004 and P = 0.003, respectively,
Figure 3). TTI increased and DTI decreased with increasing
exercise intensity (intensity effect: P < 0.001 for both). SEVR
exhibited similar progressive reductions inWC (from 211± 44 to
75± 11) and LC (from 215± 34 to 78± 9; environment-intensity
interaction: P = 0.800).

The dP/dTmax showed a significant environment-intensity
interaction (P = 0.029) such that it gradually increased with
exercise intensity and was higher in LC than WC at the
highest intensity (Fisher’s LSD: P = 0.007) (Figure 4). Change in
dP/dTmax correlated strongly with change in SV (r = 0.717, P <

0.001).When ANCOVAwas performed in SVwith dP/dTmax as a
covariate, environment-intensity interaction was abolished (P =

0.543), but the environment effect on SV was still significant (P
< 0.001).

As shown in Figure 5, AIx was higher in WC than LC
(environment effect: P = 0.010) and progressively decreased
with increasing intensity (intensity effect: P < 0.001). Significant
environment-intensity interaction was not found (interaction
effect: P = 0.291). On the other hand, AIxC showed significant
environment-intensity interactions (P < 0.001); significant
differences at the rest (Fisher’s LSD: P = 0.034) were disappeared
during the exercise. The increases in AIxC from the rest to
stage 3 were significantly smaller in WC than in LC (6.8 ±

7.8 vs. 16.9 ± 3.8 mmHg, P < 0.001). When ANCOVA was
performed using HR as the covariate, the effect of environment
on AIx remained significant (environment effect: P = 0.001),
but the effect of exercise intensity was no longer significant
(intensity effect: P= 0.858). On the other hand, the environment-
intensity interaction on AIxC remained significant (interaction
effect: P = 0.016) when HR was taken into account. The
increases in AIxC from the rest to stage 3 were significantly
smaller in WC than in LC (9.5 ± 3.4 vs. 19.5 ± 3.3 mmHg, P
= 0.042).
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FIGURE 3 | Myocardial oxygen supply-to-demand balance indicators at rest

and during exercise. Symbols and error bars are mean and SD. The circle and

square indicate water-based and land-based exercise, respectively. The

P-values for the two-way repeated ANOVA data are presented (intensity,

environment, and interaction).

FIGURE 4 | The maximum rate of aortic pressure rise (dP/dTmax) response at

rest and during exercise and scatter plot of change in SV in responses to

changes in dP/dTmax. Filled circles indicate the change in WC condition, and

open squares and circles indicate the change in LC condition. a,b,cshow

significant differences from rest, stage 1, and stage 2 of the same environment,

respectively. *indicates a significant difference from land at the same stage.

DISCUSSION

The main findings of the study are as follows. First, both
water- and land-based cycling at mild-to-moderate intensity
induced similar reductions in the myocardial oxygen supply-to-
demand ratio. Second, compared with the land condition, SV
was significantly higher during water-based exercise even after
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FIGURE 5 | Augmentation index (AIx) and the companion metrics of AIx (AIxC) at rest and during exercise: absolute values (top) and heart rate (HR)-corrected values

via analysis of covariance (ANCOVA) (bottom). Symbols and error bars are mean and SD. The circle and square indicate water-based and land-based exercise,

respectively. a,b,cshow significant differences from rest, stage 1, and stage 2 of the same environment, respectively. *indicates a significant difference from land at the

same stage.

dP/dTmax was considered using ANCOVA. These results suggest
that water-based exercise does not elicit unfavorable myocardial
oxygen supply-to-demand balance at mild-to-moderate intensity
compared with land-based exercise. In addition, water-based
exercise may be more energy-efficient for the heart because it can
generate greater SV, even when the cardiac inotropy is the same
as that of land-based exercise.

Water immersion may increase preload and myocardial
oxygen demand. Increased hydrostatic pressure can shift
peripheral venous blood toward the heart during water

immersion and increase venous return. The cardiac volume
loading and increased ventricular lumen radius and internal
pressure may increase the myocardial oxygen demand (28).
Conversely, in the present study, TTI was significantly lower in
WC despite a longer ejection duration than LC. These results
suggest that lower TTI was mainly due to the lower aortic
SBP. Earlier studies indicated that thermoneutral head-out water
immersion decreased peripheral SBP, which may be related to
lowered sympathetic activity and arterial tone (29, 30). Similarly,
Ueno et al. (31) demonstrated lower SVR during thermoneutral
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head-out water immersion in young, healthy men, though the
difference did not reach statistical significance. In the current
study, we observed significantly lower SVR in WC. On the other
hand, since head-out cold water (∼14–27◦C) immersion raises
SBP (29, 32, 33), TTI might be increased (33).

To the best of our knowledge, this is the first study
to determine SEVR in responses to water-based exercise. In
contrast to the elevation of TTI, DTI decreased with increasing
exercise intensity in both conditions. The decreased DTI would
be mainly due to the shortened diastolic duration because
SEVR depends on the ratio of diastolic to systolic time
(34). Sharman et al. examined aortic hemodynamics, such
as myocardial oxygen demand, and supply during land-based
cycling at 50%−80%VO2max in healthy young adults. SEVR
decreased with increasing exercise intensity approximately from
200% at baseline to 65% during exercise at 80%VO2max in
participants without critical cardiac symptoms (35). In the
present study, SEVR exhibited similar progressive reductions
in WC (from 211 ± 44 to 75 ± 11%) and LC (from
215 ± 34 to 78 ± 9%). Taken together, contrary to the
conventional hypothesis that water-based exercise increases
myocardial oxygen consumption and reduces cardiac work
efficiency (36), such unfavorable responses were not observed
during WC in this study.

It should be emphasized that the exercise-induced increase
in SV was significantly smaller in WC than LC due presumably
to the higher baseline level of SV. It is considered that water
immersion increases central blood volume and cardiac inflow,
which increases SV through the Frank-Starling mechanism
that is characterized by a non-linear relation between end-
diastolic volume and SV (37). Interestingly, the increase in
dP/dTmax with exercise was smaller in WC compared with
LC, and there was a strong correlation between the changes
in dP/dTmax and SV. Besides, the absolute value of SV
was significantly higher in WC than LC after dP/dTmax was
considered. The dP/dTmax indicates the inotropic state of
the heart during isovolumic systole which is independent of
preload and afterload (27). According to the Frank-Starling
mechanism, immersion-induced increases in cardiac inflow
and preload seem to enhance cardiac contractility, whereas
the increase in SV was smaller in WC. Ultimately, a higher
cardiac inotropic effect might not be required during water-
based exercise.

The aortic pressure waveform is composed of a forward
traveling wave generated by left ventricular ejection and a
reflected wave (e.g., AP) returning from the periphery. The earlier
return of undamped reflected wave during late systole increases
afterload while reducing aortic pressure during diastole, which
together augments aortic pulsatile hemodynamics (38). However,
in this study, many subjects exhibited negative values of AP
during exercise due presumably to the delayed return of reflected
wave in diastole. These observations suggest a negligible impact
of wave reflection on pulsatile hemodynamics.

The arterial load would increase during progressive exercise,
but we indeed observed a gradual reduction in AIx. Even
after the potential effect of increased HR was adjusted using
ANCOVA, AIx did not show a significant increase. This is

related to increased PP (a denominator of AIx) during exercise
and suggests a misinterpretation of physiological data using
such dimensionless ratio-based metrics. The ratio variable,
such as AIx calculated from AP and PP may lose important
information underlying its physiology (22).With these rationales,
this study presented AIxC, which is calculated from the
hypotenuse of the AP–PP relationship based on the Pythagorean
theorem (22).

Interestingly, AIxC showed a significant environment-
intensity interaction; the exercise-induced increases were
significantly smaller in WC than in LC (P = 0.042) when the
effect of increased HR was adjusted. In addition, the aortic
compliance index was significantly higher in WC than LC.
These results suggest that the rise in arterial afterload with
exercise is smaller in water than on land. The Pythagorean
theorem-based transformations could provide better insight
into underlying physiology. For a better understanding of
physiological impact, further study is required in the field of
in-water exercise.

Study Limitations
Several methodological considerations should be mentioned.
First, we studied only apparently healthy youngmen. To improve
the generalizability and our understanding of cardiovascular
physiology during water exercise, further studies are needed on
other populations, such as young women, older individuals, and
people with increased cardiovascular disease risk. Second, the
established generalized transfer function (i.e., aorta-radial artery)
was applied on finger arterial pressure waveforms measured
by photoplethysmography to compute aortic blood pressure.
The validity of using the general transfer function (GTF) on
finger arterial pressure waveform for estimating the aortic
hemodynamics was confirmed by our earlier study (18, 19).
Third, semi-recumbent leg cycling exercise is not a typical
exercise mode in water. However, it was suitable to administer
our exercise protocols in water and on land. Notably, compared
with aquatic exercise in standing posture, the impact of hydraulic
pressure on the systemic and aortic hemodynamics might be
smaller. Further study using other exercise modes and different
underwater environments (e.g., water depth, temperature, and
flow) is required. Finally, to match oxygen consumption during
exercise in WC and LC, we could not conduct two protocols
in random order. However, we had more than 1 week of
wash-out to minimize systematic error derived by fatigue and
learning effects.
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