
REVIEW
published: 28 September 2021

doi: 10.3389/fcvm.2021.749756

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 September 2021 | Volume 8 | Article 749756

Edited by:

Shijun Wang,

Fudan University, China

Reviewed by:

Piotr Bragoszewski,

Nencki Institute of Experimental

Biology (PAS), Poland

Xin Jie Chen,

Upstate Medical University,

United States

*Correspondence:

Ming-Hui Zou

mzou@gsu.edu

Specialty section:

This article was submitted to

Cardiovascular Metabolism,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 29 July 2021

Accepted: 26 August 2021

Published: 28 September 2021

Citation:

Zhao F and Zou M-H (2021) Role of

the Mitochondrial Protein Import

Machinery and Protein Processing in

Heart Disease.

Front. Cardiovasc. Med. 8:749756.

doi: 10.3389/fcvm.2021.749756

Role of the Mitochondrial Protein
Import Machinery and Protein
Processing in Heart Disease
Fujie Zhao and Ming-Hui Zou*

Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States

Mitochondria are essential organelles for cellular energy production, metabolic

homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of

mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized

as precursors in the cytosol, and imported into mitochondria by mitochondrial

protein import machinery. Mitochondrial protein import systems function not only as

independent units for protein translocation, but also are deeply integrated into a

functional network of mitochondrial bioenergetics, protein quality control, mitochondrial

dynamics and morphology, and interaction with other organelles. Mitochondrial protein

import deficiency is linked to various diseases, including cardiovascular disease. In this

review, we describe an emerging class of protein or genetic variations of components

of the mitochondrial import machinery involved in heart disease. The major protein

import pathways, including the presequence pathway (TIM23 pathway), the carrier

pathway (TIM22 pathway), and the mitochondrial intermembrane space import and

assembly machinery, related translocases, proteinases, and chaperones, are discussed

here. This review highlights the importance of mitochondrial import machinery in heart

disease, which deserves considerable attention, and further studies are urgently needed.

Ultimately, this knowledge may be critical for the development of therapeutic strategies

in heart disease.

Keywords: mitochondrial protein import machinery, heart disease, TOM complex, TIM23 complex, TIM22 complex,

CHCHD4 (MIA40)

INTRODUCTION

Mitochondria are vital for energy production in eukaryotic cells, generating cellular ATP
through oxidative phosphorylation (OXPHOS) (1). Importantly, mitochondria are also crucial
for numerous metabolic pathways, maintenance of calcium homeostasis, and regulation of cell
proliferation and apoptosis (2). However, only 13 proteins involved in OXPHOS are encoded by the
mitochondrial genome in mammals. About 99%—more than 1,500—mammalian mitochondrial
proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and
need to be imported into mitochondria by mitochondrial protein import machinery (3). To
date, six translocases of the mitochondrial protein import machinery have been discovered. The
TOM complex serves as the entry gate for most precursors at the outer membrane (OM); the
TIM22 and TIM23 complexes at the inner membrane (IM) are responsible for the insertion of
carrier precursors into the IM and the translocation of presequence-carrying precursors into the
mitochondrial matrix or IM individually; the mitochondrial intermembrane space (IMS) import
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and assembly machinery (MIA) complex mediates the import
of cysteine-rich proteins to the IMS; the SAM and MIM
complexes are responsible for insertion of β-barrel proteins
and α-helical proteins, respectively, into the OM (Figure 1
and Table 1) (3). The dynamic interaction and cooperation of
these mitochondrial protein import pathways enable cells to
respond to environmental stress and energy demands rapidly
and with plasticity. Further, mitochondrial protein import
pathways function not only as independent units for protein
translocation, but also are deeply integrated into a functional
network of mitochondrial bioenergetics, protein quality control,
mitochondrial dynamics and morphology, and interaction with
other organelles (4). Mitochondrial protein import deficiency is

FIGURE 1 | Overview of the major mitochondrial protein import pathways in yeast. First, the presequence pathway transports presequence-carrying cleavable

preproteins to the mitochondrial matrix (1) or IM (2, 3) (in green). Presequence-carrying precursors to the mitochondrial matrix (1) are typically recognized by TOM at

the OM, passage the IM through TIM23, and are driven into the matrix assisted by PAM. 1ψ across the IM is essential for the entry of presequences into the matrix.

The presequences are cleaved by MPP, and additional proteolytic processing occurs by intermediate cleaving peptidases. Presequence-carrying precursors that

integrate into IM follow two distinct routes. IM proteins are either directly laterally released from the TIM23 complex (2) or transported into the matrix first followed by

further insertion into the IM with the help of Oxa1 (3). Oxa1 also is responsible for insertion of IM proteins synthesized on mitochondrial ribosomes. Second, in the

carrier pathway for the import of precursor proteins without a cleavable presequence, yet with internal targeting signals into the IM (in yellow), carrier precursors are

accompanied by cytosolic chaperones, delivered to the Tom70 receptor of the TOM complex, bound by small TIM chaperones in the IMS, and eventually integrated

into the IM by the TIM22 complex in a 1ψ-dependent manner. Third, in the MIA pathway for cysteine-rich proteins to the IMS (in blue), the precursors are kept in a

reduced state in the cytosol, imported by the TOM complex, oxidized by the MIA machinery, and stay in an oxidized state in the IMS. Fourth, in the SAM complex for

β-barrel proteins to the OM (in red), the precursors of β-barrel proteins are imported by the TOM complex at the OM, bound to small TIM chaperones in the IMS, and

inserted into the OM by the SAM complex. Fifth, some proteins with α-helical transmembrane segments are inserted into the OM by the MIM complex (in purple).

Typically, the Tom40 channel is not involved in this route, but Tom70 is indispensable. In addition, ERMES is a complex that connects ER and mitochondrial OM,

facilitating the dynamic substrate exchange between ER and mitochondrion. Mdm10 is a protein with dual localization in SAM and ERMES. OM, outer membrane; IM,

inner membrane; IMS, intermembrane space; TOM, the translocase of the outer membrane; TIM23, the inner membrane translocase TIM23; PAM, presequence

translocase-associated motor; 1ψ, membrane potential; MPP, mitochondrial processing peptidase; Oxa1, oxidase assembly protein 1; TIM22, the carrier translocase

of the inner membrane TIM22; MIA, mitochondrial intermembrane space import and assembly machinery; SAM, sorting and assembly machinery; MIM, mitochondrial

import complex; ERMES, endoplasmic reticulum (ER)–mitochondria encounter structure.

linked to various diseases, including neuropathies, myopathies,
neurodegenerative diseases, cancer, and cardiovascular disorders
(5, 6). The heart is a high-energy–requiring organ that depends
heavily on mitochondrial activity and the efficient import of
mitochondrial proteins. However, in heart disease, the roles
of the mitochondrial protein import machinery have not been
well-studied. Here, we summarize the current knowledge on
mitochondrial protein import in heart disease for the first time.
This review highlights the importance of the mitochondrial
import machinery in heart disease, which deserves considerable
attention, and further studies are urgently needed. Ultimately,
this knowledgemay be critical for the development of therapeutic
strategies in heart disease.
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TABLE 1 | Components of mitochondrial import machinery in fungi and mammals.

Complex Fungi

(protein/gene name)

Mammals

(protein/gene name)

TOM Tom20/TOM20 Tom20/TOMM20

Tom22/TOM22 Tom22/TOMM22

Tom70/TOM70 Tom70/TOMM70

Tom40/TOM40 Tom40/TOMM40

Tom5/TOM5 Tom5/TOMM5

Tom6/TOM6 Tom6/TOMM6

Tom7/TOM7 Tom7/TOMM7

TIM22 Tim22/TIM22 Tim22/TIMM22

Tim9/TIM9 Tim9/TIMM9

Tim10/TIM10 Tim10a/TIMM10A

Tim12/TIM12 Tim10b/TIMM10B

Tim54/TIM54

Tim18/TIM18

Sdh3/SDH3

AGK/AGK

Tim29/TIMM29

TIM23 Tim50/TIM50 Tim50/TIMM50

Tim23/TIM23 Tim23/TIMM23

Tim17/TIM17 Tim17a/TIMM17A

Tim17b/TIMM17B

Tim21/TIM21 Tim21/TIMM21

PAM Tim44/TIM44 Tim44/TIMM44

mtHsp70/SSC1 Mortalin/HSPA9

(Pam16/Tim16)/

(PAM16/TIM16)

(Tim16/Magmas)/

(PAM16/MAGMAS)

(Pam18/Tim14)/

(PAM18/TIM14)

(DnaJC15/MCJ)/

DNAJC15

(DnaJC19/Tim14)/DNAJC19

(Mge1/GrpE)/GRE1 mtGrpE/GRPEL1

Pam17/PAM17

OXA Oxa1/OXA1 Oxa1/OXA1L

Matrix (Mas1/β-MPP)/MAS1 β-MPP/PMPCB

(Mas2/α-MPP)/MAS2 α-MPP/PMPCA

MIP/OCT1 MIP/MIPEP

Hsp60/HSP60 Hsp60/HSPD1

Hsp10/HSP10 Hsp10/HSPE1

mtHsp70/SSC1 mtHsp70/GRP75

(Mge1/GrpE)/GRE1 mtGrpE/GRPEL1

MIA Mia40/MIA40 Mia40/CHCHD4

Erv1/ERV1 ALR/GFER

AIF/AIFM1

SAM Sam50/SAM50 Sam50/SAMM50

Sam35/SAM35 Metaxin-1/MTX1

Or Metaxin-2/MTX2

Sam37/SAM37 Metaxin-3/MTX3

Mdm10/MDM10

Soluble IMS

TIMs

Tim9/TIM9 Tim9/TIMM9

Tim10/TIM10 Tim10a/TIMM10A

Tim8/TIM8 Tim10b/TIMM10B

Tim13/TIM13 Tim8a/TIMM8A

Tim8b/TIMM8B

Tim13/TIMM13

Cytosolic

chaperones

Hsp70/(SSB1 or SSB2) Hsc70/HSPA8

Hsp90 alpha/HSP90A

Tom34/TOMM34

AIP/AIP

OVERVIEW OF MITOCHONDRIAL
PROTEIN IMPORT MACHINERY (IN YEAST)

Presequence Pathway to the Mitochondrial
Matrix and IM
The presequence pathway is the best characterized pathway,
responsible for the import of∼60% of all mitochondrial proteins
(7). The precursor proteins in this pathway carry a cleavable
N-terminal presequence that functions as a targeting signal (7–
9). This unique feature of the pathway distinguishes it from all
the others, where the precursor proteins do not have cleavable
presequences, but possess different kinds of internal targeting
signals. Presequence-carrying precursors to the mitochondrial

matrix are typically recognized by the translocase of the outer
membrane (TOM) (9–11), passaged through the IM by the
translocase of the inner membrane (TIM23) (12–16), and
driven into the matrix assisted by the presequence translocase-
associated motor (PAM) (Figure 1) (17–24). The membrane
potential (1ψ) across the IM is essential for the activation
of the TIM23 channel and the translocation of presequences
into the matrix (25–28). The presequences are cleaved by
the mitochondrial processing peptidase (MPP) (3, 29–31), and
additional proteolytic processing occurs by intermediate cleaving
peptidases (7, 32–34). Presequence-carrying precursors that

integrate into the IM follow two distinct routes (Figure 1).
IM proteins are either directly released laterally from the
TIM23 complex (35–37) or transported first into the matrix,
followed by further insertion into the IM with the help of
the oxidase assembly protein 1 (Oxa1) insertase (38–41). Oxa1
also is responsible for insertion of IM proteins synthesized on
mitochondrial ribosomes (42).

The presequences are located at the N-termini of preproteins
and typically consist of ∼15–50 amino acids. An essential
characteristic of mitochondrial presequences is the formation
of an amphipathic α-helix that is specifically recognized by
mitochondrial import receptors and other mitochondrial import
components during preprotein translocation by TOM, TIM23,
and PAM (3).

The TOM complex is the main gate for precursors entering
mitochondria. The TOM complex is composed of Tom20,
Tom22, and Tom70 as receptors, β-barrel protein Tom40
forming the channel, and three small associated proteins,
Tom5, Tom6, and Tom7 (11, 43–45). Tom20 and Tom22
function cooperatively as the receptors for presequence-carrying
precursors (9, 10, 46). Tom70 mainly functions as the receptor
for preproteins with internal targeting sequences, such as carrier
precursors (47–52). Presequence-carrying precursors cross the
Tom40 channel as linear polypeptide chains (44, 45, 53–57), and
interact with the tail of the Tom22 receptor in the IMS (57).
Tom22 has presequence binding sites on both the cytoplasmic
and IMS sides of the OM. The exact roles of the three small
subunits, Tom5, Tom6, and Tom7, have not been well-clarified. It
has been proposed that they are not essential for TOM functions
but are involved in the assembly and stability of the TOM
complex (58–61).

The TIM23 complex translocates cleavable preproteins into
mitochondrial matrix or IM. Tim50, Tim23, Tim17, and Tim21
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compose the main elements of the TIM23 complex (12, 13,
16, 62–65). Tim50 functions as a presequence receptor that
binds preproteins emerging in the IMS (63) and a channel
blocker that closes out the TIM23 channel in the absence of
preproteins (25, 66–69). Tim23 and associated partner Tim17
form the channel (16, 25, 28, 64, 70, 71). Tim21, Tim50, and
Tim23 expose domains to the IMS that transiently connect the
TOM and TIM23 complexes to facilitate the preprotein transfer
(16, 67, 72–74). Additionally, Tim21 also physically links the
TIM23 complex to the respiratory chain III-IV supercomplex
[bc1 complex and cytochrome c oxidase (COX)] (65, 75, 76).
Tim21 thus plays a dual role in TOM-TIM23 transfer and the
recruitment of respiratory chain complexes. A small membrane
protein, Mgr2, functions as a lateral gatekeeper for preproteins
that are sorted into the IM (35, 76). The 1ψ across the IM is
crucial for translocation of the presequences through the Tim23
channel, which is negative at the matrix side and positive at the
IMS side of the IM, whereas presequences are mostly positively
charged. Two roles have been assigned to 1ψ: activation of
TIM23 channel (25) and an electrophoretic effect that drives the
import of presequences (77, 78).

PAM. The 1ψ is a prerequisite for translocation of the
presequence across the TIM23 channel. Nevertheless, it is not
sufficient to import the entire protein into the matrix. PAM
is necessary for the translocation of matrix proteins. The core
of PAM is formed by the molecular chaperone mitochondrial
70 kDa heat shock protein (mtHsp70) (17, 18) and its co-
chaperones (Tim44, Mge1, Pam16, Pam17, and Pam18) (16, 21,
79, 80). mtHsp70 binds the unfolded polypeptide chain and
drives its translocation into the matrix in an ATP-dependent
manner (17, 18). The peripheral membrane protein Tim44 is
a docking site for mtHsp70 at the TIM23 complex (21). Mge1
(also known as mitochondrial GrpE) stimulates the release
of ADP from mtHsp70 (81). Pam16, Pam17, and Pam18 are
three membrane-associated co-chaperones. Pam18 (also termed
Tim14) is a J-type co-chaperone that stimulates the ATPase
activity of mtHsp70 (82, 83). The J-related Pam16 (Tim16) forms
a complex with Pam18 and functions as a negative regulator
(82–86). Pam17 mediates the organization of the TIM23–PAM
interaction (79, 87).

MPP. Once arriving in the matrix, the presequences of
both IM-sorted and matrix-targeted precursors are removed
by a heterodimeric enzyme, MPP (3, 29–31, 88). Additional
proteases, the intermediate cleaving peptidase (Icp55) (7,
89) and the octapeptidyl aminopeptidase (Oct1, also termed
mitochondrial intermediate peptidase, MIP) (90, 91), can remove
destabilizing N-terminal amino acid residues of the imported
proteins. mtHSP70 and other chaperones, like the HSP60–HSP10
chaperonin complex, further assist proteins folding into their
active forms (92). The clipped presequence peptides undergo
subsequent degradation by the matrix peptidasome, termed
presequence protease (PreP) or Cym1 (93, 94).

OXA translocase is vital for exporting proteins from the
mitochondrial matrix into the IM. OXA has three different
roles. (1) Proteins encoded by the mitochondrial genome
are exported into the IM by Oxa1 (42, 95–97). (2) Some
presequence-carrying proteins imported into the matrix via the

TOM-TIM23 machinery are exported into the IM via Oxa1.
This import-export pathway is termed conservative sorting of
nuclear-encoded IM proteins (38–41, 98–100). (3) Oxa1 is also
vital for the assembly of the carrier translocase TIM22 (38,
101).

Carrier Pathway Into the IM
The carrier pathway is the second mitochondrial protein import
pathway to be discovered, and is responsible for importing
precursor proteins without a cleavable presequence, yet with
different kinds of internal targeting signals (3, 102–104). The
carrier precursors are accompanied by cytosolic chaperones, such
as the HSP70 and HSP90 classes in the cytosol, directly delivered
to the Tom70 receptor of the TOM complex (47, 105, 106), and
then bound by small TIM chaperones in the IMS (107–110) and
eventually integrated into the IM by the carrier translocase of
the IM (TIM22) complex in a 1ψ-dependent manner (Figure 1)
(109, 111–116).

Chaperone-guided transport of carrier precursors

(including chaperones in the cytosol and IMS). The carrier
import pathway uses the same mitochondrial entry gate
as the presequence pathway, the TOM complex. However,
the mechanisms of translocation differ significantly. The
involvement of cytosolic (47, 105, 106) and mitochondrial
IMS chaperones, which is crucial to prevent aggregation of the
hydrophobic carrier precursors in the aqueous environment,
is the main feature distinguishing this from the presequence
pathway. Chaperones of the Hsp70 and Hsp90 classes directly
participate in delivering the precursors to Tom70 (47, 105, 106).
The receptor Tom70 possesses two distinct binding sites, one
for the precursor and another for a chaperone (47, 49, 117),
ATP is needed to release the precursor proteins from the
cytosolic chaperones (47, 48). Upon binding to Tom70, the
carrier precursors are transferred to the central receptor
Tom22, followed by insertion into the Tom40 channel in
a loop conformation (118, 119), and transferred to small
TIM chaperones in the IMS (107–110). These small TIM
heterohexameric chaperone complexes, like the Tim9-Tim10
complex (120, 121) and the homologous Tim8-Tim13 complex
(122), bind to the precursor proteins and transfer them through
the aqueous IMS to IM.

Insertion of carrier precursors into the IM. The TIM22
complex consists of the receptor-like protein Tim54, the channel-
forming protein Tim22, the Tim9-Tim10-Tim12 chaperone
complex, and the Tim18-Sdh3 module. The majority of Tim54
domain is exposed to the IMS and probably functions as the
binding site for the Tim9-Tim10-Tim12 complex (123, 124).
The Tim9-Tim10-Tim12 complex is a modified form of the
IMS chaperone, docking onto the TIM22 complex (123, 125).
Carrier precursors are inserted into the Tim22 channel in a 1ψ-
dependent manner (115). The Tim18-Sdh3 module is involved
in the assembly of the TIM22 complex (126, 127). The carrier
precursors are first bound to the Tim9–Tim10–Tim12 chaperone
complex on the surface of the translocase. Upon activation of the
Tim22 channel (1ψ-dependent), the precursors are inserted into
the translocase, probably in a loop structure. Finally, the proteins
are laterally released into the lipid phase of the IM.
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MIA Complex
Many IMS proteins contain internal targeting signals and
characteristic cysteine motifs. In the cytosol, the precursors are
kept in a reduced and unfolded state (128). Upon import by the
TOM complex (60), they are oxidized by theMIAmachinery, and
stay in the IMS in an oxidized state (Figure 1). The MIA system
consists of two main components: the oxidoreductase Mia40 and
the sulfhydryl oxidase Erv1 (129–133).

Mia40 serves as a receptor and protein disulfide

carrier. Most IMS proteins are synthesized without cleavable
presequences but contain cysteine motifs. Unlike presequence-
carrying precursors and carrier precursors, none of the Tom
receptors is necessary for the import of MIA substrates (60, 61).
Instead, upon passage through the Tom40 channel (60), Mia40
functions as a receptor on the IMS side of the Tom40 channel
(133–138). It recognizes an internal signal of the precursor
proteins, typically consisting of a hydrophobic element flanked
by a cysteine residue (133, 139, 140). Mia40 binds to precursors
via hydrophobic interaction and catalyzes the formation of
disulfide bonds in imported proteins (133, 138). The disulfide
bonds facilitate the conformational stabilization and assembly of
many IMS proteins.

Erv1 cooperates with Mia40 in a disulfide relay. Mia40 does
not form disulfide bonds de novo. Disulfide bonds are generated
by Erv1 and transferred to Mia40 by the formation of transient
intermolecular disulfide bonds (141). Mia40 then transfers the
disulfides onto the imported protein. Upon transfer of disulfide
bonds to proteins, cysteines of Mia40 become reduced and are
re-oxidized by Erv1. Electrons originating from the oxidation
of imported proteins flow in the opposite direction. They flow
from Mia40 to Erv1 and then to O2 or cytochrome c of the
respiratory chain (141–144). In addition to most IMS proteins,
some IM and matrix proteins are also MIA-system–dependent
(28, 71, 113, 114, 145).

Sorting Pathways of Mitochondrial OM
Proteins
All the mitochondrial OM proteins are imported from the
cytosol. The membrane contains two different types of integral
protein: β-barrel proteins, which are integrated into the
membrane by multiple transmembrane β-strands, and α-helical
proteins, which are membrane-anchored by one or more α-
helical transmembrane segments.

Sorting and AssemblyMachinery for β-Barrel Proteins. The
precursors of β-barrel proteins initially pass through the TOM
complex at the OM (146), then bind to small TIM chaperones in
the IMS (110), like the carrier precursors, to avoid aggregation
(Figure 1). Subsequent insertion of the β-barrel proteins into
the OM is performed by the SAM complex, which consists
of a membrane-integrated protein, Sam50 (Tob55), and two
peripheral membrane proteins exposed to the cytosol, Sam35
and Sam37 (147–149). Folding of the β-barrel proteins occurs
at Sam50-Sam35, followed by lateral release into the lipid
phase of the OM (148, 150, 151). Sam37 directly interacts with
Tom22, coupling the TOM and SAM complexes into a transient

supercomplex that promotes the efficient transfer of precursor
proteins (54, 152).

OM Insertion of α-Helical Proteins. The main α-helical
proteins are classified as signal-anchored proteins (containing
an α-helical transmembrane segment at the N-terminus), tail-
anchored proteins (containing an α-helical transmembrane
segment at the C-terminus), and polytopic (multi-spanning)
OM proteins. α-helical OM proteins are imported via distinct
routes that do not involve the Tom40 channel, in contrast
to most mitochondrial proteins. The insertion of some signal-
anchored and polytopic OM proteins is performed by the MIM
complex (153–156), which consists of multiple copies of Mim1
and one copy of Mim2, both of which are small single-spanning
OM proteins (Figure 1) (157, 158). Tom70 is required for the
insertion of some polytopic proteins into MIM (155, 156). In the
case of tail-anchored proteins and somemulti-spanning proteins,
import is aided by the lipid composition of the membrane,
and no proteinaceous machinery has been identified (159–162).
However, the exact mechanism for sorting and insertion of α-
helical outer membrane proteins is only partially understood, and
further studies are urgently needed.

INTEGRATION OF MITOCHONDRIAL
PROTEIN IMPORT INTO FUNCTIONAL
NETWORKS

Mitochondrial protein import pathways not only function
as independent units for protein translocation, but also are
deeply integrated into a functional network of mitochondrial
bioenergetics, protein quality control, mitochondrial dynamics
and morphology, and interaction with other organelles.

The protein import activity serves as a sensor for the fitness

and quality of mitochondria. The protein import activity is
determined by the energetic state (1ψ, ATP levels) and protein
homeostasis of mitochondria. Both the translocation of precursor
proteins through the TIM23 complex and the TIM22 complex
require the 1ψ (25, 77, 78, 113, 115, 116). The ATP-dependent
chaperones play essential roles in delivering carrier precursors
to Tom70 receptor (47, 48), driving presequence precursor
translocation to the matrix (17, 18) and folding in the matrix
(92). Impairment of respiratory chain activity, reduction of ATP
levels, and accumulation of misfolded proteins or reactive oxygen
species (ROS) in the matrix (163) will directly affect the import-
driving activity of the translocases. The protein import activity of
mitochondria is thus a sensitive indicator of their energetic state
and fitness.

Mitochondrial protein import machinery and respiratory

chain assembly. Both the insertion of mitochondrial-encoded
proteins from the matrix into the IM and the import of
nuclear-encoded precursors from the cytosol into mitochondria
rely heavily on the mitochondrial protein import machinery.
Increased mitochondrial ROS levels generated by the respiratory
chain contribute to decreased mitochondrial translation
efficiency (164). In addition, the TIM23 complex forms
supercomplexes with respiratory complexes III and IV as
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well as with the ADP/ATP carrier. These interactions of the
TIM23 complex facilitate protein import under energy-limiting
conditions (65, 75, 165) and can also promote the assembly
of respiratory complexes (166–168). The respiratory chain
complexes also function as assembly platforms for some PAM
subunits (75).

Mitochondrial protein import machinery associated with

protein quality control, specifically in the following aspects:
(1)Mitochondrial unfolded protein response (UPRmt): the stress-
activated transcription factor ATFS-1 contains a mitochondrial
presequence and a nuclear localization signal. In healthy
mitochondria, ATFS-1 is imported into the mitochondrial matrix
and degraded by the LON AAA+ protease. When mitochondrial
import is mildly impaired, ATFS-1 is translocated into the
nucleus, where it functions as a transcription factor and induces
expression of mitochondrial chaperones, proteases, and other
elements to promote recovery of impaired mitochondria (169–
171). (2) Unfolded protein response activated by mistargeted
mitochondrial proteins (UPR [am]): upon mild damage to
mitochondrial protein import, some mitochondrial precursors
fail to enter mitochondria and accumulate in the cytosol, thus
triggering mitochondrial Precursor Over-accumulation Stress
(mPOS). This is followed by a stress response termed UPR [am]
that reduces cytosolic protein synthesis and increases proteasome
activity to clear the mistargeted proteins from the cytosol
(172, 173). (3) PTEN-induced kinase 1 (PINK1)/Parkin-induced
mitophagy: in healthy conditions, PINK1 is imported into the
IM by the presequence pathway and processed by MPP and the
presenilin-associated rhomboid-like protease PARL, following
the retrotranslocation into the cytosol and degradation by the
proteasome (174, 175). Upon severe damage to mitochondrial
protein import, PINK1 remains at the OM bound to the TOM
complex, where it phosphorylates ubiquitin and the E3 ubiquitin
ligase Parkin, triggering the removal of damaged mitochondria
by mitophagy (176, 177). (4) Mitochondria as guardian in
the cytosol (MAGIC): in certain conditions, some aggregation-
prone or misfolded cytosolic proteins may be imported into
mitochondria for further degradation. This process is termed
MAGIC, suggesting a crucial role of mitochondria in cytosolic
proteostasis (178). (5) Proteolysis of mitochondrial proteins:
upon removal of the presequence by MPP, destabilizing N-
terminal amino acid residues of the imported proteins can be
further removed by the intermediate cleaving peptidase Icp55
(which removes a single amino acid) or the mitochondrial
intermediate peptidase Oct1 (which removes an octapeptide)
(7, 34). The matrix AAA+ proteases, CLPXP and LON, degrade
misfolded proteins and prevent protein aggregation in the matrix
(179–182). The IM contains two AAA+ proteases: the i-AAA
protease removes misfolded proteins from the IM, IMS, and
OM (183–185), whereas the m-AAA protease degrades proteins
from the matrix and IM (186, 187). Thus, the process of
mitochondrial protein import is connected to protein turnover
and quality control.

Mitochondrial protein import machinery connected to

mitochondrial membrane architecture and dynamics. The
mitochondrial contact site and cristae organizing system
(MICOS) is a large protein complex enriched at crista junctions

of the IM (188–190). It is crucial for the maintenance of
inner membrane cristae organization and is embedded into an
interactional network with protein translocases, including TOM,
SAM, andMIA. Thus, it provides a dynamic link between protein
import, mitochondrial membrane dynamics, and membrane
contact sites (136, 188, 189, 191).

The inner-membrane fusion protein optic atrophy (OPA1) is
an example of how protein import and processing are connected
tomitochondrial membrane dynamics. OPA1 is first processed by
matrix MPP, generating a long isoform, and further processed by
different IM proteases, AAA+ protease, or OMA1 in mammals
and Pcp1 in yeast, yielding a short isoform (192–195). The
balance between long OPA1 and the short isoform is essential for
membrane fusion and fission, which is modulated by stress and
mitochondrial energetic state. Thus, the processing of imported
mitochondrial protein is linked to mitochondrial fragmentation,
mitophagy, or even cell death.

Endoplasmic reticulum–mitochondria encounter structure

(ERMES). ERMES is a multi-subunit protein complex that
connects the endoplasmic reticulum and mitochondrial OM,
mainly formed by the MDM complex (196, 197). Other
molecules, such as voltage-dependent anion-selective channel
(VDAC) (198), TOM70 (199, 200), and inositol trisphosphate
(inositol 1,4,5-trisphosphate) receptors (194) also play crucial
roles in forming ER-mitochondria contact sites. The outer
membrane protein Mdm10 is a subunit of both SAM and
MDM complexes (196). The shuttling of Mdm10 between
SAM and MDM is regulated by the small protein Tom7
(58, 196, 197, 201). Therefore, TOM, SAM, and ERMES are
linked as a functional network, involved in the maintenance
of mitochondrial morphology and the transport of lipids and
calcium (202–205).

MITOCHONDRIAL PROTEIN IMPORT
MACHINERY AND HEART DISEASE

Mitochondrial dynamics have become a key topic in the field
of heart disease. However, only limited studies investigated
the involvement of mitochondrial protein import machinery
in these diseases (Summarized in Table 2). Moreover, most of
these studies were related to the presequence pathway, which
undertakes the import of∼60% of all mitochondrial proteins.

Presequence Pathway Associated With
Heart Disease
TOM Complex in Heart Disease
Tom20 is an essential receptor subunit of the TOM complex
that recognizes mitochondrial precursor proteins with cleavable
N-terminal presequences. Tom20 expression was reduced by
ischemic insults (206, 207), and showed a cardioprotective
role against ischemia/reperfusion (I/R) injury through
enhancing the mitochondrial import of PKCepsilon (PKCε)
in an HSP90-dependent manner (208). PKCε, a member of
the serine/threonine kinase family, has been demonstrated to
play a protective role against cardiac I/R injury (208, 216, 293).
Additionally, calcium homeostasis, which is closely related to
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TABLE 2 | Reported proteins or genes in mitochondrial protein import machinery associated with heart disease.

Protein/gene name Import pathway/role Associated disease/stress or

physiological process

Expression or function in disease References

Tom20/

TOMM20

TOM complex/

Receptor

Myocardial I/R injury;

Cardiac calcium overload

Decreased level of Tom20 protein upon myocardial I/R injury; Potential regulator of cardiac

calcium homeostasis.

(206–210)

Tom22/

TOMM22

TOM complex/

Receptor

Cardiac calcium homeostasis;

Cardiac aldosterone synthesis;

Chronic hypoxia

Receptor for mitoBKCa; Promoting the synthesis of cardiac aldosterone; Increased level of

Tom22 mRNA in chronically hypoxic rat hearts.

(211–215)

Tom70/

TOMM70

TOM complex/

Receptor

Cardiac hypertrophy; Myocardial I/R

injury; Myocardial infarction; Diabetic

cardiomyopathy; Heart failure

Decreased level of Tom70 protein in hypertrophic and diabetic hearts, upon I/R injury or

post-MI; Altered phosphorylation level of Tom70 in rat hearts with heart failure.

(216–228)

Tom40/

TOMM40

TOM complex/

Channel

Cardiovascular-related traits; Cardiac

arrhythmia; Heat stress-induced

apoptosis; Cardiac aging

TOMM40/APOE locus was associated with the main risk factors for cardiovascular disease;

Homozygous deletion of TOMM40 in mammals was lethal; Heterozygous TOMM40

knockdown mice with ECG alteration; Upregulated Tom40 associated with heat stress-induced

cardiomyocyte apoptosis; Reduced expression of Tom40 in hearts of old DCM patients.

(214, 215, 229–

238)

Tom5/

TOMM5

TOM complex/

Assisted protein

Lipoprotein-associated

phospholipase A2 activity

Correlated with increased activity of lipoprotein-associated phospholipase A2. (239)

Tim50/

TIMM50

TIM23 complex/

Receptor

Cardiovascular developmental

defects; DCM and cardiac

hypertrophy

Loss of Tim50 impaired cardiac development in zebrafish embryos; Tim50 deficiency

exacerbated cardiac hypertrophy in mice; Downregulated expression of Tim50 in human DCM

hearts and in murine hypertrophic hearts.

(240, 241)

Tim23/

TIMM23

TIM23 complex/

Channel

Myocardial H/R or I/R injury;

DCM

Reduced Tim23 expression level in hearts of patients with DCM, upon H/R or I/R injury. (207, 238, 242–

244)

mtHSP70/

GRP75

TOM-TIM23 pathway/

PAM

Myocardial H/R injury;

Diabetic cardiomyopathy; Chronic AF

Decreased expression of mtHSP70 upon H/R injury, in IFM of T1DM hearts and SSM of T2DM

hearts; Increased expression of mtHSP70 in human hearts with chronic AF.

(245–249)

Tim14/

DNAJC19

TOM-TIM23 pathway/

IM cochaperone

DCMA syndrome Mutations in DNAJC19 were related to DCMA syndrome, a novel autosomal recessive

syndrome characterized by early-onset DCM, non-progressive cerebellar ataxia, testicular

dysgenesis, growth failure, mild developmental delay, and 3-methylglutaconic aciduria.

(250–255)

MAGMAS/

MAGMAS

TOM-TIM23 pathway/

IM cochaperone

Early death due to heart failure Two patients from a family with MAGMAS mutation died at 2 years of age of heart failure. (256)

HSP90/

HSP90A

TOM-TIM23 pathway/

Cytosolic chaperone

Myocardial I/R injury HSP90 played a beneficial role against myocardial I/R injury. (208, 217, 257–

262)

HSP60/HSPD1 and

HSP10/HSPE1

TOM-TIM23 pathway/

MM chaperones

DCM; Myocardial I/R injury; chronic

AF; Early death due to heart failure

Cardiac-specific HSP60 deficiency in mice led to DCM; HSP10 overexpression protected

against myocardial I/R injury; Both HSP60 and HSP10 were upregulated in human hearts with

chronic AF; A girl with HSP60 deficiency died at 2 days of age of heart failure.

(263–266)

MPPα/

PMPCA

TOM-TIM23 pathway/

MPP

PMPCA gene mutation-associated

multisystem impairments; Myocardial

I/R injury

PMPCA mutants had multisystem impairments, including developmental delay, severe

hypotonia, ataxia, lactic acidemia, severe hypertrophic left ventricular cardiomyopathy;

Downregulation of MPPα was beneficial to cardiomyocytes during I/R injury.

(258, 267)

MIP/

MIPEP

TOM-TIM23 pathway/

MPP

COXPD31/Eldomery–Sutton

syndrome

Mutations in the MIPEP gene caused COXPD31/Eldomery–Sutton syndrome, a recessive

disorder with developmental delay, cardiomyopathy, cataracts, hypotonia, left ventricular

non-compaction, variable seizures.

(268)

Lon Protease/

LONP1

TOM-TIM23 pathway/

MM Protease

High-fat diet stress; Cardiac

hypertrophy; Hypoxia insults; Cardiac

aging; Friedreich’s ataxia

Lon seemed beneficial to cardiomyocytes upon high-fat diet and hypertrophic stresses but

harmful to cardiomyocytes upon hypoxia insults; In aged hearts, Lon expression increased, but

proteolytic efficiency declined; In cardiac-specific frataxin-deletion mice, Lon expression and

activity were increased in the heart.

(269–276)

YME1L/

YME1L1

TOM-TIM23 pathway/

MM Protease

DCM and heart failure; Experimental

autoimmune myocarditis; Myocardial

infarction

Cardiac-specific ablation of YME1L in mice led to DCM and heart failure; YME1L was also

crucial for the progression of experimental autoimmune myocarditis to DCM and the

therapeutic efficacy of mesenchymal stem cells in myocardial infarction.

(195, 277–279)

(Continued)
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cardiac health, is influenced by Tom20. For example, Wattamon
recently reported that the protective role of fibroblast growth
factor 2 (FGF-2) against calcium overload was partially mediated
by mitochondrial connexin 43 (Cx43) (introduced below),
probably in a Tom20-dependent manner (209). Cx43 was
imported into mitochondria via a Tom20-dependent pathway
(257). In another study, Tom20 was reported to be responsible
for the direct insertion of VDAC, a protein crucial in regulating
cardiac calcium homeostasis (210) through mitochondrial
permeability transition pore (mPTP) (294) and mitochondria-
associated endoplasmic reticulum membranes (MAMs), into the
OM of heart mitochondria in rats (295). Thus, Tom20 could be
a crucial adaptor of cardiac calcium homeostasis in a Cx43- or
VDAC-associated manner.

Tom22 serves as the central receptor for both presequence
precursors and carrier precursors. Furthermore, it is also the key
factor linking the TOM and SAM complex to a supercomplex by
interaction with Sam37, which promotes the efficient transfer of
β-barrel precursors. Tom22 was recently identified as a potential
receptor for cardiac mitochondrial large conductance voltage
and Ca2+-dependent K [+] (mitoBKCa) channels, facilitating
the import of mitoBKCa via the presequence pathway (211).
Tom22 deficiency might induce cardiomyocyte dysfunction
by interfering with cardiac mitochondrial Ca2+ import (211).
Additionally, Tom22 has been reported as a potential regulator
of heart function through assisting the synthesis of cardiac
aldosterone in mitochondria (212). Finally, in chronically
hypoxic rat hearts, the level of Tom22 mRNA was increased in
cardiac ventricles (213), suggesting a potential role of Tom22 in
ischemic heart disease.

Tom40, encoded by the TOMM40 gene, forms the main
protein-conducting channel of the TOM complex. Previous
studies indicated TOMM40 was genetically associated with
cardiovascular-related traits (214, 215, 229, 230). Several
genome-wide association studies (GWAS) have identified that
the TOMM40/APOE locus was strongly associated with low-
density lipoprotein cholesterol [rs157580 (231)], high-density
lipoprotein cholesterol [rs2075650, (232), rs157581 (233)], high-
sensitivity C-reactive protein [rs2075650 (234)], type 2 diabetes
[rs157580 (231)], or metabolic syndrome (235). Additionally,
experimental evidence showed that homozygous deletion of
TOMM40 in mammals was lethal, and heterozygous TOMM40
knockdown mice were found to have cardiac arrhythmia that
deteriorated with age (236). Upregulated Tom40 transcription
was reported associated with heat stress-induced apoptosis of
rat cardiomyocytes (237). Moreover, expression of Tom40 and
Tim23 was reduced only in older dilated cardiomyopathy (DCM)
patients but not in younger DCM patients, suggesting age-related
alterations of these proteins (238).

Small Tom Proteins (Tom5, Tom6, and Tom7). An
allele of TOMM5 (the gene encoding Tom5) intronic variant
(rs57578064) was correlated with a significant increase in
lipoprotein-associated phospholipase A2 activity, which is
associated with increased risk of cardiovascular events (239).
Tom7 deficit in endothelial cells particularly damaged formation
of the cerebrovascular network, but not cardiac vasculature, in
zebrafish and mice (296).
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TIM23 Complex in Heart Disease
Tim23, the channel-forming protein of the TIM23
complex, responsible for the translocation of presequence
precursors into mitochondrial matrix or IM, was reduced
by hypoxia/reoxygenation (H/R) or I/R (207, 242, 243).
Restoring expression of Tim23 by various treatments seemed
protective (207, 242, 243) against H/R or I/R injuries. However,
a controversial study from Bian showed that the protective
role of zinc against I/R injury was mediated by enhanced
mitophagy, accompanied by downregulation of Tom20 and
Tim23 expression (244). In addition, another study reported
the association of decreased Tim23 expression in patients with
DCM (238).

Tim50 is the receptor of the TIM23 complex that recognizes
presequence carrying proteins. Guo et al. demonstrated that the
loss of Tim50 during early zebrafish embryonic development
caused neurodegeneration, cardiovascular defects (dysmorphic
heart, reduced heartbeat, and decreased circulating blood), and
impaired motility. These pathological changes might result from
increased cell death, which was mediated by mitochondrial
membrane permeabilization and acceleration of cytochrome c
release (240). Tang et al. further identified that Tim50 was
downregulated in both human DCM heart and transverse aortic
constriction (TAC)-induced murine hypertrophic heart (241).
Meanwhile, global Tim50 knockout mice showed more severe
cardiac hypertrophy than wild-type mice, which was alleviated
by cardiac-specific overexpression of Tim50 via reducing ROS
accumulation and ASK1 activity (241).

The Presequence-Pathway–Associated Chaperones

in Heart Disease
mtHSP70 (also known as GRP75/ mortalin/ PBP74) is an
essential ATP-dependent chaperone of the PAM complex. It
drives the translocation of preproteins into the matrix in the
membrane-bound motor form and exhibits typical chaperone
activity to prevent protein misfolding and aggregation in the
soluble form. In vitro studies, mtHSP70 was identified as
a cardioprotective chaperone against H/R-induced oxidative
stress (245, 246), potentially via increased import of nuclear
genome-encoded antioxidant defense proteins, such as DJ-
1 (246). Expression of mtHSP70 was significantly decreased
in the interfibrillar mitochondria (IFM) of type 1 diabetes
mellitus (T1DM) (247) and the subsarcolemmal mitochondria
(SSM) of type 2 diabetes mellitus (T2DM) (248). Cardiac-
specific mtHSP70 overexpression restored cardiac function and
nuclear-encoded mitochondrial protein import, contributing
to a beneficial impact on proteome signature and enhanced
mitochondrial function during T2DM (248). Further, mtHSP70
expression was increased in myocardial samples from patients
with chronic atrial fibrillation, which suggested an adaptive heat
shock response to restore cellular homeostasis (249).

HSP60 and HSP10 are mitochondrial matrix chaperones,
playing pivotal roles in implementing protein folding and
preventing protein aggregation. Cardiac-specific HSP60
deficiency in mice led to DCM, heart failure, and lethality.
Interestingly, the import of preproteins into mitochondria was
unaffected by HSP60 deficiency. However, the imported proteins

processed by HSP60 underwent further degradation, suggesting
lower stability of those proteins (263). HSP10 showed a similar
cardioprotective role in I/R-induced myocyte death (264). Both
the beneficial roles of HSP60 and HSP10 in cardiomyocytes were
related to the preserved function of Complex I and Complex
II. Clinical evidence found upregulated expression of both
mitochondrial HSP60 and HSP10 in myocardial samples from
patients with chronic atrial fibrillation (265). Agsteribbe et al.
reported a single case of a girl who had facial dysmorphic features
and breathing difficulties upon birth and died at 2 days of age of
heart failure (266). The post-mortem examination revealed that
the amount of mitochondrial HSP60 was only about 1/5 of the
normal level (266).

Tim14 (encoded by DNAJC19), human homolog to yeast
Pam18/Tim14, is a mitochondrial IM co-chaperone of the
TIM23 complex. Mutations in DNAJC19 were related to DCM
and cerebellar ataxia (DCMA) syndrome, a novel autosomal
recessive syndrome characterized by early-onset DCM with
conduction defects, non-progressive cerebellar ataxia, testicular
dysgenesis, growth failure, mild developmental delay, and 3-
methylglutaconic aciduria, with or without sensorineural hearing
loss and basal ganglia lesions (250–255). The pathogenic
mechanism of DCMA was associated with protein import
inefficiency and cardiolipin remodeling. Experimental evidence
suggested DNAJC19 forms a complex with prohibitins (PHBs).
Furthermore, the loss of PHB/DNAJC19 complexes affected
cardiolipin acylation and led to the accumulation of cardiolipin
species with altered acyl chains (297).

MAGMAS (mitochondria-associated granulocyte
macrophage colony stimulating factor signaling molecule),
also termed PAM16/Tim16, forms a stable subcomplex with
J-protein Pam18 or DnaJC19. It tethers to the TIM23 complex in
yeast and humans (298). Cybel et al. reported that two patients
from a family with MAGMAS mutation died at 2 years of age of
heart failure (256).

HSP90, a chaperone mainly located in the cytoplasm, also
played a beneficial role against I/R injury (258, 259) through
translocation of PKCε, (208, 217) Cx43, (257, 260) AKT, (261),
and Pim1/Lon (262) into mitochondria, potentially via the HSP-
TOMmitochondrial import pathway.

The Presequence-Pathway–Associated Proteinases

and Peptidases in Heart Disease
Mitochondrial Lon Protease is crucial for the clearance of
oxidized ormisfolded proteins in thematrix. It played a beneficial
role in improving cardiac metabolic flexibility via degradation
of pyruvate dehydrogenase kinase 4 in mice fed a high-fat diet
(269). Moreover, it was also verified to enhance cardiac function
via improving mitochondrial respiration capacity in pressure
overload-induced heart failure in mice (270). However, it seemed
harmful to cardiomyocytes upon hypoxia insults, which was
associated with enhanced ROS production (271, 272) and
accelerated degradation of phosphorylated complex IV subunits
(273). In murine heart, mitochondrial Lon protease levels rose
with age, but proteolytic efficiency and adaptation to stress
were compromised in older animals (274, 275). Mitochondrial
Lon protease was also found to be involved in Friedreich’s
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ataxia (FRDA), a rare hereditary neurodegenerative disease
characterized by progressive ataxia and cardiomyopathy due
to mitochondrial frataxin defect. In cardiac-specific frataxin-
deletion mice, a progressive increase in mitochondrial Lon and
ClpP protease expression and activity were found in the heart,
accompanied by the loss of mitochondrial Fe–S proteins (276).

YME1L. As we mentioned above, the balance between
long OPA1 (L-OPA1) and short OPA1 (S-OPA1), which is
crucial for mitochondrial fusion and fission, is modulated by
two mitochondrial proteases, OMA1 and the AAA+ protease
YME1L. Cardiac-specific ablation of YME1L in mice led to DCM
and heart failure via activated OMA1 and accelerated OPA1
proteolysis, which triggered mitochondrial fragmentation and
altered cardiacmetabolism (195).Moreover, cardiac function and
mitochondrial morphology were rescued by Oma1 deletion by
preventing OPA1 cleavage (195). The regulation of YME1L in
mitochondrial fusion via OPA1 proteolysis was further verified
in experimental autoimmune myocarditis animals (277) and
YME1L-overexpressing or deficit cells (278). Furthermore, it was
related to the therapeutic efficacy of mesenchymal stem cells for
myocardial infarction (279).

MPPα. MPP is a dimeric protease in the matrix that
removes N-terminal presequences and consists of MPPα and
MPPβ. Mugdha reported that a patient with mutations in
the PMPCA gene, which encodes MPPα, had multisystem
impairments, including developmental delay, severe hypotonia,
ataxia, lactic acidemia, and severe hypertrophic left ventricular
cardiomyopathy and died at 14 months from respiratory failure
(267). This phenotype may be related to reduced MPPα levels
and impaired processing of frataxin and other mitochondrial
proteins. Downregulation of MPPα was found linked to the
protective role of GSK inhibitor SB216763 in I/R injury (258).

MIP/Oct1. Upon removal of the presequence by MPP, some
mitochondrial precursor proteins undergo secondary processing
carried out by the mitochondrial intermediate peptidase
MIP/Oct1 or intermediate cleaving peptidase Icp55/XPNPEP3
to remove destabilizing N-terminal amino acid residues of
the imported proteins. Mutations in the MIPEP gene, which
encodes MIP, causes COXPD31/Eldomery–Sutton syndrome
with developmental delay, cardiomyopathy, left ventricular non-
compaction, hypotonia, and infantile death (268).

CLPP (mitochondrial ATP-dependent Clp proteolytic
subunit), a mitochondrial matrix proteinase, has a central role
in protein homeostasis. Loss of CLPP in the heart was found
to alleviate mitochondrial cardiomyopathy induced by DARS2
deficiency, potentially mediated by increased de novo synthesis of
individual OXPHOS subunits, without affecting the mammalian
UPR [mt] (280).

Carrier Pathway Involved in Heart Disease
Tom70mainly serves as the receptor for hydrophobic precursors
without a cleavable presequence, such as carrier precursors.
Tom70 protein was downregulated in hypertrophic heart of
animals and humans, which was associated with increased
oxidative stress. Furthermore, upregulation of Tom70 provided
cardiomyocytes with full resistance to diverse pro-hypertrophic
insults (218). Tom70 expression was also reduced by I/R insult

in cardiomyocytes (219–222). Supplementation of Tom70
significantly attenuated I/R injury by promoting translocation
of PKCε (216, 217) [to increase the expression of KATP channel
pore-forming subunit Kir6.2 (223), augment mitochondrial
respiratory capacity, and modulate cardiac glucose metabolism
(224)], MICU1 (to reduce mitochondrial Ca2+ overload),
(222) and PINK1 (associated with mitophagy) (221, 225) into
mitochondria. Increased expression of PGC-1α/Tom70 was
also involved in melatonin-induced cardiac protection against
post-myocardial infarction, which was associated with inhibited
mitochondrial impairment and reduced ROS generation
(219, 220). In the hearts of diabetic db/db mice, Tom70
expression was suppressed. Reconstitution of Tom70 protected
against diabetic cardiomyopathy through its antioxidant and
antiapoptotic properties (226). Moreover, in aging hearts of
diabetic db/db mice, only the expression of mitochondrial
membrane proteins like Tom70 and VDAC, but not respiratory
enzymes, could be increased by short-term exercise (227).
Further, phosphoproteome mapping in a rat model of heart
failure revealed phosphorylation of several import machinery
proteins (Tom70, HSP90, and Tim8a), suggesting that the
modification of mitochondrial protein import was involved in
heart failure (228).

AGK (acylglycerol kinase). AGK is a mitochondrial lipid
kinase that was recently identified as a subunit of the
TIM22 complex. It plays an indispensable role in the import
and assembly of mitochondrial carrier proteins in the IM
(299). It has been shown that loss-of-function mutations
in the AGK gene cause Sengers syndrome (281–286), an
autosomal recessive mitochondrial disorder characterized by
hypertrophic cardiomyopathy, congenital cataracts, skeletal
myopathy, exercise intolerance, and lactic acidosis. Loss of AGK
led to destabilized TIM22 complex; defects in the biogenesis of
carrier substrates (such as adenine nucleotide translocator); lower
complex I, III, and IV activities; perturbed tricarboxylic acid
(TCA) cycle; and higher citrate synthase activity (300).

Tim8a (Tim8a/DDP1 and Tim8b/DDP2 are human homologs
of yeast Tim8) is a small TIM chaperone in the IMS. Tim8a
expression in ischemic rat heart was downregulated by treatment
with GSK inhibitor SB216763, which showed a protective effect
against I/R stress (258), suggesting a potential role of Tim8a in
ischemic heart disease.

MIA Machinery Related to Heart Disease
FAD-linked sulfhydryl oxidase ALR is the human homolog
of yeast Erv1. The interaction between Mia40 and Erv1/ALR
facilitates the import of the small Tim proteins and cysteine-
rich proteins. Inhibition of ALR activity by MitoBloCK-6 or a
translation initiation codon (ATG) morpholino targeted to ALR
in zebrafish embryos led to retarded cardiac development and
impaired cardiac function (287).

Apoptosis-Inducing Factor (AIF) was initially characterized
as a pro-apoptotic factor. It translocates from the mitochondrial
IMS to the nucleus in the presence of apoptotic insults. It is
also critical for the mitochondrial import and maturation of
CHCHD4 (in human)/Mia40 (in yeast) (301–303). Mutations
of the AIF-encoding gene AIFM1 led to early prenatal
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ventriculomegaly (288) and childhood cardiomyopathy (289),
accompanied by respiratory chain complex I and IV deficiency.
Global loss of AIF in mice during embryogenesis resulted in
embryonic growth retardation and death during mid-gestation.
Muscle-specific loss of AIF in mice led to severe DCM and
skeletal muscle atrophy, associated with a significant defect in
respiratory chain complex I activity (290). The Harlequin (Hq)
mice, a genetic model with an 80% reduction in mitochondrial
AIF, displayed more severe ischemic damage than wild-type
hearts after acute I/R injury (291, 292).

Other Molecules Involved in Heart Disease
by Impacting Mitochondrial Protein Import
Efficiency or Altering Mitochondrial Protein
Translocation
Cardiolipin (CL) is a unique phospholipid that is localized and
synthesized in mitochondrial IM. CL plays a central role in many
biological processes, such as mitochondrial biogenesis, protein
import, morphology and mitophagy, oxidative phosphorylation,
and apoptosis (304–306). Defective remodeling of CL due
to genetic mutations of TAZ-1 causes Barth syndrome, a
rare, X-linked recessive, infantile-onset debilitating disorder
characterized by early-onset cardiomyopathy, skeletal myopathy,
growth delay, and neutropenia (304–309). The molecular
mechanisms were partially mediated by impaired mitochondrial
import machinery. CL was verified to play a central role in the
structural integrity and functions of mitochondrial translocases,
such as TOM Complex (44, 310), TIM22 Complex, and TIM23
Complex (26, 311, 312).

Connexin 43 (Cx43) is the predominant protein forming
gap junctions and non-junctional hemichannels in ventricular
cardiomyocytes and is also localized at the IM of cardiomyocyte
mitochondria (313–315). The translocation of Cx43 to the IM
was TOM-HSP90–dependent and was enhanced by ischemic
preconditioning (IP). The beneficial role of mitochondrial Cx43
in I/R stress was associated with its regulation of mitochondrial
potassium influx and ROS production (257, 313–315). The
cardioprotection of IP was abolished by genetic ablation of Cx43,
blockade of mitochondrial Cx43 import, or age-related loss of
mitochondrial Cx43 (257, 316–318).

PINK1 is imported into the mitochondrial matrix in healthy
conditions, followed by retrotranslocation into cytosol and
degradation by the proteasome. Perturbation of this process
causes mitophagy, which plays a vital role in the quality control of
mitochondria in heart disease. Given that it has been well-studied
and summarized in many other reviews (319, 320), we do not
discuss it here in detail.

NDUFB10, an accessory subunit of complex I, is a substrate
of the MIA machinery (CHCHD4/ Mia40) for oxidation-
dependent protein import into the mitochondrial IMS. Mutation
of cysteine 107 of NDUFB10 impaired its mitochondrial import
via CHCHD4 and resulted in complex I assembly defect, led to
fatal infantile lactic acidosis and cardiomyopathy in a single-case
report of an infant (321).

In addition, some other proteins also showed a protective
effect against I/R or H/R stress through enhancing their
translocation from the cytosol to the mitochondria; these include
α-crystallin B (cryAB, the major small heat shock protein in
cardiomyocytes) viaVDAC-Tom20 (322) and DJ-1 viamtHSP70
(246, 323–325).

Other Conditions That Affect Mitochondrial
Protein Import Efficiency in Heart Disease
According to their subcellular spatial arrangement in
cardiomyocytes, mitochondria are classified into three groups:
subsarcolemmal mitochondria (SSM) existing below the cell
membrane, interfibrillar mitochondria (IFM) residing in
rows between the myofibrils, and perinuclear mitochondria
located at the nuclear poles. Mitochondrial subpopulations
vary in structure and function and appear to be influenced
disparately in different cardiac pathologies, including I/R,
heart failure, aging, exercise, and diabetes mellitus. According
to recent studies, the mitochondrial import machinery in
IFM of T1DM hearts (247, 326) and SSM of T2DM hearts
(248, 327) were more susceptible to inefficiency. Further, many
studies reported the downregulation of mitochondrial import-
machinery components in heart disease, such as heart failure,
DCM, ischemic cardiomyopathy, diabetic cardiomyopathy,
etc. Supplements of corresponding components could partially
recover cardiac function.

However, some studies pointed out an enhancement of
mitochondrial protein import in aging animals. Craig et al. found
mitochondria from senescent animals exhibited a higher import
rate of precursors into the matrix than mitochondria from young
animals (328). Later studies showed that, although expression
of some key import machinery components was upregulated
in the aging heart, import efficiency was compromised (238).
The mechanism and significance need to be determined in
future studies.

In addition, the import rate of matrix-localized proteins was
found to be increased in heart of hyperthyroid animals or by T3
treatment (329–332), which was partially mediated by elevated
levels of the OM receptor Tom20 and mtHSP70. Meanwhile, the
proteolysis of matrix proteins was unaffected.

CONCLUSION

Mitochondrial import machinery pathways are involved
in various heart diseases, including heart failure, DCM,
hypertrophic cardiomyopathy, ischemic cardiomyopathy,
and diabetic cardiomyopathy. Mutants of genes encoding
components of the mitochondrial import machinery in
humans or genetic deficiency of those genes in animals usually
cause severe mitochondrial cardiomyopathy and are lethal,
highlighting the critical role of mitochondrial import machinery
in heart disease. However, compared with neurodegenerative
diseases, in which the functions of mitochondrial import
machinery are relatively well-studied and established, research
in heart disease is still fairly limited. Although many studies

Frontiers in Cardiovascular Medicine | www.frontiersin.org 11 September 2021 | Volume 8 | Article 749756

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhao and Zou Mitochondrial Import Machinery in Heart Disease

detected some components of mitochondrial import machinery,

most studies simply regarded those components as indicators
of mitochondrial content to evaluate mitochondrial biogenesis
or mitophagy. The function of mitochondrial import machinery
was highly neglected. Actually, even from the perspective
of mitochondrial biogenesis or mitophagy, under different
stimuli, import machinery components are able to adapt to
diverse cellular functions, which are not always proportional to
mitochondrial quantity.

Furthermore, our current understanding of mitochondrial
import machinery in heart disease is still widely based on
experimental evidence from yeast. Nevertheless, recent
research in higher eukaryotes has identified more complex
and diverse functions in some conserved components of
mitochondrial import machinery. Furthermore, with the
development of high-throughput sequencing in genomics,
transcriptomics, proteomics, and metabolomics, more and more
novel import machinery components have been revealed in
mammals. The roles of mitochondrial import machinery in heart
disease deserve considerable attention, and future studies are
urgently needed.
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