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The left atrium (LA) is emerging as a key element in the pathophysiology of several cardiac

diseases due to having an active role in contrasting heart failure (HF) progression. Its

morphological and functional remodeling occurs progressively according to pressure

or volume overload generated by the underlying disease, and its ability of adaptation

contributes to avoid pulmonary circulation congestion and to postpone HF symptoms.

Moreover, early signs of LA dysfunction can anticipate and predict the clinical course

of HF diseases before the symptom onset which, particularly, also applies to patients

with increased risk of HF with still normal cardiac structure (stage A HF). The study of

LA mechanics (chamber morphology and function) is moving from a research interest

to a clinical application thanks to a great clinical, prognostic, and pathophysiological

significance. This process is promoted by the technological progress of cardiac imaging

which increases the availability of easy-to-use tools for clinicians and HF specialists.

Two-dimensional (2D) speckle tracking echocardiography and feature tracking cardiac

magnetic resonance are becoming essential for daily practice. In this context, a

deep understanding of LA mechanics, its prognostic significance, and the available

approaches are essential to improve clinical practice. The present review will focus on LA

mechanics, discussing atrial physiology and pathophysiology of main cardiac diseases

across the HF stages with specific attention to the prognostic significance. Imaging

techniques for LA mechanics assessment will be discussed with an overlook on the

dynamic (under stress) evaluation of the chamber.

Keywords: left atrial strain, heart failure stages, myocardial deformation, echocardiography, cardiac magnetic

resonance, heart valve disease, cardiomyopathy, exercise echocardiography

INTRODUCTION

The notion of the left atrium (LA) in heart failure (HF) pathophysiology has progressively
moved from a by-stander chamber to a central and active element for cardiovascular balance
(1, 2). The anatomical, mechanical, hemodynamical, electrical, and rheological roles of LA have
been recognized and understood, especially in overt HF clinical syndrome (3, 4). The increasing
availability of non-invasive approaches for LA mechanics (structural and functional properties)
assessment has progressively moved the study of atrial chamber from a research interest to a clinical
tool and necessity (5).
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Heart failure (HF) syndrome starts with the presence
of predisposing factors (stage A) and progresses with overt
structural heart diseases (stage B) to a wide spectrum of clinical
phenotypes (stages C and D) (6). The clinical manifestation
may occur at different times of heart structural and functional
changes. LA plays a major role in the physiological coupling of
left ventricle (LV) filling pressures and pulmonary circulation
hemodynamic (7, 8). The adaptive remodeling, aimed at
contrasting volume or pressure overload and maintaining an
adequate LV filling, is time and size limited. The exhaustion of
compensatory mechanisms translates into overt HF or into a
worsening of clinical conditions.

Cardiovascular imaging is further evolving from a
morphology-based tool to a unique in vivo opportunity to
address heart function and structure (9, 10). The understanding
of LA mechanics changed with the introduction of myocardial
deformation analysis and its multimodality use during stress
conditions (5). The use of pharmacological or physical stressors,
in order to challenge the presence of a specific ischemic,
contractile, flow or diastolic “reserve” has become a standard
approach with diagnostic and prognostic importance (11). The
study of LA mechanics is developing in the same direction and
moving toward a dynamic assessment (at rest and under stress in
specific exercise) for early diagnosis and prognostic stratification
of patients with HF.

The aim of the present review is to discuss the non-
invasive evaluation of LA mechanics and its pathophysiological
and prognostic significance across the spectrum of HF stages
(including stages A and B, with the most clinically relevant
structural heart diseases) with a specific focus on the available
methods and the dynamic assessment. The contents will
be presented according with the natural history of disease
progression, starting with the conditions at risk (stage A) and
proceeding with the cardiac structural diseases (stage B) and
overt HF (stage C).

LA PHYSIOLOGY

The LA is the inflow chamber of left-side heart and is responsible
for blood accommodation from the pulmonary circulation
and for diastolic LV filling (12). The peculiar attachment of
pulmonary veins facilitates the blood flow during ventricular
systole and isovolumetric relaxation (the so-called reservoir
function) which are responsible for about 40–50% of stroke
volume (SV) (13). The conduit function corresponds to the
early LV diastole, or when blood flows directly from pulmonary
veins to LV throughout the LA, and it accounts for the 20–30%
of SV. Late diastole is characterized by active LA contraction
that provides final diastolic LV filling (about 20–30% of
SV). The optimal chamber function requires electromechanical
synchronization, and it is strictly influenced by LV mechanical
properties, transmitral gradients, and LA chamber compliance.

During exercise, the heart pumps more forcefully to generate
adequate cardiac output (CO) as required by peripheral demands.
At low level exercise, CO rises thanks to the SV and heart
rate increase, while at heavier workload, SV maintains a plateau

with chronotropic response becoming predominant (14). LA
guarantees an adequate blood flow to LV during the progressive
shortening of diastolic period. In normal subjects, LA volume
lowers, and ejection fraction increases at an earlier stage, assuring
about the 40% of flow increase with the enhancement of
conduit function (15). Then, conduit and contractile phases
are overlapped due to a further shortening of diastolic period,
therefore, the LV filling is maintained by an additional increase
of LV suction capacity during the reservoir phase.

The interplay between the active ventricular relaxation and a
coherent LA response is crucial to provide adequate LV filling.
Therefore, CO increase and when one or both of them fails
to adapt during exertion, the unbalance causes an increase in
LV filling and LA pressures, affecting the upstream pulmonary
circulation (16, 17). In early pathological stages, e.g., in HF, the
abnormal hemodynamic behavior can arise only during exertion,
producing the typical effort-related dyspnea. In the advanced
phase of the disease, the LA remodeling ends up with different
degrees of enlargement, loss of function, and increase of stiffness
generally associated with chronic and severe symptoms (18–20).

From the hemodynamic point of view, the pressure-volume
(PV) loops provide a unique description of the complex
physiological function, unfortunately limited by a low feasibility
in clinical practice. The “eight-shaped” loop develops across the
three steps of cardiac cycle, defining the active work of the
chamber (left component of the loop). In HF syndrome, the
PV loop shifts upward and rightward according to the chamber
compliance to the pressure and volume overload (Figure 1).
The use of myocardial deformation to study LA chamber
represents a non-invasive technique, alternative to cardiac
catheterization, and may be able to provide specific insights on
chamber physiology both in control conditions and during stress
conditions (physical or pharmacological).

CARDIOVASCULAR IMAGING TO
EVALUATE LA MECHANICS

Transthoracic echocardiography (TTE) and cardiovascular
magnetic resonance (CMR) are commonly used in clinical
practice for the assessment of all cardiac chambers, including LA.
Both techniques can be used at rest or under stress conditions.
Two- and three-dimensional (2D and 3D) TTEs have the
advantage to be widely available, feasible, and time-effective,
while CMR is the reference approach for cardiac volumes
quantification and tissue characterization (Figure 2).

Parameters Describing LA Function
Myocardial deformation analysis has been applied in several
clinical conditions. Table 1 provides an overview of the most
relevant parameters describing LA mechanics with reference
values and lower limits of normality (LLN) related to the imaging
technique and with specific comments. Tables 2, 3 show the cut-
off values of parameters with prognostic significance in patients
at risk of HF (stage A) or with cardiac structural abnormalities
(stage B) and in subjects with overt HF (stage C), respectively.
Current recommendations (56) support the use of longitudinal
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FIGURE 1 | Left Atrium (LA) mechanics and physiology. Comparison of LA mechanics and physiology in a control subject vs. a heart failure with reduced ejection

fraction (HFrEF) patient: (left) real LA pressure and volume traces in a control subject and HFrEF patient with severe mitral regurgitation; (center) LA Pressure-Volume

loops in the same subjects; (right) representation of progressive LA longitudinal strain decline in the HF stages; (bottom) average LA longitudinal strain with three

phasic components. LA pressure-volume (PV) loops show the right- and upward shifting of the loop of HF patient respect to the control subject, with loss of active

atrial contraction and MR-related pressure increase. LA longitudinal strain allows the study of chamber phasic function providing physiopathological insights

consistent with LA PV loop analysis. Abbreviations as in the text.

strain due to the large amount of available literature and to
the limited reliability of radial and circumferential deformation
related to the low thickness of LA wall. Moreover, a global rather
than regional analysis is recommended to overcome geometrical
and anatomical limitations. LA function changes with the age
being a dynamic instead of a static condition. Normal references
are therefore presented according with age distribution when
available. Figure 1 represents LA pressure, volume, and strain
waveform in healthy subject and HF patient.

Echocardiography
The quantification of LA size has largely evolved from parasternal
long axis diameter (57) to apical 4-chamber area, estimated LA
volumes (58), emptying fractions (related to reservoir, conduit
and contraction phases) (21, 59, 60), and 3D real-time volume
(61). Notably, the usage of 2D conventional 4- and 2-chamber
views (i.e., left ventricular focused) for the computation of LA
size is a common source of volume underestimation, since LV
and LA axes do not lie in the same plane. Hence, dedicated
apical LA views should be exploited (58). The algorithm used
for volume calculation represents another source of potential

bias, having been shown that the area-length method provides
larger volumes than Simpson disk summation (62). Nevertheless,
the LA expansion index, derived by volumes estimated using
Simpson disk summation, has been recently shown to predict
the presence of increased pulmonary wedge pressure. In a large
cohort of patients, the index has been validated with invasive
right heart catheterization, showing an accuracy higher than
standard echocardiographic indices (63).

The static volume has been enriched by functional assessment
based on phasic changes of volume (64). However, despite
the prognostic significance (65) and greater reliability of 3D
vs. 2D assessment, this approach is not commonly used in
clinical practice. The study of myocardial deformation, first with
tissue Doppler imaging (5, 66), then with 2D speckle-tracking
echocardiography (2DSTE) (23–25), has become the most widely
used approach, also showing high intra and inter-individual
reproducibility (67). Extensive recommendations for myocardial
deformation imaging have been endorsed by the European
Association of Cardiovascular Imaging (EACVI)/American
Society of Echocardiography (ASE)/Industry Task Force (56)
covering specific indications to standardize LA assessment.
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FIGURE 2 | Non-invasive assessment of LA mechanics. Some elaboration and output examples of the mostly used imaging techniques are reported: (top) 2D

speckle tracking echocardiography with atrial border contouring (top left), average longitudinal endocardial strain and volume changes (top right); (middle) 3D

speckle tracking echocardiography with 3D LA volume reconstruction (middle left) and multi-segment longitudinal endocardial strain; (bottom) feature-tracking

cardiovascular magnetic resonance (CMR) with atrial border contouring (left) and average longitudinal endocardial strain (bottom right). Abbreviations as in the text.

Briefly, using a non-foreshortened apical 4-chamber view with
temporal resolution of at least >50Hz, LA endocardial contour
should be manually drawn (< 3mm of thickness). End-diastole,
corresponding to R wave at ECG trace, is commonly used as
reference since it has shown to provide a slightly higher feasibility

and a lower wasting time compared to methods using atrial
contraction as reference (68).

A recent meta-analysis (69) systematically reviewed 10
studies that computed pre-interventional 2DSTE LA strain
capacity to predict AF recurrence in patients that underwent
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TABLE 1 | Most relevant parameters describing left atrium (LA) mechanics with reference values and lower limits of normality (LLN).

Parameter Definition Technique Normal range LLN Comments and accuracy References

Echocardiography Left atrial

expansion

index (LAEI)

Relative LA volume

increase during the

reservoir phase

(Maximal LA

Volume–Minimal LA

Volume)/Minimal LA

Volume

2D TTE 207.1 ± 68.4 % [mean ± SD] 73.0 - Based on phased-related volumes analysis

- Easy to calculate

- Able to predict increased PAWP

(21)

Total

Emptying

Fraction (TEF)

(Maximal LA

Volume–Minimal LA

Volume)/Maximal LA

Volume

2D TTE

2D TTE

2D TTE

3D TTE

68.5 (63.2–73.2) % [median (25th

percentile−75th percentile)]

65.8 ± 7.5 % [mean ± SD]

56.1 ± 12.2 % for men, 56.8 ±

12.6 % for women, p=0.21 [mean ±

SD]

57.3 (52.4 - 61.9) % [median (25th

percentile – 75th percentile)]

48.7 ± 1

51.1

32.2 for men, 32.1

for women

41.4 ± 1.1

- This parameter explores reservoir function

based on phase-related volumes change

- Time consuming

- 3D TTE can provide accurate volume

estimation but is limited by the presence of

adequate acoustic window

(22)

(21)

(23)

(22)

Reservoir

Strain

Function

Myocardial deformation

measured as difference

of strain value at mitral

valve opening minus

ventricular end-diastole

2D STE

2D TTE

2D TTE

2D TTE

2D TTE

42.5 (36.1–48.0) % [median (25th

percentile−75th percentile)]

45.5 ± 11.4 % [mean ± SD]

39.4 (33.2–46.6) % [median (25th

percentile−75th percentile)]

35.9 ± 10.6 % [mean ± SD]

37.95 ± 7.96 % for men, 39.34 ±

7.99 % for women, p<0.001 [mean

± SD]

26.1 ± 0

23.1

23.0

15.1

22.4 for men, 23.6

for women

- Reservoir strain is the most used parameter

to evaluate the LA function

- Reservoir strain function has been largely

shown to be prognostic in several disease (it

is related to LV systolic function)

- 2D STE is entering clinical practice for its

reliability but it provides information only on a

single plain

(22)

(21)

(24)

(25)

(23)

Cardiac magnetic

resonance

Total

Emptying

Fraction (TEF)

(Maximal LA

Volume–Minimal LA

Volume) / Maximal LA

Volume

CMR 58.8 ± 3.7 % [mean ± SD] 51.5 - CMR based volumes provide very high

accuracy

(26)

Reservoir

Strain

Function

Myocardial deformation

measured as difference

of strain value at mitral

valve opening minus

ventricular end-

diastole

MRI-FT 39.13 ± 9.27 % [mean ± SD] 21.0 - MRI-FT can overcome images limitations of

echocardiography, but it relies on lower

temporal resolution

(26)

TTE, transthoracic echocardiography; CMR, cardiovascular magnetic resonance; 2D STE, 2D speckle-tracking echocardiography; 3D TTE, 3D transthoracic echocardiography; MRI-FT, magnetic resonance imaging–feature tracking;

PAWP, Pulmonary Artery Wedge Pressure.
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TABLE 2 | Summary of studies showing the prognostic value of LA mechanics in patient at risk of heart failure (HF; stage A) or with cardiac structural abnormalities

(stage B) with respect to hard and soft outcomes.

References Year Study population (n) HF

stage

NYHA class Method Outcome LA

mechanic

phase

Predictive

value

HR or OR (*) (95% CI)

at multivariable

analysis

Paraskevaidis

(27)

2009 HCM (50) B-C 24 (48%) = I

26 (52%) = II

2D-STE MACE 1 Reservoir >21% 0.86 (0.77 ÷ 0.95)*

Roca (28) 2010 HCM (37) B–C 12 (32%) = I

15 (41%) = II

7 (19%) = III

3 (8%) = IV

2D-STE HF symptoms Contractile >−0.92 s−1 2.63 (1.02 ÷ 6.92)*

Debonnaire

(29)

2013 Severe organic MR

(121)

B–C 38 (32%) = I

49 (40%) = II

30 (25%) = III

4 (3%) = IV

2D-STE Indication of MV

surgery

Reservoir ≤24% 3.8 (1.10 ÷ 12.93)

Ancona (30) 2013 Mild to moderate

rheumatic MS (101)

B 101 (100%) = I 2D-STE AF Reservoir >17.4% 0.43 (0.22 ÷ 0.56)

Zito (31) 2015 Asymptomatic primary

MR (67)

B 67 (100%) = I 2D-STE Composite (All-cause

mortality + AHF

hospitalization + MV

surgery)

Reservoir >31.7% 0.73 (0.57 ÷ 0.93)

Yang (32) 2015 Asymptomatic primary

severe MR (104)

B 70 (67%) = I

34 (33%) =

Surgical class

IIA indication

2D-STE Composite (All-cause

mortality + MV surgery)

Reservoir

Reservoir SR

<26%

<2.21 s−1

3.61 (1.29 ÷ 10.05)*

2.86 (1.08 ÷ 7.57)*

Imanishi (33) 2015 Severe AS (40) B-C 20 (50%) = I

17 (42%) = II

3 (8%) = III

2D-STE HF symptoms Reservoir Per 1.0/sec

increment

0.242 (0.101 ÷ 0.583)*

Todaro (34) 2016 Asymptomatic severe

AS (82)

B 82 (100%) = I 2D-STE Composite (All-cause

mortality + AS

symptoms)

Reservoir ≥ 19.8% 0.87 (0.81 ÷ 0.94)#

Galli (35) 2016 Severe AS (128) B–C 50 (39%) >II 2D-STE MACE 2 Reservoir < 21% 2.88 (1.01 ÷ 8.22)

Kamijima (36) 2017 Asymptomatic

degenerative MR (91)

B 91 (100%) ≤ II 2D-STE Exercise-induced PH Reservoir ≤26.9% NA

Modin (37) 2018 Without AF, HF, IHD

(385)

A Not reported 2D-STE Composite (Incident

IHD, HF, Cardiovascular

mortality)

Reservoir per 5%

decrease

1.42 (1.01 ÷ 1.99) for

women

Ring (38) 2018 Moderate to severe MR

(117)

B Not reported 2D-STE Time to MV surgery Reservoir

Contraction

<28.5%

<12.5%

3.06 (1.66 ÷ 5.61)

2.01 (1.11 ÷ 3.65)

Mohty (39) 2018 RCM (systemic AL) (77) B–C 18 (23%) ≥III 3D-STE All-cause mortality Reservoir per %

increment

0.93 (0.88 ÷ 0.99)

Morris (40) 2018 Risk factor for LVDD

(517)

A Not reported 2D-STE HF hospitalization \ Reservoir <23% 5.7 (2.2 ÷ 14.7)*

Kobayashi

(41)

2019 HCM (126) B–C 96 (79%) ≤ II

25 (21%) ≥III

2D-STE Composite (All-cause

mortality + heart Tx

+LV assist device

implantation + clinical

worsening)

Reservoir per 1-SD

decrease

2.29 (1.52 ÷ 3.48)

Vasquez (42) 2019 HCM (104) B-C 62 (60%) = I

28 (27%) = II

14 (13%) = III

2D-STE Composite (All-cause

mortality + stroke +

HF)

Reservoir

Conduit

≤23.8%

≤10.2%

4.03 (1.61 ÷ 10.06)

3.64 (1.60 ÷ 8.26)

Cameli (43) 2019 Asymptomatic primary

moderate MR (276)

B Not reported 2D-STE Composite

(Cardiovascular

mortality + stroke/TIA

+ AHF)

Reservoir 25–35%

15–25%

<15%

2.5

3.2

8.6

(Continued)
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TABLE 2 | Continued

References Year Study population (n) HF

stage

NYHA class Method Outcome LA

mechanic

phase

Predictive

value

HR or OR (*) (95% CI)

at multivariable

analysis

Mateescu (44) 2019 Severe AS and

preserved LV EF (248)

B–C 186 (75%) = I

59 (24%) = II

3 (1%) = IV

2D-STE HF symptoms Reservoir >0.89 s−1 0.84 (0.73 ÷ 0.96)

Potter (45) 2020 Asymptomatic with

non-ischemic HF risk

factors (738)

A Not reported 2D-STE Incident HF Reservoir <24% 2.9 (1.25 ÷ 6.79)#

Mahfouz (46) 2020 Mild MS (75) B Not reported 2D-STE Reduced exercise

capacity

Reservoir ≤26.5% NA

Yang (47) 2021 HCM (359) B Not reported FT-CMR Composite

(Cardiovascular

mortality +

resuscitated CA + SCD

aborted by appropriate

ICD discharge + HF

hospitalization)

Reservoir

Conduit

≥19.5%

>8.1%

0.94 (0.90 ÷ 0.99)

0.89 (0.82 ÷ 0.97)

Huntjens (48) 2021 RCM (Cardiac

amyloidosis) (136)

B–C Not reported 2D-STE All- cause mortality Reservoir <13.2% 7.53 (3.87 ÷ 14.65)

Bandera (49) 2021 Transthyretin-amyloid

cardiomyopathy (906)

B–C 75 (8%) = I

646 (71%) = II

179 (20%) = III

6 (1%) = IV

2D-STE All- cause mortality lnLA stiffness per 1 unit

increase

1.23 (1.03 ÷ 1.49)

Mandoli (50) 2021 Primary severe MR (65) B-C 65 (100%) = II

or III

2D-STE Composite (All-cause

mortality + HF)

Reservoir ≥21% 0.74 (0.58 ÷ 0.94)

*Odds Ratio; #at univariate analysis; MACE 1: Composite (Cardiac mortality + hospitalization for cardiovascular causes).

Tx, transplantation; CA, cardiac arrest; SCD, sudden cardiac death; AHF, Acute heart failure; MV, Mitral Valve; MACE 2, All-cause mortality, cardiac hospitalization, and worsening HF;

IHD, ischaemic heart disease; other abbreviations as in the text.

catheter ablation. A subgroup analysis was performed comparing
studies that exploited GE EchoPac R© and those that used
TomTec R© (vendor-independent software) showing that the
mean strain values differed significantly between the two
subgroups, both in patients with and without AF recurrence
and those without. Moreover, the cut-off value predicting AF
recurrences and assessed through GE Echopac (18.1%) was
substantially different from the one calculated for all the
studies (21.9%). A similar difference has been reported in
the EACVI Normal Reference Ranges for Echocardiography
(NORRE) study where the 3D LA volume and the LA strain rate
significantly differed according to the different kind of vendor
used. Therefore, intervendor variability should be considered
in clinical setting and in the design of single and multicenter
trials. Of note, all the reviewed studies were performed
prior to the release of the EACVI/ASE/Industry Task Force
consensus document.

Normality ranges for 2DSTE-derived LA strain have
been established on a cohort of 371 healthy subjects (22)
enrolled in the EACVI NORRE study and evaluated using
a vendor-independent software (2D Cardiac Performance
Analysis, TomTec Imaging System R©, Munich, Germany).
Multivariable analysis showed that only age is independently
associated with all the LA strain components, while no
differences in gender were reported. In addition, LA

reservoir and conduit strain progressively decrease with
age, while contractile function slightly increases (Table 1 and
Supplementary Table 1).

Remarkably, 2DSTE analysis is intrinsically limited by the
ability of exploring only a static bi-dimensional plan where
a very mobile LA endocardium moves throughout at every
beat. 3D echocardiography (3DE) is therefore emerging as an
alternative approach to capture the overall LA volume and the
complex motion along the three dimensions. Starting from a
single LA dataset, 3DE allows the assessment of LA volumes at
multiple time points during the cardiac cycle. Data from several
studies (70–72) demonstrated that 3DE-derived LA volumes are
more accurate and reproducible than those calculated by 2D
echocardiography if compared to CMR. Only a few published
studies have reported reference values of 3DE-derived LA
volume. Reference values have been proposed based on a LA-
dedicated software used on a cohort of 276 healthy volunteers
(61) and were reported to be significantly larger (normality
range 18–43 ml/m2) than those obtained through 2D Simpson’s
method, in agreement with previous reports (73). Despite the
need of excellent image quality and the dependence on lower
temporal resolution (frame rate > 20 volumes per second),
3DE outperforms 2D echo in the assessment of LA volume
and, when available, is recommended in routine clinical practice
(70, 72).
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TABLE 3 | Summary of studies showing the prognostic value of LA mechanics in HF (stage C) with respect to hard and soft outcomes.

References Year Study population (n) HF stage NYHA class Method Outcome LA

mechanic

phase

Predictive

value

HR or OR (*)

(95% CI) at

multivariable

analysis

Carluccio (51) 2018 HFrEF (405) C 141 (35%) ≥ III 2D-STE Composite (All-cause

mortality + HF

hospitalization)

Reservoir per 1-SD

decrease

1.38 (1.05 ÷ 1.84)

Lundberg (52) 2019 HF (164) C 13 (8%) = I

27 (16%) = II

115 (70%) = III

9 (6%) = IV

2D-STE Composite (All-cause

mortality + heart Tx)

Reservoir <21% 2.4 (1.1 ÷ 5.2)

Reddy (53) 2019 Exertional dyspnoea

(363)

C Not reported 2D-STE HFpEF diagnosis Reservoir ≥24.45% 0.95 (0.94 ÷

0.97)*

Telles (54) 2019 Exertional dyspnoea

(71)

C 2.5 ± 0.6 2D-STE HFpEF diagnosis Reservoir ≤33% NA

Reddy (55) 2020 HFpEF (285) C Not reported 2D-STE Progression to

permanent AF

Reservoir <31.5% 6.8 (3.3 ÷ 14.1)

*Odds Ratio.

Tx, transplantation; other abbreviations as in the previous tables.

Left atrium (LA) mechanics can be studied with 3D speckle-
tracking (3DSTE) algorithms implemented in commercial
software. These tools compute LA strain along three spatial
dimensions (longitudinal, circumferential, and radial),
thus leading to deformation values that are truly able to
assess the complex 3D motion of the chamber. Different
studies (74–76) reported 3DSTE as a faster and more
reproducible method than 2DSTE for the measurement of
LA strain. The ability of 3DSTE to identify LA functional
impairments has been shown in patients affected by type 1
diabetes mellitus (77), hypertrophic cardiomyopathy (78),
hypertension (79), amyloidosis (39), and inappropriate
sinus tachycardia (80). Few studies addressed the normal
values of 3DSTE-derived LA longitudinal strain on healthy
people reporting lower values when compared with 2DSTE
(75, 76).

A specific strength of echocardiography is represented by its
application during physical exercise. If the patient is capable
of exercise, stress echocardiography can be performed with
a treadmill or a cycle ergometer (upright or supine). With
treadmill, the Bruce protocol is followed and images are acquired
at rest, immediately after peak exercise, and at recovery (81).
Using tiltable ergometer, images are continuously acquired
at baseline, at each 25W step, at peak stress, and during
recovery (82). To be successful, bicycle stress tests need the
cooperation of the patient and the perfect coordination of
the clinicians. In most of the cases, test interpretation is
then performed through the comparison of resting and peak
images (83).

In order to specifically assess the LA function during stress
test, images should be acquired with dedicated 4- and 2-chamber
views at rest and under exercise, optimizing the sector width and
depth. At baseline, the frame rate should be at least 60–70 per
second, while 80–90 per second during exercise, compensating
for the heart rate increase. Septal e’, lateral e’, and E wave of

mitral inflow should be measured to allow the atrial stiffness
estimation according to the formula E/e’/LA reservoir function.
Evaluating the atrial function at rest and during exercise with this
method is considered reliable and efficient to detect changes in
atrial stiffness (84). Specific attention should be paid to E and
A waves fusion occurring at HR >100–110 beats per minute.
The current European consensus for the diagnostic workup of
heart failure with preserved ejection fraction (HFpEF) indicates
the use of exercise echocardiography when the diagnostic score
is not conclusive. The recommendation consists in measuring
E/e’ at earlier stages of exercise (when E and A are still
separated) or during recovery when E and A are no longer
fused (85).

Cardiovascular Magnetic Resonance
Cardiovascular magnetic resonance (CMR) is characterized by
a high reproducibility and good non-isotropic spatial resolution
(in clinical practice slices have 8mm of thickness with in-
plane resolution of 1.5–2.5mm). Steady State Free Precession
(SSFP) provides a greater endocardial signal compared to
echocardiography due to the excellent blood-endocardium
contrast. Nevertheless, the echocardiographic in-plane resolution
can be greater according with the used ultrasound frequency
(86). Acquiring unseparated slices encompassing the entire
LA during the whole cardiac cycle allows the measurement
of LA SV, ejection fraction, and volumes during the whole
cardiac cycle, providing phase-related emptying fractions (as
described for echocardiography). This approach has the unique
strength of measuring real volumes with the highest accuracy,
also in very remodeled chambers. However, since Simpson’s
method is time consuming, the biplane area-length method,
which is based on the manual tracing of the LA walls in cine-
sequences of 4- and 2-chamber views, it is more frequently used
despite a possible underestimation related to non-LA dedicated
slices (87).
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A unique feature of CMR is the identification of scar with
gadolinium and its use is a routine practice in LV evaluation,
while the thinness of LA wall does not allow a common and
wide application. Nevertheless, the Delayed-Enhancement MRI
Determinant of Successful Radiofrequency Catheter Ablation
of Atrial Fibrillation (DECAAF) study, a multicenter study
conducted at 15 different clinical centers (88), showed the
feasibility of LA assessment, reporting that the presence of atrial
scar was associated with arrhythmia recurrence in patients who
underwent catheter ablation (89). Moreover, since LA fibrosis
is already present in the early stages of AF, late gadolinium
enhancement (LGE) imaging has been proposed to discriminate
patients at risk for AF (90).

Magnetic Resonance Imaging Feature Tracking (MRI-FT)
is a technique which is similar to the echocardiographic
speckle tracking. Regional longitudinal strain (LS) and radial
motion fraction indices are measured along the atrial wall
providing a quantification of standard phasic strain (91, 92). The
normality range for MRI-FT-derived LA strain values have been
reported on a cohort of 112 healthy volunteers (26). Data were
analyzed through a commercial software (Circle Cardiovascular
Imaging R©, Calgary, Canada), and optimal intra-observer and
interobserver reproducibility for all strain values was described.
LA contractile strain increased significantly with age (p < 0.001
for all) and the LA conduit function gradually decreased (p =

0.02), while LA reservoir function does not vary significantly with
age (p= 0.19). Additionally, no differences between gender were
reported. Further investigations on larger cohorts of patients with
different vendor softwares are still required to obtain the normal
MRI-FT derived LA strain values.

Recommendations of Guidelines
Current European and American guidelines about patients at
risk of HF, subjects with cardiac structural abnormalities, or
with overt HF are still based on the evaluation of standard LA
parameters, mainly focused on the size of the chamber (93–103).
Nevertheless, several consensuses pointed out the clinical and
prognostic relevance of LA mechanics assessment (2, 85, 104–
108). They also specified the need of additional standardization of
parameters analysis and interpretation, and of wider prospective
studies to define a specific role in clinical diagnostic work up.

The assessment of LA myocardial deformation has been
recognized as a promising tool to evaluate LV diastolic
dysfunction, especially in those patients with inconclusive
classification based on current algorithm (107). Moreover, the
consensus statement on HFpEF diagnostic workup indicates the
LA mechanics as new promising markers requiring additional
investigation (85). The additional value of LA function has
been acknowledged in hypertrophic cardiomyopathy and HF
regardless the LV systolic function, especially to investigate the
burden of LA pressure overload (104–106). Moreover, the central
role of LA has been fully defined in a consensus on atrial
cardiomyopathies (i.e., any complex of structural, architectural,
contractile, or electrophysiological changes affecting the atria
with the potential to produce clinically-relevant manifestations)
stressing the usefulness of myocardial deformation to assess
atrial physiology and arrhythmic burden (2). Recently, a large

multicenter study and an expert consensus of the EACVI
on multimodality imaging in HFpEF highlighted the clinical
significance of LA reservoir strain in detecting elevated LV filling
pressures (108, 109). Of note, the expert consensus of the EACVI
highlighted that the main usefulness of LA reservoir strain in the
diagnosis of HFpEF or in the evaluation of LV filling pressures is
in the setting of indeterminate echocardiographic findings (108).
Moreover, the expert consensus of the EACVI remarked that the
usefulness of LA reservoir strain is limited in the diagnosis of
HFpEF or in the evaluation of LV filling pressures in patients with
AF or with history of recent AF (108).

LA MECHANICS IN HF STAGES

Stage A
Stage A is defined by any condition increasing the risk for
HF but without structural heart disease or symptoms (110).
All cardiovascular risk factors, including chronic kidney disease
(CKD), may be considered as stage A HF, requiring specific
therapeutic interventions to prevent the transition to stage
B and C.

Systemic hypertension and diabetes have been shown to be
associated with early reduction of all LA myocardial deformation
components in subjects with normal LA dimensions (111). In
hypertensive patients, the impairment of reservoir, conduit, and
contractile function has been related to LV global longitudinal
strain (GLS) and contractile reserve explored by dobutamine
stress test and confirming the interplay between LA and LV
function (112). However, the relationship between LA and LV
function is stronger when atrial chamber is not dilated and seems
to be less relevant when LA dilatation occurs (113, 114). A direct
atrial damage, such as in diabetic myopathy, may be responsible
of further chamber enlargement and function impairment
independently from the degree of diastolic dysfunction (115).

Several studies showed the prognostic significance of LA
mechanics in stage A HF (37, 40, 45, 116). Reservoir function
has been shown to predict a composite cardiovascular end-point
in a mixed population with cardiovascular risk factors and a low
percentage of previous myocardial infarct and HF (116). More
recently, Morris et al. investigated the additive value of LA strain
analysis compared to chamber enlargement in a large population
of subjects with CV risk factors. LA strain abnormalities resulted
to be more prevalent than dilatation, better correlated with LV
diastolic dysfunction, and independently associated with the
risk of HF hospitalization during 2-years follow-up (40). The
prognostic value of reservoir function was therefore confirmed in
the general population and in the elderly subjects. A sub-study of
Copenhagen City Heart Study considering 385 subjects without
a history of cardiovascular disease showed that LA reservoir
function predicted cardiovascular morbidity and mortality at
the univariable analysis. However, the prognostic value was
modified by sex, resulting in an independent predictor only
in the female population (37). The use of reservoir to classify
diastolic dysfunction in a large cohort of elderly people allowed
a significant reduction of indeterminate cases, resulting in
independently associated with the incidence of HF (45). In CKD
where the activation of renin-angiotensin-aldosterone pathway
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may lead to early cardiac fibrotic remodeling, LA reservoir and
enlargement emerged as early markers of cardiac involvement
(117). Moreover, the reservoir function emerged as the only
independent predictor of cardiovascular death andmajor adverse
cardiovascular events in stage 3–4 CKD with higher predictive
ability compared to other clinical risk scores, LV, and LA
parameters (118).

Stage A HF is characterized by early cardiac remodeling,
involving LV and LA. LA mechanics reflect the degree of
functional and morphological chamber adaptation, providing
prognostic information of additional value with respect to
standard parameters.

Stages B and C
Stage B and C HF have in common the element of structural
heart disease while they differ for the presence of prior or current
symptoms. Valvular disease is typically considered as an example
of stage B due to the intrinsic high risk of HF associated with
an un-prompt management. We therefore reviewed the most
common diseases affecting mitral and aortic valve, along with the
cardiomyopathies predisposing to stage C HF.

Moreover, we reviewed stage B and C together, as dyspnea is
commonly reported in clinical practice, especially in the elderly,
and is a symptom without high specificity. We also specified
in Tables 2, 3 which HF stage has been considered in the
reported studies.

Diseases Affecting Mitral Valve
Mitral valve (MV) disease corresponds to the stage B of the
American Heart Association HF classification (119), according
to the presence of structural heart disease potentially responsible
for symptoms onset. MV disease directly expose pulmonary
circulation to volumetric and/or pressure overload due to the
absence of protective valves between LA and pulmonary veins.
Indeed, the LA exerts a watershed effect between the MV (or the
LV) and pulmonary circulation. Chronic pressure and volume
overload may lead to important LA remodeling characterized
by wall fibrosis, dilatation, loss of compliance, and dysfunction
directly affecting pulmonary hemodynamics (120).

Mitral Regurgitation
The fibrotic process affecting LA secondary to MV diseases has
been extensively reported in animal models. Increased levels of
atrial collagen I in miniature pigs with chronic MR, mediated
by the suppression of the histone deacetylase SIRT1 (silent
information regulator 1), have been reported (121). Using a
similar animal model, the upregulation of fibrosis-related gene
transcription has also been demonstrated in LA walls, along
with the increasing of angiotensin II tissue concentrations (122).
In humans, analogous findings were described by Butts et al.
who observed an important chymase activation in the LA
walls of patients with MR, responsible for higher degrees of
fibrosis, chamber enlargement, and decreased total emptying
fraction (123).

Although a direct measure of LA fibrosis is very challenging
in clinical practice, the early effects of such process may arise as
a loss of compliance and a stiffness increase detectable through

myocardial deformation analysis even before the chamber
enlargement occurs. Cameli et al. demonstrated the usefulness
of reservoir function, assessed through two-dimension speckle
tracking echocardiography (2D-STE), to study the extent of LA
fibrosis and the loss of function in 46 patients with severe
MR. They showed a close negative correlation between the
degree of fibrosis and the reservoir function providing histologic
assessment in atrial samples obtained during cardiac surgery
(124). The histologic analysis has also been used to demonstrate
the correlation between the loss of reservoir function and the
severity of fibrofatty myocardial replacement in 13 patients with
organic MR studied with feature tracking CMR. Interestingly,
the volumetric remodeling did not correlate with the degree of
histological derangement that resulted with better reflected by
reservoir function (125).

The remodeling process is progressive and characterized by
two main phases: an early adaptation where the chamber is
able to enlarge maintaining a normal SV, and a second phase
where maladaptive remodeling prevails. Animal studies showed
the association between MR progression and the bi-phasic atrial
SV adaptation. At earlier stage, the LA enlargement favors the
atrial shortening, which is essential to maintain adequate SV.
Later, the SV starts to decline as the regurgitation progresses
due to the shift of volume-force relationship toward a more
unfavorable position (126). In humans, a significant negative
correlation between ERO, reservoir, and contractile function has
been reported in 102 patients with MR, including 14 patients
with primary and 88 patients with secondary MR. Most of the
examined cohort (84%) had a non-severe regurgitation with
ERO lower to 0.2 cm2, demonstrating that even a mild degree
of MR may lead to significant LA remodeling (127). A similar
result has been recently confirmed in 80 patients with mild (n
= 15), moderate (n = 20), and severe (n = 45) degenerative
MR studied with 3D transthoracic echocardiography and vector
velocity imaging. LA contractility (responsible of the active SV
component) increased in response to greater LA Volume before
atrial contraction (LAVpreA) up to a point beyond which the
active component decreased (128). This mechanism has been
further confirmed in analyzing global and regional LAmechanics
in 27 patients with chronic primary MR. Compared to controls,
the LA ejection force (21.5 vs. 12.3 kilodynes), the reservoir strain
(32.91 ± 14.26 vs 23.14 ± 7.96%,), reservoir strain rate (2.65 ±

0.87 vs 1.62 ± 0.53 s−1), conduit strain rate (−2.02 ± 0.58 vs.
−1.29± 0.59 s−1), contractile strain rate (−2.55± 1.31 vs.−1.98
± 0.65 s−1), and the LA contractile tissue velocity (A′) (−5.39 ±
1.95 vs. −6.91 ± 1.80 cm/s) resulted to be all impaired, despite a
similar global LA ejection fraction (31.34 vs. 29.23%), confirming
the importance of active LA contraction in providing adequate
LV filling (129).

In more advanced stages of MR, all the components of
LA mechanic may be impaired (Figure 3). In 43 patients with
chronic primary MR, due to myxomatous valve disease, LA
reservoir and contractile function, and the LA EF were impaired,
whereas the conduit function was preserved. Interestingly,
regional differences in LA contractility emerged in the anterior
wall, probably due to the eccentricity of the systolic, anteriorly
directed regurgitation jet, hitting the anterior wall and altering
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FIGURE 3 | LA mechanics in mitral valve diseases: Examples of echocardiographic images and LA strain are shown for (left) functional MR in HF subjects with

severely impaired LA function; (middle) severe MR secondary to bi-leaflet valve prolapse with preserved LA function; (right) moderate mitral stenosis with moderately

impaired LA function. Strain traces are cartoons realized with real values of the reported cases. Reference values for LA strain are shown in green. Note that in organic

MR, LA is still able to maintain adequate reservoir function differently from functional MR where LA function is exhausted for to the coexistence of HF. Abbreviations as

in the text.

local wall mechanics (130). LA subclinical dysfunction has been
reported in 50 patients with MV prolapse determining mild (n
= 14), moderate (n = 19), and severe (n = 17) MR. Reservoir
function resulted to be progressively impaired through the
MR degrees, showing negative correlations with EROA, vena
contracta, LA area, and LA volume and positive correlations with
LV LS and untwisting rate (131).

The LA mechanics analysis can be of additional value for
symptoms prediction in subjects with MR. Using 3D speckle
tracking (3DST), Saraiva et al. assessed the correlation between
LA function and pulmonary pressures in 71 patients with organic
chronic MR. They reported an association between pulmonary
systolic pressures, LA reservoir, and contractile function and
reservoir strain rate (132). Moreover, reservoir function was
correlated with a worse functional capacity and HF symptoms
(NYHA III) in patients with chronic severe primary MR.
Interestingly, this parameter was also linked to age and diabetes
mellitus, suggesting amore accelerated LA remodeling in diabetic
patients (133).

The assessment of LA mechanics has a role in prognostic
stratification, identifying subjects with more advanced disease

stage. In 67 asymptomatic patients with chronic primary MR,
a reduced LA reservoir (<31.7%) and LV untwisting rate
(<−87.9◦/s) were able to identify subjects who experienced
hospitalization for HF, MV surgery, or death during follow-up
(24.8± 17 months), confirming that impaired LAmechanics and
not the regurgitation severity are linked to the outcome (31).
Similarly, Yang et al. examined the prognostic significance of
LA mechanics in 104 patients with asymptomatic chronic severe
primary MR. At follow-up (13.2 ± 9.5 months), low reservoir
function (odds ratio, 3.606; 95% CI, 1.294–10.052; p= 0.014) and
low reservoir strain rate (odds ratio, 2.857; 95% CI, 1.078–7.572;
p = 0.035) predicted the incidence of cardiovascular mortality
or MV surgery due to new-onset HF (32). Another large study
on 395 asymptomatic patients with primary degenerative MR
of moderate severity is in agreement. Impaired reservoir strain,
LA emptying fraction, larger LA indexed volume, and lower
LV strain emerged as independent predictors of cardiovascular
events (AF, stroke/ transient ischemic attack, acute HF, and
cardiovascular death). A global reservoir function lower than
35% emerged as the best predictor of adverse outcome during
a follow-up of 3.5 ± 1.6 years (AUC of global reservoir
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function:0.87) (43). Similar findings have been reported in 117
subjects with moderate to severe MR due to prolapse. LA
emptying fraction (HR, 2.59), reservoir strain (HR, 3.06), and
contractile strain (HR, 2.01) were independently associated with
cardiac surgery or all-cause mortality (38).

The serial assessment of LA mechanics may provide early
insights on the chamber remodeling progression. Fifty-five
patients with severe chronic MR caused by mitral prolapse or
flail underwent multiple echocardiographic evaluation during
a follow up of ≤3 months. The variation of strain rate of
reservoir function from baseline to follow-up emerged as the
only predictor of accelerated LA remodeling (1LAVi ≥ median
value). Additionally, a poor baseline reservoir strain rate was
significantly associated with hastened deterioration of the same
parameter during the follow-up period (134).

The surgical timing for MR is another clinical context
where the assessment of LA mechanics may improve patient
management. In a large cohort of patients with MV prolapse
and different MR degrees, total LA emptying fraction [odds
ratio (OR):0.78; p < 0.001], reservoir function (OR:0.91; p =

0.028), and contractile function (OR:0.86; p = 0.021) emerged
as independent predictors for surgery indication. Total LA
emptying fraction<50% demonstrated a 91% sensitivity and 92%
specificity for predicting surgical indication (135). LA reservoir
strain can be used to predict outcome after surgical correction in
patients with chronic severe organic MR, with values lower than
24% identifying the worse survival during a median follow up of
6.4 years (29). Similar results have been confirmed in a cohort
of 71 patients with primary severe MR undergoing surgical
treatment, where LA reservoir function resulted as independent
predictor of clinical and functional outcome and of LA fibrosis.
Considering a composite event of HF and/or cardiovascular
death, 5-year event-free survival was 90 ± 5% for LA reservoir
strain≥21% and 30± 9% for reservoir strain<21% (p< 0.0001).
Moreover, it was associated with an improvement of NYHA class
and Borg scale after surgery (50). Preoperative reservoir strain,
LAVi, and age may also predict valve repair or replacement or
atrial inverse remodeling, defined as a percentage of decrease in
LA volume index (136).

Differently from organic or primary MR, that is a clinical
condition leading to HF if untreated, functional, or secondary
MR frequently comes as a direct consequence of LV dilatation
and dysfunction, further impacting on prognosis and clinical
status (137–140). Rest assessment of LA mechanics in HF with
severe MR has a role in prognostic stratification (Figure 3).
Palmiero et al. investigated LA function in 97 patients
with HFrEF and severe functional MR identifying the LA
emptying fraction as an independent predictor of cardiovascular
death (141).

The evaluation of LA mechanics during exercise may provide
additive information, with specific insights on valvular and
functional reserve (142, 143). In asymptomatic patients with
degenerative MR, the presence of exercise-induced pulmonary
hypertension (PH) was associated with lower reservoir function
with the 26.9% threshold being independent predictor of a worse
symptom-free survival (36). The difference in atrial function
between primary and secondary MR has been studied by

Sugimoto et al. with exercise stress echocardiography and CPET
in 196 patients with primary and secondary MR, including 66
HFrEF, 19 HFpEF, and 30 HF with mid-range ejection fraction
(HFmrEF). Exercise reservoir strain and contractile function
were impaired in any MR type but with secondary MR exhibiting
a worse atrial reservoir function. This was associated with a
worsen exercise performance, limited CO increase, impaired
right ventricular–to–pulmonary circulation coupling, and the
highest event rate. Furthermore, LA strain during exercise
was predictive of all-cause mortality and hospitalization for
HF (144).

Organic MR is characterized by progressive LA remodeling
consisting of atrial wall fibrotic replacement leading to a
loss of reservoir and contractile function, with prognostic
significance for surgery prediction. Functional MR may present
with an impairment of greater severity. The exercise-related LA
functional reserve is associated with the exercise capacity and
clinical outcome.

Mitral Stenosis
Only fewer studies have been conducted to assess the impact of
mitral stenosis (MS) on LA mechanics. Myocardial structural
remodeling in MS is a known morphologic substrate of LA
dysfunction that may lead to AF and adverse outcome (145).
Thus, assessment of LA function in combination with LA
volumetry may help guiding clinical decisions in patients with
MS. Caso et al. assessed the prognostic role of LA function
in 53 asymptomatic patients with rheumatic MS, finding that
the best predictor of adverse events (defined as symptoms,
hospitalization for cardiac cause, AF, thrombo-embolic events,
valvular surgery, or percutaneous commissurotomy) at 3-year
follow-up was the average LA peak systolic strain rate (cut-off
value of 1.69 s−1), having a sensitivity of 88%, and a specificity
of 80.6% (AUC:0.852) (146). Atrial mechanics analysis may be
useful to predict the risk of AF in MS (Figure 3). In 81 patients
with MS, an impairment of reservoir strain was observed in
patient who developed arrhythmia at 5-year follow-up (13.4 ±

4.6 vs. 19 ± 5.2, p < 0.001) (147). Similarly, in a large cohort
of asymptomatic patients with rheumatic MS that was followed
up during 4 years, reservoir function was the best predictor of
AF at multivariable analysis (AUC of.761 for a cut-off value of
17.4%) (30).

In order to assess possible correlation between LA function
and exercise capacity in subjects with MS, Jung et al.
evaluated the LA compliance (defined as 1,270 × mitral
valve area by planimetry/E-wave downslope) during exercise in
33 asymptomatic patients with significant MS. Decreased LA
compliance at an early stage of exercise (50W during bicycle
exercise) was an independent predictor of exercise intolerance.
Moreover, a positive relationship was also noted between the
chamber compliance and the pressure response of pulmonary
circulation, with a more impaired LA compliance in patients
who developed dyspnea at an early stage of exercise (148).
Mahfouz et al. performed stress echocardiography to assess
exercise intolerance in 75 patients with MV area of 1.81 ±

0.13 cm2 and compared them with 40 healthy control subjects.
Interestingly, 44% of asymptomatic patients with mild MS
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had exercise intolerance, and reservoir strain was significantly
associated with exercise capacity in patients with mild MS
(cut-off value: reservoir strain ≤ 26.5%) (46). Similarly, Chien
et al. investigated the relationship between LA deformation as
measured by 2DSTE derived LA strain and HF symptoms in
69 subjects with rheumatic MS, and found that NYHA class
independently correlated with LA reservoir strain and reservoir
strain rate (149).

LA reservoir function and compliance are related to exercise
tolerance in MS. Reservoir function may predict the occurrence
of AF.

Diseases Affecting Aortic Valve

Aortic Stenosis
In aortic stenosis (AS), the outflow obstruction caused by a valve
narrowing determines LV concentric hypertrophy and a strong
predisposition to HF. The increased afterload is responsible
for LV pressure overload, hypertrophy, myocardial fibrosis,
impaired relaxation, and finally LA abnormal mechanics. At
early stages, LA function is preserved, thus helping in the
maintenance of optimal CO, but at later stages, atrial dilatation
and dysfunction occur with different mechanisms (150). It has
been shown that only the reservoir function impairs progressively
with AS severity (151). On the contrary, contractile function
seems initially enhanced in subjects with severe valvular disease
without pulmonary hypertension. The enhanced contractile
function acts as a compensatory mechanism driven by Frank-
Starling law (LA myocytes length is augmented since LA
volume is increased). Once this mechanism is exhausted, the
LA contractile function starts to decline, and the chamber starts
to dilate.

The occurrence of HF symptoms, such as dyspnea in AS,
may represent the decline of clinical conditions leading to
unfavorable outcome. However, in clinical practice it may
be challenging to correlate the symptom with the disease
progression, since the dyspnea is a common condition in
elderly people, but is not necessarily of pathologic significance.
LA mechanics can provide useful insights in discriminating
the origin of symptoms (Figure 4). A retrospective study on
40 patients with severe AS identified contractile function,
assessed through 2DSTE, as the only independent predictor of
HF symptoms (dyspnea, angina, dizziness, and syncope upon
exertion) at multivariate logistic regression (OR = 0.242, p =

0.002) including AS severity, BNP, and LV diastolic function
(cut-off: LA contractile strain rate < 1.01 s−1) (33). Recently,
in a large cohort of 248 patients (202 symptomatic and 46
asymptomatic) with severe AS and preserved LV EF, the reservoir
function emerged as the only parameter independently correlated
with the presence of HF symptom, while LA dimensions and
the echocardiographic parameters of both LV systolic and
diastolic functions did not (44). Moreover, LA longitudinal
strain parameters were inversely correlated with the worsening
of NYHA class. These findings are consistent with the greater
ability of LA mechanics in predicting prognosis when compared
with LV mechanics analysis (34, 152, 153). Galli et al. (35)
demonstrated that LA reservoir function (<21%) is predictive
of major adverse cardiac events and HF in 128 symptomatic

and asymptomatic patients with severe AS, while LV function
parameters (ejection fraction and global longitudinal strain)
are not. This result has been further confirmed in a recent
study on 182 symptomatic and asymptomatic patients with
moderate and severe AS (154). Moderate AS showed greater
values of LA reservoir (23.1 vs. 13.8%, p < 0.001), conduit
(11.5 vs. 6.5%, p < 0.001), and contractile function (11.5 vs.
7.1%, p < 0.001) when compared to severe valvular disease.
On the other hand, no differences emerged when comparing
LV EF, systolic, and diastolic diameters in the two populations
(p > 0.1). The stronger prognostic and clinical significance
of LA vs LV mechanics is attributable to the specific disease
pathophysiology. The LV remodeling impacts on LA that dilates,
enhancing reservoir and contractile function. This compensatory
mechanism does not last for long time producing further pressure
overload in pulmonary circulation and symptoms appearance.
The inverse correlation between LA reservoir strain and PH
in patients with severe AS and preserved LVEF, reflects this
mechanism (155).

The importance of LA mechanics in predicting outcome
in patients affected by severe AS has been corroborated by
several studies reporting LA “reverse remodeling” in patients who
underwent transcatheter aortic valve replacement (TAVR). LA
enlargement has been reported as a marker of HF readmission
after TAVR. In a large retrospective cohort of 546 patients, LA
dilatation, identified by parasternal diameter (48.4 ± 7.9 vs.
43.1 ± 7.2mm, p < 0.0001), was independently associated with
readmission for congestive HF at 1-year follow-up (156). TAVR
is generally associated with an improvement of LA mechanics,
in particular, reservoir function, as assessed with 2DSTE 6
months after treatment (157). A similar improvement of LA
reservoir and conduit function has been described after a longer
follow up of 12 months, regardless of the AS severity, in 54
mixed severe AS (24 normal LVEF and normal flow, 16 with
paradoxical low flow low gradient, and 14 with a reduced
LVEF) (158).

According with the pathophysiology of AS disease, the
exercise is the natural condition able to trigger LV afterload
increase, LV, and LA pressure overload and therefore dynamic
pulmonary congestion. While in healthy subjects, the LA
reservoir and conduit functions are enhanced under stress
conditions (16), the hypertrophic LV is expected to prevent
relaxation and diastolic suction due to the lower compliance
that chronically overloads the atrial chamber (15). Along with
disease progression, LA exhausts its functional reserve leading
to pulmonary congestion and symptoms appearance. Based on
this pathophysiology, the rationale for dynamic assessment of
LA mechanics is strong but still underused. Exercise testing with
simultaneous invasive hemodynamic monitoring and Doppler
echocardiography have been used to evaluate 39 patients with
asymptomatic severe AS. LA size (LAVi≥ 35ml/m2) reflected the
hemodynamic burden (augmented PCWP and PAP, decreased
CI) and was associated at univariate Cox analysis with poor
outcome (composite end-point of hospital admissions for AF,
HF, and acute coronary syndrome, aortic valve replacement,
and death), being a potential marker of increased hemodynamic
burden during exercise. Moreover, this study suggested that when
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FIGURE 4 | LA mechanics in aortic valve diseases: Examples of echocardiographic images and LA strain are shown for (left) severe aortic regurgitation (AR); (right)

severe aortic stenosis (AS). Strain traces are cartoons realized with real values of the reported cases. Reference values for LA strain are shown in green. Note that

reservoir function in AS is impaired, consistently with increased LA pressures secondary to concentric LV hypertrophic remodeling, while in AR the degree of reservoir

impairment is lower. Abbreviations as in the text.

LA dilatation is overt and E/e
′
is also increased, the pulmonary

circulation overload is augmented, especially under stress
conditions (159).

The study of LA mechanics has been shown to be more
informative compared to the LV study, especially for the prediction
of HF and functional capacity. LA reservoir function is a
marker of inverse remodeling occurring after AVR. The assessment

during exercise is a promising frontier for the identification of
asymptomatic patients at higher risk.

Aortic Regurgitation
The backward flow caused by aortic regurgitation (AR)may affect
LV mechanics imposing chronic volume overload, increased LV
stiffness, chamber dilatation, and dysfunction. The process can
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persist for a long period before symptoms onset due to the
ability of the LV to compensate hemodynamic overload (67).
LA involvement may result from several mechanisms, including
impaired LV diastolic function, fibrosis, reduced compliance, and
secondary MR (160), reflecting the AR stage.

A direct correlation between LA reservoir function and PH
has been reported in patients with moderate or severe AR,
with a 6% increase of PH risk for each unit of LA strain
decrease (151). Recently, a large study on 554 patients with
bicuspid aortic valve and moderate or severe AR showed that
the LA enlargement (LAVI ≥ 35 ml/m2) was independently
associated with adverse outcome (aortic valve surgery or
mortality), when compared with patients with normal LAVi
(43 and 60% vs. 23 and 36%, at 1 and 5 years of follow-up,
respectively, p < 0.001) (161). In addition to LA enlargement,
its contractile function is impaired in severe AR, as reported
in 65 patients scheduled for AVR and assessed with 2DSTE.
The evaluation 1 year after surgery showed a reduction in
LAVi (38 vs. 32 ml/m2, p < 0.001), and an improvement
in both LA reservoir and contractile function (26 vs. 29%
and 11 vs. 15%, respectively, p < 0.01) (162). These findings
suggest that the volume overload imposed by AR affects LV
morphology and function, along with LA mechanics, through
diastolic impairment.

Although AR and AS are two distinct models of LV
overload (AS determines a pressure overload while AR volume
overload). They share some common effects on the LAmechanics
(Figure 4). Cioffi et al. (163) compared 141 AS patients with 42
AR looking at LV geometry, LA size and function. In addition
to LA size and ejection force significantly greater in AS group
(Maximal LA Volume: 26 ± 7 vs 218 ± ml/m2, p = 0.0009), LA
enlargement has a positive correlation with LV mass depending
on LV pattern. In particular, the concentric LV pattern is related
to a greater LA volume and contractile function, irrespectively
of valve disease, whereas the eccentric LV geometry does not
determine a relation between LA size and LV mass.

Exercise testing can unmask patients reporting to be
asymptomatic. Assessment of contractile reserve is a key
element to reveal subclinical LV dysfunction. The absence of
contractile reserve is more predictive of the development of
systolic dysfunction both at follow-up (medical therapy) and
postoperatively than parameters obtained at rest in subjects
with severe AR (164). Patients with severe AR may show
an exercise-induced fall in LVEF due to the hemodynamic
consequences of volume overload and increased afterload (165).
However, the reliability of this finding in predicting outcome
is controversial and it is not specifically addressed in the most
recent ACC/AHA and European society of cardiology (ESC)
guidelines (93, 166). If the use of exercise is logical to trigger
effort-related symptoms, then, in AR, the diastole shortening
induced by chronotropic response can potentially reduce the
regurgitation severity, hindering AR quantification (11). AR has
been evaluated through a standard cardiac 1.5-T CMR scanner
under steady-state submaximal exercise and at rest. The AR %
decreased during exercise from 35 (9–26, 39, 56–92) % at rest
to 16 (7–25, 56–72)% during exercise, p = 0.003. In addition,
AR at rest correlates with an increase of cardiac index during

submaximal exercise (R2= 0.64; p= 0.001) (167). These findings
support the use of submaximal exercise to evaluate LA adaptation
during effort, favoring the use of exercise echocardiography to
detect an abnormal response at early stages.

LA enlargement, loss of reservoir, and contractile function have
been related to AR severity and adverse outcome in preliminary
results. AVR has been shown to have a positive impact on reservoir
and contractile function.

Diseases Affecting Cardiac Muscle

Hypertrophic Cardiomyopathy
Hypertrophic cardiomyopathy (HCM) is the most common
genetic heart disorder with a prevalence of 1/200 people
(168). Regardless the specific etiology, the advanced disease
is characterized by LV hypertrophy, diastolic dysfunction, and
increased LV filling pressures. LA adapts enlarging, increasing
its contractile function until functional reserve exhausts resulting
in overt dysfunction. 2DSTE has been used to describe global
and phase-specific function in HCM patients (Figure 5). Total
atrial deformation (defined as the sum of maximum positive and
maximum negative strain during a cardiac cycle) has been shown
to be significantly lower in HCM patients when compared to
control subjects (169). All the three components of LAmechanics
seems to be impaired in HCM patients compared to controls,
in particular, strain rate at reservoir, conduit, and contractile
phase has been showed to be 13, 17, and 10%, respectively
lower (2.0 ± 0.6 vs. 2.3 ± 0.5 s−1, 1.9 ± 0.8 vs. 2.3 ± 0.7 s−1,
2.6 ± 0.8 vs. 3.0 ± 0.8 s−1; p < 0.05) (170). The degree of
LV hypertrophy and fibrosis, assessed through CMR, is directly
proportional to the degree of LA impairment. Compared with
healthy controls, LA conduit function in HCM is impaired, even
without extensive LGE, thus with mild or absent LV fibrosis.
Conversely, LA contractile function is reduced only in HCM
patients with a higher degree of fibrosis, leading to a more
advanced diastolic dysfunction, consequent to LA enlargement
and functional impairment (171). A more advanced atrial
myopathy and disfunction play a specific role in determining
symptoms. Contractile function, explored with 2DSTE, emerged
as the only independent predictor of HF symptoms with a
cut-off of −0.92 s−1 for contractile strain rate (sensitivity: 75%,
specificity: 83%, area under the curve:0.83) in a series of 37
HCM patients, with enlarged atria compared to controls (28).
In less advanced disease, LA dysfunction can be already present
even if the chamber size is still in the normal range. In non-
obstructive HCM patients with normal LA size and contractile
function, reservoir and conduit components resulted impaired
when compared with healthy controls. This finding is consistent
with a lower degree of LV fibrosis, earlier disease stage and
more preserved atrial physiology (172). On the other hand, LA
function further lowers if LV outflow tract obstruction is present,
as demonstrated comparing 50 obstructive, 50 non-obstructive
and 50 healthy patients studied with feature-tracking CMR. The
presence of obstruction has a great impact on LA EF (42.3 ± 8
vs. 47.2 ± 9%; p = 0.004), reservoir strain (14.5 ± 4 vs. 17.7 ±

5%; p= 0.002), strain rate (0.59± 0.2 vs.73± 0.2 s−1; p= 0.001),
contractile strain (6.1 ± 2 vs 7.5 ± 3%; p = 0.01), and strain rate
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(−0.44± 0.1 vs−0.58± 0.25 s−1; p= 0.004) when compared to
the non-obstructive HCM group (173) (Figure 5).

Different studies evaluated the prognostic role of LA function
assessment in HCM patients. An early report identified total
LA strain (the sum of reservoir and contractile function) as the
strongest predictor of short term (12-month) outcome of death
or hospitalization for cardiovascular causes, with the optimal cut-
off of 21% (odds ratio 0.858, 95% CI 0.771–0.954, p = 0.005).
The same parameter was also informative for the occurrence of
AF requiring hospitalization (odds ratio 0.853, 95% CI 0.748–
0.972, p = 0.017) (27). The long-term prognostic significance of
LA function was further demonstrated in a large series of HCM
subjects and controls, followed-up for 55months. Total LA strain
(−17.4%; p < 0.001), LV outflow tract obstruction (p < 0.001),
and E/e’ (10.3; p = 0.02) emerged as independent predictors of
the composite endpoint of all-cause death, heart transplantation,
LV assist device implantation, and clinical worsening (41).
Recently, the prognostic value of LA function assessment has
been addressed with the use of CMR. During a long follow up-
up of 40.9 months, 59 patients with HCM (19.7%) out of 359
experienced the composite endpoint of cardiovascular death,
resuscitated cardiac arrest, sudden cardiac death aborted by
appropriate ICD discharge, andHF hospital admission. Reservoir
and conduit components (HR, 0.94 and 0.89; p= 0.019 and 0.006,
respectively) emerged as independent predictors of outcome,
also after correcting for the extent of LV fibrosis, confirming
the prognostic significance of LA mechanics and expanding
the clinical applications of CMR-based myocardial deformation
analysis (47).

Throughout the clinical history of HCM, the occurrence of
AF marks a critical point potentially impacting on HF symptoms
and prognosis. The study of LA mechanics can be informative
on the occurrence of new-onset arrhythmia. In large series of
HCM patients studied with 2DSTE, LA volume and reservoir
strain were able to predict the occurrence of new-onset AF during
a follow-up of 4.8 ± 3.7 years. The presence of LA reservoir
strain >23.4% predicted a superior 5-year AF-free survival (98
vs. 74%, p = 0.002) (174). This finding has been recently
confirmed by Vasquez et al. who reported a similar threshold
for reservoir function (> 23.8%) and a threshold of 10.2% for
conduit function to predict event-free survival during a follow-
up of 5.83± 0.3 years (events defined as heart failure, stroke, and
death) (42).

In HCM patients, LA mechanics may partially restore after
surgical and non-surgical therapy, as observed in a subset
of 20 patients with obstructive HCM who underwent septal
myomectomy, after which LAEF (41.6 ± 13 vs 48.4 ± 10%;
p =0.006), reservoir (14.1 ± 6 vs. 17.3 ± 7%; p = 0.01) and
contractile function (6.8 ± 4 vs 9.8 ± 5%; 0.0001) increased
at CMR (173). The reversibility of reservoir impairment after
treatment provides an additional explanation of the clinical
response to the septal reduction. These findings, obtained
with non-invasive approach, are consistent with previous data
reporting an improvement of LV relaxation with consequent
increase of LV passive filling volume, decrease in LA volumes,
ejection force (defined as: 0.5 x 1.06 x mitral annulus area x (peak
A2), in kdyne), kinetic energy (0.5 x 1.06 x LA SV x (peak A2)

in kerg), and a parallel reduction of NYHA class, with longer
exercise duration (p < 0.05) (175).

Left Atrium (LA) mechanics progressively disrupt in
HCM, reflecting the disease severity and fibrosis extension.
Reservoir function is the first to decline, especially when HCM
determines LVOT obstruction. All the components of atrial
function are able to predict the outcome, representing valid
prognostic markers.

Restrictive Cardiomyopathy
Despite restrictive cardiomyopathies (RCMs) are known to
be the least common among the heart muscle diseases, they
include a wide group of conditions characterized by different
pathogenesis, clinical presentation, diagnostic workflow,
treatment, and prognosis (176). Some possible etiologies
include infiltrative disorders, such as amyloidosis or sarcoidosis,
storage disorders like Fabry disease, and idiopathic RCM. The
ventricular myocardium generally presents with increased
stiffness, responsible for the characteristic diastolic dysfunction,
elevation of filling pressures, and atria dilation. Systolic function
is usually preserved until the late stages of the disease. During
exercise, the poor compliance of the ventricles hinders the
rapid venous return, resulting in an important rise of the
filling pressures and in a limited increase of SV (177). The
progressive atrial enlargement may contribute to the onset of
HF symptoms, atrial arrhythmias, or secondary atrioventricular
valvular regurgitation.

In cardiac amyloidosis (CA), the LA dysfunction has been
repeatedly studied. Loss of all components of atrial function
characterizes cardiac amyloidosis regardless of the etiology (light
chain, mutant or wild-type transthyretin). However, among
the amyloidosis subtypes, transthyretin amyloidosis (ATTR)
wild type generally present the worst reservoir and contractile
function. Of note, even after adjusting for LA size, LV EF, and
LV filling pressures, all LA function components are generally
impaired in CA patients, when assessed with 2DSTE (Figure 5)
(39, 178, 179). A significative alteration in the reservoir and
contractile function has also been recorded with real-time 3D
echocardiography, and there is evidence that, according to the
progression of the disease, the LAmechanics gradually undergoes
greater impairment (39, 179). Recently, myocardial deformation
of both LA and LV have been shown to be linked to prognosis
in CA. In particular, a reservoir function < 13.2% demonstrated
a 7.5-fold increased risk of all-cause mortality over a median
follow-up of 5 years (95% CI 3.8–14.7, p < 0.001) in a cohort
of 136 patients (48). Remarkably, in a large population of >900
subjects with ATTR, the LA stiffness, estimated as the ratio
between E/e’ and reservoir function, has been shown to be
an independent marker of prognosis, after adjustment for the
main echocardiographic and clinical parameters. In the same
population, the presence of LA electro-mechanical dissociation
(absence of valid mechanical contraction despite sinus rhythm at
ECG) emerged as a distinct phenotype with impaired outcome,
similar to subjects with AF (49). LA mechanics are therefore
significantly impaired in infiltrative disease, with a growing
evidence of a direct LA involvement contributing to the severe
mechanics impairment.
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FIGURE 5 | LA mechanics in cardiomyopathies: Examples of echocardiographic images and LA strain are shown for (left) non-obstructive HCM, (middle)

obstructive HCM and (right) AL cardiac amyloidosis. Strain traces are cartoons realized with real values of the reported cases. Reference values for LA strain are

shown in green. Note that non-obstructive HCM presents severe diastolic dysfunction while obstructive HCM has a greater impairment of reservoir function; AL

cardiac amyloidosis presents very depressed reservoir function consistent with severe diastolic dysfunction and LA amyloid infiltration. Abbreviations as in the text.

Unlike cardiac amyloidosis, primary LA involvement is
less clear in sarcoidosis. Small studies using 2DSTE reported
impairment of LA reservoir function in sarcoidotic subjects
when compared to controls, with a negative correlation with
the disease stage. However, it is unclear if the loss of function
is a consequence of a primary atrial involvement or simply a
consequence of LV dysfunction (180, 181).

Left atrium (LA) reservoir function, evaluated by 2DSTE,
has been reported to be significantly impaired in patients with
Fabry disease even in presence of normal echocardiographic
assessment (182, 183). It is still unclear if these findings can be
primarily explained by the increase of LV filling pressures or
by the direct depositions of sphingolipids in the LA. However,
LA stiffness seems to be an early marker of atrial remodeling,
already altered before the occurrence of LV hypertrophy (184).
Conversely, a relevant impairment in atrial conduit function
has been reported only in presence of LVH, and this may be
justified by a more advanced LV diastolic dysfunction (184).
Using CMR with T1 mapping to classify patients with Fabry
disease, Bernardini et al. reported a progressive impairment of
reservoir function, assessed with FT-CMR, according with the

reduction of T1 mapping (index of subclinical disease) or the
presence of LV hypertrophy (overt heart involvement) (185).
Nevertheless, in another study, significant differences in the three
LA function components were found only in Fabry disease with
significant LV hypertrophy (186).

Despite the heterogeneity of restrictive diseases, the
impairment of reservoir function has been reported as
a common pathophysiological element. In aTTR-CA, the
estimation of LA stiffness emerged as a strong and independent
prognostic marker.

Dilated Cardiomyopathy
Dilated cardiomyopathy (DCM) is a complex pathological
condition coursing with HF and representing the most common
indication for heart transplantation worldwide (187), and it
is characterized by the presence of LV dilatation and systolic
dysfunction, worsened by abnormal LV filling pressures and
functional mitral regurgitation in the most advanced stages (188,
189). At earlier stages, LA contractile function is augmented
to maintain adequate LV filling, but later it decreases as a
consequence of the increased afterload.
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In a series of 160 DCM and 154 ischemic patients, studied
with 2DSTE and CPET, LA reservoir and contractile functions
were significantly reduced in the DCM group, with LA lateral
wall reservoir and LA volume predictive of peak VO2 (both p <

0.001) (190). Similar findings were reported by Cao et al. in 32
ischemic, 26 DCM, and 32 control patients where reservoir and
contractile functions were more impaired in DMC subjects (191).

The prognostic role of contractile function loss and LA
dilatation has been demonstrated in a large cohort of patients
with DCM (192) and recently confirmed with the use of CMR
(193). LA maximal volume (LAmax) resulted to be effective in
predicting the occurrence of a composite endpoint including
death or heart transplantation in a population of 337 patients
with DCM who were followed-up for a mean period of 41 ± 29
months. Notably, patients with an increased LA volume (LAVi>
68.5 ml/m2) had a risk ratio of 3.8 compared with those with a
preserved LA volume (194). In line with these results, indexed LA
area assessed with standard echocardiography (with an optimal
cut-off > 13 cm2/m2) emerged as the strongest index associated
with the same composite outcome both in a univariate and a
multivariate model in 275 DCM patients, whom events were
recorded over a mean follow-up of 67 months (HR 6.58, 95% CI
2.43–17.86, p < 0.001 and HR 3.2, 95% CI 1.06-9.23, p = 0.038,
respectively) (195).

The reliability of these results is confirmed by similar findings
obtained assessing the LA geometry with CMR. In particular,
LAVi resulted to be an independent predictor of a composite
endpoint including all-cause mortality or cardiac transplantation
evaluated in 483 consecutive patients affected by non-ischemic
DCM who were prospectively followed-up over a median
period of 5.3 years (HR per 10 ml/m2 1.08, 95% CI 1.01–
1.15, p = 0.022). Furthermore, patients with an increased LAVi
(> 72 ml/m2) showed a three-fold elevated risk of death or
transplantation (HR 3.00, 95% CI 1.92–4.70, p < 0.001). LAVi
was also independently associated with the secondary composite
endpoints of cardiovascular mortality or cardiac transplantation
(HR per 10 ml/m2 1.11; 95% CI 1.04–1.19, p = 0.003), and HF
death, HF hospitalization, or cardiac transplantation (HR per 10
ml/m2 1.11; 95% CI 1.04–1.18; p= 0.001) (196).

Of note, some LA morphological and functional parameters
demonstrated to have a prognostic role when evaluated under
stress. In particular, in 84 DCMpatients studied with dobutamine
stress echocardiography and followed-up for a mean period of
17.0 ± 11.8 months, LAVi (HR 1.060, 95% CI, 1.035–1.087; p
< 0.001) besides the variation of systolic LA strain (HR, 0.971,
95% CI, 0.946–0.996, p = 0.02) and the variation of passive LA
strain (HR 0.942, 95% CI, 0.914–0.971, p < 0.001) emerged as
independent predictors of cardiovascular events in two different
multivariate Cox models. Interestingly, including LA strain
parameters at rest and under dobutamine into multivariate Cox
analysis provides an incremental benefit in predicting adverse
cardiovascular events (197).

Left atrium (LA) enlargement and loss of reservoir function
occurring in DCM reflects the disease severity and have a
prognostic significance for composite endpoints. The use of
dobutamine to test the LA functional reserve may have an
incremental value in risk stratification.

Heart Failure With Reduced, Mildly Reduced, and

Preserved EF
Left atrium (LA) represents the physiological escape for the
augmented LV filling pressures occurring in every type of HF
syndrome (Figure 6). According with the HF duration and onset
velocity, LA reacts to pressure overload adapting its dimensions
(198), function, and compliance, and plays a dominant role
in the disease progression (199). The remodeling ability of
LA directly impacts on pulmonary circulation, eventually
leading to pulmonary capillary involvement, pulmonary
artery hypertension (200), and RV failure (201). Nevertheless,
differences exist in the remodeling process occurring in HF with
reduced vs. preserved LV EF. A greater chamber enlargement
and a greater increase in LA stiffness and pressures have been
described in HF with reduced ejection fraction (HFrEF) and
HF with preserved ejection fraction (HFpEF), respectively
through the use of right heart catheterization (RHC) and
echocardiography in a large cohort of mixed HF patients
(202). In HFrEF, LA dilatation is directly related to LV disease
progression, primarily through the hemodynamic effects, while
in HFpEF different disease pathways (i.e., inflammation and
direct atrial myopathy) may interact resulting in a more complex
LA remodeling (203). Nevertheless, the LA dysfunction similarly
impacts on pulmonary circulation in both phenotypes, resulting
strictly correlated with pulmonary vascular disease and RV
dysfunction (202, 204, 205). The loss of atrial compliance,
reflected by an increased stiffness (non-invasively estimated as
the ratio between E/e’ and reservoir function), has been showed to
be predictive of HF hospitalization and cardiac death in HFrEF
and HFmrEF patients (206). LA stiffness estimation has the
advantage of exploring the mechanical behavior of the chamber,
combining the expansibility properties with the degree of LV
pressure overload.

The non-invasive estimation of LA pressure is a cornerstone
of echocardiographic evaluation, providing information on the
hemodynamic conditions of LA-pulmonary circulation unit
(107). An integrative approach, considering diastolic parameters,
LA dimensions, and mechanics may improve the hemodynamic
assessment and provide additional prognostic information. The
assessment of LA reservoir function with 2DSTE improves
the detection of LV diastolic dysfunction in subjects with
preserved LV EF and LA size, improving the current diastolic
function algorithms (45) and resulting associated with a higher
risk of HF hospitalization, even after adjusting for age and
sex (40).

In the context of HFrEF, LA reservoir function is an
independent predictor of adverse outcomes (a combined end-
points of all-cause mortality and HF hospitalization) in stable
patients, with an incremental predictive value compared to
standard parameters of LV function (51, 207) and LA dilatation
(208). The loss of reservoir function has a prognostic significance
also in the context of acute HF in subjects with preserved sinus
rhythm. Moreover, reservoir function correlates with functional
impairment and presents a better ability in predicting poor
quality of life when compared to LA volume and LV dysfunction
(67). The tight relationship between LV systolic and LA reservoir

Frontiers in Cardiovascular Medicine | www.frontiersin.org 18 January 2022 | Volume 8 | Article 750139

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Bandera et al. LA Mechanics in HF Stages

FIGURE 6 | LA mechanics in HF subtypes. Examples of echocardiographic images and LA strain are shown for HFrEF (left), HF with mid-range ejection refraction

(HFmrEF; middle) and HF with preserved ejection refraction (HFpEF; right). Strain traces are cartoons realized with real values of the reported cases. Reference

values for LA strain are shown in green. Note that HFrEF has a very depressed LA function when compared with HFmrEF (expression of greater disease severity),

while HFpEF presents a significantly impaired reservoir function (without contraction component for the presence of atrial fibrillation), similar to that observed in HFrEF.

Abbreviations as in the text.

function (being the LV base downward displacement one of the
main determinants) has been raised as a matter of concern about
the independent prognostic significance of atrial deformation
(209). However, its incremental predictive value, compared to
standard parameters of LV function (51, 207) and LA dilatation
(208), has been demonstrated. As for systolic and diastolic
components of LVmechanics, LA function reflects several factors
and interactions. Indeed, the parameters describing the single
phases should not be considered per se but rather as a part of a
more complex system.

The interest on LA mechanics has grown especially for the
investigation of physiology, for early diagnosis and prognostic
stratification of HFpEF, based on the key role of the atrium.
Longitudinal data from a large study cohort showed that the
loss of atrial reservoir function is associated with increased
risk of HF hospitalization, even after adjusting for clinical
risk factors, NTproBNP and echocardiographic parameters,
in patients with coronary artery disease and preserved LV
EF (65). Similarly, in patients with definite diagnosis of
HFpEF enrolled in the TOPCAT trial, LA reservoir function
emerged as a valid predictor of HF hospitalization (210).

The effort tolerance, the most common symptom in HFpEF,
is strictly modulated by reservoir function, being associated
with abnormal pulmonary vascular resistance and impaired
functional capacity (peakVO2) (211). The LA emptying function
and LV filling properties are both correlated with NTproBNP
levels in HFpEF subjects, as shown in a RELAX trial
sub-study (212).

In a large cohort of 363 symptomatic patients, LA reservoir
(cut off: <24.5%) function and compliance (estimated as the
ratio between reservoir and E/e’, cut off: 3) outperformed E/e’,
LA enlargement, tricuspid regurgitation velocity, LV hypertrophy
and LV global longitudinal strain (GLS) in diagnosing HFpEF,
using exercise RHC as a diagnostic standard (53). The
impairment of reservoir function has been linked with the
progression of AF burden in HFpEF. Combining RHC and
echocardiographic evaluation in a cohort of 285 HFpEF
patients, the presence of a reservoir function <31.5% and a
compliance <5.7%/mmHg has been associated, respectively,
with a hazard ratio (HR) of 6.8 and 6.0 for the progression
toward worse AF stage (55). This finding supports a model of
electro-mechanical coupling, expression of a remodeling process

Frontiers in Cardiovascular Medicine | www.frontiersin.org 19 January 2022 | Volume 8 | Article 750139

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Bandera et al. LA Mechanics in HF Stages

where reservoir and contractile function are influenced also by
electrical properties.

Along with the remodeling process affecting LA in HFpEF,
the occurrence of mitral regurgitation (MR) represents a further
step associated with a greater hemodynamic severity and a poorer
functional capacity. Interestingly, the presence of LA disfunction
(defined as LA reservoir < 24.5%) remains an independent
predictor of HF or cardiovascular death, even after adjusting
for age, gender, BMI, LV EF, and the presence of MR itself,
confirming the prognostic importance of the chamber.

The assessment of rest LA reservoir function has been
validated in the diagnostic workup of HFpEF. Ye et al. tested
the predictive role of rest reservoir function in identifying
abnormal exercise-induced LV filling pressure (as defined by
2016 AHA guidelines for diastolic evaluation) in a cohort of 669
subjects. The addition of LA reservoir function to the currently
recommended diagnostic work-up improved the diagnostic
accuracy (AUC from 0.71 to 0.80, p = 0.01) with a reported 28%
higher odds of developing elevated exercise LV filling pressure
per 1% of reservoir function decrease (213).

The interaction between LA function and exercise capacity
represents another area of interest in all HF phenotypes. During
physical effort, LA plays a major role in ensuring adequate
and rapid LV filling. The abnormal rise of LV end-diastolic
pressure during exercise, typical of both HFrEF and HFpEF,
prevents the physiological emptying of LA, leading to a rise
in atrial pressures during diastole. The interplay between atrial
function and effort tolerance has been variably shown in all

HF phenotypes, using different approaches, including standard
echocardiography, myocardial deformation and radionuclide
assessment (19, 214, 215). A large study on 486 subjects,
symptomatic for chest pain or dyspnea, with preserved LV
ejection fraction, explored the determinants of exercise capacity
with echocardiography. LA reservoir function, E/e’, age, male
gender and BMI emerged as independent predictors of effort
tolerance (19). A similar result has been recently reported in
HFpEF patients of a German registry, where a LA reservoir
<22% was able to predict impaired functional capacity after
adjustment for common variables and log-NTproBNP (216).
The reservoir function is not exclusively linked to functional
capacity. Von Roeder et al. investigated the role of the different
components of LA mechanics reporting a strong association
between impaired conduit function and reduced early LV filling
inHFpEF, by using amultimodality approach. The loss of conduit
function limits the early LV filling and therefore the SV, one
of the CO component, resulting in restricted peak VO2 during
exercise (171).

The study of LA mechanics at rest may predict the exercise
response in HF patients, as demonstrated in a cohort of 164
HF patients (56% with preserved EF) who underwent to rest
and exercise RHC. LA reservoir function (with a threshold
of 21 and 17% in HFrEF and HFpEF, respectively) predicted
rest or exercise elevated pulmonary capillary wedge pressure
(PCWP) with higher accuracy than recommended algorithm
(AUC: 0.80 vs.69, p <0.001) (52). The strong correlation between
LA function and the degree of pulmonary congestion has been

FIGURE 7 | LA functional reserve assessed during exercise in HFrEF. Examples of rest-stress traces of patients with different severity of HFrEF. (left) Exercise-induced

LA dysfunction; (middle) absence of LA functional reserve in severely impaired LA mechanics; (right) good LA functional reserve. Note that during early stage of

exercise, LA mechanics can improve or reduce according with the presence of functional reserve, expression of multiple factors influencing LA function. In the first

case on the left, the presence of exercise-induced mitral regurgitation produces additional volume overload responsible of further reservoir function worsening.

Abbreviations as in the text.
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recently confirmed by Telles et al. (54) using simultaneous RHC
and strain analysis in 49 HFpEF and 22 subjects with non-cardiac
dyspnea. Reservoir and contractile LA function correlated
with exercise PCWP, remaining independent predictors after
adjustment for other variables, and showing a good diagnostic
accuracy with a reservoir cut-off of 33%. LA reservoir function
directly reflects the pulmonary hemodynamic status and the
response to the unloading effect of diuretic therapy. Deferm
et al. (7) showed a strong and rapid improvement of reservoir
function during and after acute pulmonary decongestion in
31 acute HFrEF patients with invasive pressure monitoring
and serial echocardiographic assessment. Remarkably, the
contractile function slowly recovered during the observation
period, suggesting the persistence of a great stunning condition
predominantly affecting atrial contraction.

The use of stress test to explore the chamber reserve
represents the emerging frontier of LA mechanics assessment.
This approach can acquire a clinical relevance in specific
context, such as the HFpEF diagnostic workup, where the
diagnostic gold standard (invasive hemodynamic at rest and
during exercise) requires an uncommon level of expertise, still
not widely available (93, 166). The use of cardiovascular imaging
in dynamic conditions—to test LA reserve—may provide a more
effective recognition of pathological response than a rest-limited
assessment. Obokata et al. (217) explored the use of passive
leg lift in testing the LA reserve to discriminate HFpEF from
hypertensive patients. They confirmed that LA dilatation in
HFpEF occurs to maintain an adequate SV at rest. Nevertheless,
during passive volume overload, HFpEF presents with a reduced
reservoir and contractile function, provoking a blunted SV
increase during exercise. Remarkably, the use of such a simple
stressor, better discriminated HFpEF from hypertensive patients,
showing additional diagnostic value compared to conventional
parameters. The significance of LAmechanics during exercise has
been reported in a large population of mixed HF patients who
underwent exercise-echocardiography and cardiopulmonary
exercise test (CPET). The study of atrial myocardial deformation
during the early phase of exercise showed that peak SV, CO, and
cardiac power output were all associated with a greater reservoir
function reserve, triggered by exercise. As suggested by the data
collected during rest evaluation, a deficient reservoir reserve
during exercise affects the LV filling and the backward flow to
pulmonary circulation leading to blunted CO and pulmonary
circulation retrograde overload (218). Interestingly, the loss of
LA reservoir reserve has been observed irrespectively from LV
EF and other hemodynamic factors, being a marker for the
occurrence of HF hospitalization and death. Finally, the presence
of functional MR in HFrEF subjects was associated with a further
reduction in exercise-related LA reservoir function, confirming

the additional detrimental effect of volume overload leading
to earlier dilatation and exhaustion of atrial function (144), as
represented in Figure 7.

The absence of LA reservoir function reserve, in both
HFrEF and HFpEF, has been studied with respect to functional
phenotypes and right ventricle-pulmonary circulation unit, using
a combined exercise-echocardiography and CPET approach.
Compared to control subjects, a limited or absent reservoir
function reserve was observed inHFpEF andHFrEF, respectively,
during early exercise phase. Remarkably, the exercise-induced
LA reservoir function correlated with TAPSE/PAPS ratio, a
marker of right ventricle-pulmonary circulation coupling, and
with VE/VCO2, an index of ventilatory efficiency, in both types
of HF syndrome (219).

Left atrium (LA) adaptation to abnormal pressure overload
imposed by HF is a crucial determinant of hemodynamic and
functional conditions. Reservoir function is a key parameter
to address the global function of the chamber, the presence
of functional reserve and to use in diagnostic workup and
prognostic stratification.

CONCLUSIONS

Left atrium (LA) remodeling plays a central role in cardiac
diseases due to the ability of the chamber in adapting to abnormal
hemodynamic conditions, generated by the underlying disease,
and to protect pulmonary circulation. The assessment of LA
mechanics (especially reservoir function), with 2DSTE or FT-
CMR, is very informative on the stage of disease progression and
on the risk stratification. The evaluation under stress conditions,
mainly during physical exercise, is a great potential for the
additional insights on the LA functional reserve.
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