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Characterizing left ventricle (LV) systolic function in the presence of an LV assist device

(LVAD) is extremely challenging. We developed a framework comprising a deep neural

network (DNN) and a 0D model of the cardiovascular system to predict parameters

of LV systolic function. DNN input data were systemic and pulmonary arterial pressure

signals, and rotation speeds of the device. Output data were parameters of LV systolic

function, including end-systolic maximal elastance (Emax,lv), a variable essential for

adequate hemodynamic assessment of the LV. A 0Dmodel of the cardiovascular system,

including a wide range of LVAD settings and incorporating the whole spectrum of

heart failure, was used to generate data for the training procedure of the DNN. The

DNN predicted Emax,lv with a mean relative error of 10.1%, and all other parameters

of LV function with a mean relative error of <13%. The framework was then able to

retrieve a number of LV physiological variables (i.e., pressures, volumes, and ejection

fraction) with a mean relative error of <5%. Our method provides an innovative tool to

assess LV hemodynamics under device assistance, which could be helpful for a better

understanding of LV-LVAD interactions, and for therapeutic optimization.

Keywords: cardiovascular modeling, heart failure, deep neural network, left ventricular assist device,

machine learning

1. INTRODUCTION

Left Ventricular Assist Device (LVAD), a subset of mechanical circulatory support, assists the
failing left ventricle (LV) by pumping blood from the LV into the ascending aorta. In recent
years, LVAD has become a crucial therapeutic solution for patients with end-stage heart failure
(1). Current indications for LVAD implantation include bridge to heart transplantation (2), and
destination therapy, for patients not candidate for heart transplantation (3). LVAD may also be
used as bridge to recovery, in patients in whom the LVAD can be removed after recovery of native
myocardial function (4).

The assisted LV may retain a certain amount of residual native function. Therefore, complex
and reciprocal interactions occur between the heart and the LVAD. The systemic blood flow, i.e.,
total cardiac output, represents the sum of the flows generated by the LVAD and the native LV,
dependent on respective loading conditions (preload and afterload) and inherent function. The
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latter corresponds to the rotational speed for the device
(revolutions per minute, RPM) and residual systolic function
(contractility or inotropy) of the native LV (5). Understanding
these interactions is critical for appropriate settings of the LVAD
and for estimating the possible recovery of native LV function.
An essential step is therefore to appropriately evaluate LV systolic
function under LVAD assistance (6).

Such evaluation is particularly challenging, owing to the
unloading of the LV produced by the LVAD. Echocardiography
and invasive cardiac catheterization are presently the only
methods used for this purpose, and some authors have advocated
specific protocols to optimize native LV function or to identify
myocardial recovery (7–10) in patients assisted by LVAD.
These methods, while clinically useful, provide either indirect
(catheterization) or load-dependent indices of LV function,
but unfortunately do not provide a direct, load-independent
determination of LV contractility. The latter can indeed only
be fully characterized by computing maximal systolic elastance
(Emax,lv), which is the maximal slope of the end-systolic pressure
volume relationship of the LV (11). Determining Emax,lv requires
the simultaneous measurement of LV pressure and LV volume.
This is only feasible under experimental settings and is therefore
not applicable to the clinical reality, indicating that novel
strategies to assess LV inotropy are critically needed.

We recently proposed a method, based on a deep neural
network (DNN), to predict Emax,lv in failing, unassisted LV
(12). In the present study, we aimed at evaluating whether
such an approach could be used in the setting of LVAD
support. To address this issue, we developed a framework using
simple physiological signals (arterial pressure waveforms from
the systemic and pulmonary arterial circulations) coupled to
LVAD data (pump rotational speed ωc) to predict Emax,lv and
other variables relevant to LV systolic function. The presence
of the LVAD strongly affects the arterial pressure waveforms, it
is therefore not possible to employ the same DNN considered
in Bonnemain et al. (12) to recover the physiological variables
of interest. In other words, the inherently different behavior
of our cardiovascular system model (a 0D lumped model, see
section 2.2) with and without LVAD requires us to train a new
DNN on data specifically accounting for the presence of the
device. One of the goals of this work, therefore, is to demonstrate
that the approach presented in Bonnemain et al. (12) can be
extended to patients with LVAD support by training the DNN
on data adequately representing the pump settings considered in
clinical settings.

2. METHODS

2.1. General Framework
Figure 1 displays a schematic representation of the framework
(based on our recent publication (12)), used to evaluate (i) LV
parameters of systolic function (Emax,lv and other parameters of
LV systolic function) and (ii) various physiological LV quantities
(e.g., pressures, volumes), by employing a lumped parameter
model of the cardiovascular system (see description below).
Our framework makes use of a deep neural network (DNN)
which infers, given systemic and pulmonary arterial pressure

measurements and the RPM of the LVAD as inputs, an estimation
of LV systolic parameters (comprising, in particular, Emax,lv). The
DNN was trained with a lumped model of the cardiovascular
system (13), modified to take into account the presence of a
HeartMate III (HMIII) LVAD (Abbott Laboratories), one of the
last third generation centrifugal-flow devices. In a second phase,
the parameters of LV systolic function—which in general are
unavailable in the daily practice—were provided to the lumped
model to reconstruct various outputs such as LV pressures and
volumes. It is worth noting that the network was trained on
a dataset which is generated by the 0D model for a variety
of heart failure cases and LVAD settings, therefore the first
phase of the algorithm effectively consists in solving an inverse
problem mapping the output of the 0D model to its underlying
physical parameters.

2.2. Lumped Model of the Cardiovascular
System and LVAD Modelization
The 0D model of the cardiovascular system is based on the
mathematical description of the cardiovascular system presented
by Ursino (13), which takes into account carotid baroregulation.
It includes vascular compartments, heart ventricles with
time-varying elastance, parasympathetic afferent and efferent
pathways, and sympathetic efferent pathway. We modified it in
order to model the presence of the HMIII LVAD.

The model comprises eight vascular compartments. The
pulmonary circulation is represented by a serial arrangement
of arterial, peripheral, and venous circulations. The systemic
circulation begins with arteries and further subdivides into
splanchnic and extrasplanchnic circulations, each having a
peripheral and venous compartment in series. Each compartment
i comprises at least a resistance (Ri) and a compliance (Ci)
to account for viscous and elastic effects, respectively, and is
further characterized by its unstressed volumes. Inertance (Li)
is considered only in large systemic and pulmonary arteries,
i.e., blood acceleration is neglected in the rest of the vascular
tree. Mass conservation (1), momentum conservation (2), and
pressure-flow relationship (3) equations are applied to each
compartment i, assuming that blood is an incompressible,
isotropic, and Newtonian fluid:

dVi

dt
(t) = Qi,in(t)− Qi,out(t), (1)

Li
dQi,out

dt
(t) = Pin(t)− Pout(t)− Ri(t)Qi,out(t), (2)

Vi(t) = CiPi,in(t)+ Vi,0, (3)

where Vi is the volume of ith compartment, Vi,0 the unstressed
volume of ith compartment (i.e., volume at zero pressure), Qi,in

and Qi,out the inlet and outlet flow rates of ith compartment, Pi,in
and Pi,out the inlet and outlet pressures of ith compartment.

The heart model comprises ventricles and atria as a four-
compartment system, each of which is modeled by a serial
arrangement of a compliance, a resistance, and an ideal valve,
i.e., blood flows without viscous loss from inlet to outlet
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FIGURE 1 | General framework, modified from Bonnemain et al. (12) under CC-BY license. The DNN is fed with systemic and pulmonary arterial pressures,

formulated in their frequency domain, as well as LVAD RPM, to predict parameters of LV systolic function. These parameters are integrated to the 0D model to retrieve

(Continued)
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FIGURE 1 | the indicated additional hemodynamic parameters. Shapes and colors significance in the 0D model are: deoxygenated blood (blue elements); oxygenated

blood (red elements:); compliance (circles); inertance (rectangles); resistance (facing triangles, double arrows); cardiac valves (single white arrows in heart chambers);

elements affected by autoregulation (gray contour). RPM, Rotations per minute; SAP, systemic arterial pressure; PAP, pulmonary arterial pressure; DNN, deep neural

network; RA, right atrium; RV, right ventricle; LA, left atrium; LV, left ventricle. Emax,lv [mmHg/ml]: end-systolic left ventricular elastance, Emax,lv,0 [mmHg/ml]:

end-systolic left ventricular elastance in absence of baroregulation, GEmax,lv [mmHg/ml/(spikes/ml)]: maximum baroreceptor gain, kE,lv [1/ml]: steepness of end-diastolic

pressure-volume curve.

compartments when pressure of the former exceeds pressure
of the latter. Atria are passive elements, whereas contractility
of ventricles is characterized by a time-varying elastance.
Autoregulation occurs through the carotid baroreflex. The vagal
afferent activity is modulated by the absolute systemic arterial
pressure and its rate of change. Sympathetic and vagal efferent
activities then modulate systemic peripheral resistances, systemic
venous compliances, heart period, and ventricles resistances
and compliances.

Different stages of left ventricle systolic failure severity were
represented by modifying values of the following parameters:
end-systolic elastance of the left ventricle with and without
autoregulation, Emax,lv and Emax,lv,0, respectively, the maximum
baroreceptor gain GEmax,lv

, and kE,lv, which describes the end-
diastolic pressure-volume relationship for the left ventricle.
Ranges for each parameters are shown in Supplementary Table 1

and were validated with clinical data in Bonnemain et al. (14).
All other parameters were not changed and can be found
in the original paper (13). Figure 2 shows different pressure-
volume diagrams for different degrees of heart failure, with and
without LVAD.

The LVAD is modeled as a pressure-controlled flow generator,
based on pressure-flow curves interpolated from data available
in the HMIII manual1. Specifically, the flow rate is a function of
the pump differential pressure and the pump rotational speed,
as shown in Supplementary Figure 1. The LVAD inflow and
outflow cannulas are connected to the left ventricle and systemic
arteries, respectively, as depicted at the bottom of Figure 1. The
pump setting is characterized by a constant rotational speed, ωc,
and a pump speedmodulation feature, namely the artificial pulse,
which periodically modifies the pump speed from its preset value
ωc. More specifically, every 2 s the pump speed decreases by 2,000
RPM during 0.15 s and then increases by 4,000 RPM during the
following 0.2 s. This aims at promoting pump washout (15) and
thus preventing pump thrombosis (3, 5).

2.3. Deep Neural Networks
A DNN is a parametric machine learning algorithm used to
capture complex nonlinear relationships between inputs and
outputs, which needs to be trained on a large number data points.
In contrast to other parametric models, DNNs do not require
strong assumptions about the nature of the data distribution. The
fundamental building block of a DNN is an artificial neuron,
that is a simple function which takes a d-dimensional input x =

(x1, . . . , xd) and which outputs a scalar a = g(w0 + w1x1 +

w2x2 + . . . + wdxd), where the vector w = (w0, . . . ,wd) ∈ R
d+1

contains the parameters of the model, and g is the activation

1https://www.heartmate.com/healthcare-provider/resource-center

function, which is typically non-linear. Here, we focus on a
simple and widely-used class of DNNs, namely multi-layer
perceptrons (MLPs). A MLP is made of layers composed of
artificial neurons in which each neuron receives input from all
neurons in the previous layer; for this reason, this structure is
commonly referred to as fully-connected. In matrix form, the
output of the lth layer reads

a(l) = g(l)
(

W(l)a(l−1) + b(l)
)

, (4)

where W(l) and b(l) are the weight matrix (which collects all the
parameters w of the neurons belonging to the layer) and the bias
vector, respectively. We denote by L the total number of layers of
the DNN. Layer 0 is the DNN input, and layer L is the output,
whereas layers 0 < l < L are called hidden layers.

Each layer l in a MLP depends on the parameters contained
in the weight matrixW(l) and in the bias vector b(l). The process
of calibration of these parameters corresponds to the training of
the DNN. It is based on the use of a training dataset represented
by a set of input-output pairs {xi, yi}. Let f(xi;2) = a(L) when
a(0) = xi, where 2 = {W(1), . . . ,W(L), b(1), . . . , b(L)} is the set of
parameters of all layers. The fitting or training procedure consists
in minimizing a loss function L2 on the training set by means
of an optimization algorithm (e.g., stochastic gradient descent).
The goal is to find the weights 2 that yield good approximations
f(xi;2) ≈ yi. See (16, 17) for a detailed description of machine
learning algorithms and deep neural networks.

2.4. Data Generation and Input/Output of
the DNN
We generated a dataset by solving the 0D model Ns times
for Nω pump rotational speeds ωc. Each of the Ns ×

Nω simulations was characterized by a pump setting (ωc)
and a set of four heart-failure-characterizing parameters
(Supplementary Table 1), independently and randomly sampled
with a uniform distribution. We selected Nω = 21 pump
rotational speeds ωc equally spaced in the range from 4,000 to
6,000 RPM, as these speeds encompass the usual pump setting
in clinical conditions (18). For each rotational speed ωc, Ns =

10, 000 samples were generated, yielding a total of Nω × Ns =

210, 000 samples. Setting a large value for Ns allowed us to
generate combinations of parameters that cover the whole range
of left heart failure stages. The other 0D parameters are set to the
values found in Ursino (13).

A simulation was performed over a time range (0,T) with
N interpolation equidistant points. We set the simulation time
to T = 30 s, allowing signals to reach a steady state after
initialization, with N = 2, 000. The resulting output was a set
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A B

C D

FIGURE 2 | Left ventricle pressure-volume diagrams for different stages of heart failure, without LVAD (A) and with LVAD for different pump speeds (B–D).

of evenly-spaced time series. We note ui,SAP(tm) and ui,PAP(tm)
the values of the systemic arterial pressure (SAP) and pulmonary
arterial pressure (PAP), respectively, at time tm = mT/N,m ∈

{0, 1, . . . ,N}, for the ith sample of the dataset. The pressure
curves were represented in the frequency domain. That is, we
computed the trigonometric Fourier coefficients ai,X

k
and bi,X

k
such that,

ui,X(tm) =
ai,X0
2

+

N/2
∑

k=1

[

ai,X
k

cos (ωktm) + bi,X
k

sin (ωktm)

]

,

where N is even, ωk = 2kπ/T and X is either SAP or PAP (19).
We fixed the activation functions of the DNN and trained a

model for various number of layers and neurons per layer. In
addition to the Fourier coefficients of the signals, we provided the
pump setting ωi

c of ith sample as an additional predictor variable.
To reduce the noise and to obtain better trainability thanks to a
smaller input size, we choose a small number K and we only keep
(2K−1) Fourier coefficients of the signal ui,X , which are stored in
a vector ci,X = (ai,X0 , . . . , ai,XK−1, b

i,X
1 , . . . , bi,XK−1). An input-output

pair is represented by the input vector xi = (ci,SAP, ci,PAP,ωi
c),

and the output vector yi = (Ei
max,lv

,Ei
max,lv,0

,Gi
Emax,lv

, ki
E,lv

).

2.5. Software Implementation
The 0D model has been implemented in the object-oriented and
equation-based Modelica programming language, on the open-
source OpenModelica framework. Pre- and post-processing
procedures were implemented in the Python and Matlab
languages. The DNN architecture was implemented with the
Keras library within TensorFlow.

3. RESULTS

3.1. Fourier Coefficient Determination
Wefirst aimed at determining the numbers of Fourier coefficients
K required to accurately reconstruct the pressure signals. These
are in turn given as input to the DNN. We provide in
Supplementary Figure 2 a reconstruction of a pressure signal
with different values of K for a complex curve, as obtained
with low RPM (4,000) and severe LV failure. Indeed, in these
conditions, LV preload is little reduced, allowing the native LV
to contract and eject through the aortic valve. Thus, ejection
through the LVAD and the native aorta induced a complex signal
(20). In addition, artificial pulse of the device adds a level of
perturbation, that is moreover not synchronized with heart rate.
Black curve on the top of the figure corresponds to the original
signal, and colored curves reconstructions with different values
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of K. We chose to restrict to K = 50. While limiting the size of
the input data, this choice enables an accurate reconstruction of
pressure curve signals.

3.2. DNN Architecture Evaluation
We used the rectified linear unit and sigmoid activation functions
for the hidden and output layers, respectively. That is, g(l)(x) =
max(x, 0) for l < L and g(L)(x) = ex/(1 + ex). For
training, we used the typical mean squared error loss function

L2 = 1
|B|

∑

i∈B

[

yi − f(xi;2)
]2

that we minimized with Adam

optimizer, with B = 32 being the batch size. Learning rate was set
to 0.001. 5% of the samples in the dataset were kept for the test
set, while 80% and 20% of the remaining samples were used in
the training and validation sets, respectively.

We evaluated 28 different DNN architectures. For each
architecture, the training and validation values of the loss
and the mean absolute error were computed, as shown
in Supplementary Table 2. We then selected the best
performing and smallest architecture (in terms of number
of layers and neurons), corresponding to architecture #2 in
Supplementary Table 2.

3.3. DNN Performances
Table 1 shows performances of the DNN to predict the 4 output
parameters of the test set (10, 500 samples). The data indicate
accurate predictions for Emax,lv, Emax,lv,0, and kE,lv (mean relative
error of predictions, respectively, 10.07, 7.58, and 0.93%). The
predictive accuracy was slightly lower for GEmax,lv

(mean relative
error 12.43%), which is consistent with the sensitivity analysis
performed in Bonnemain et al. (12), showing a lower sensitivity
of the 0D model to this parameter. Graphical representation of
data presented in Table 1 is provided in Figure 3.

The DNN performance was further assessed by solving the
0D model with the 4 parameters (real and predicted) for each
sample of the test set, using the following output measures:
LV end-systolic pressure and volume, LV end-diastolic pressure
and volume, LV ejection fraction, and pulmonary artery wedge
pressure (a clinical surrogate of LV end-diastolic pressure). For
each variable, the minimal, maximal, and mean values, as well
as the standard deviation, were obtained using alternatively
the exact and predicted values of the 4 parameters of LV
systolic function, and the differences between obtained data were
computed as the error, presented as mean ±SD, 95% confidence
interval, and relative error. The results of this analysis are
presented in Table 2 which indicates values of relative error <5%
for all the hemodynamic values evaluated.

4. DISCUSSION

LVAD has become a frequently used therapeutic option in end-
stage heart failure. Although this type of mechanical circulatory
support significantly improves clinical condition and outcome of
patients (21), some issues deserve further exploration regarding
the interactions between the LVAD and the residual function of
the native LV (22). A better understanding of these interactions
and of hemodynamic properties of the assisted LV would be
important to optimize support strategies, detect early abnormal

TABLE 1 | Evaluation of the DNN performance on the test set, by comparing

exact and predicted parameters of the output of the DNN.

Emax,lv Emax,lv,0 GEmax,lv
kE,lv

Exact

Min 0.200 0.200 0.200 0.0110

Max 2.95 2.39 0.475 0.0140

Mean 1.58 1.30 0.338 0.0125

SD 0.791 0.632 0.0794 8.65e-4

Predicted

Min 0.204 0.208 0.203 0.0111

Max 2.91 2.38 0.472 0.0140

Mean 1.56 1.27 0.342 0.0125

SD 0.782 0.627 0.0632 8.42e-4

Error

Mean 0.111 0.0693 0.0386 1.17e-4

Min 2.05e-5 1.24e-6 2.12e-5 6.85e-9

Max 0.913 0.352 0.202 9.88e-4

SD 0.0887 0.0524 0.0319 9.56e-5

CI min 0.109 0.0683 0.0380 1.15e-4

CI max 0.112 0.0703 0.0392 1.18e-4

Relative error

Mean 0.101 0.0758 0.124 9.33e-3

Error is computed as the difference between exact and predicted output in absolute

value. Relative error is error divided by exact output. Emax,lv [mmHg/ml], end-systolic

left ventricular elastance; Emax,lv,0 [mmHg/ml], end-systolic left ventricular elastance in

absence of baroregulation; GEmax,lv [mmHg/ml/(spikes/ml)], maximum baroreceptor gain;

kE,lv [1/ml], steepness of end-diastolic pressure-volume curve.

interactions between device and LV, and finally identify LV
recovery to consider weaning of the LVAD (23).

Our present work provides a novel approach to help address
such complex issues by implementing a DNN and by using
a 0D model of the cardiovascular system, which incorporates
the mathematical description of a last generation LVAD. We
developed an automated framework to accurately recover LV
hemodynamic parameters from data available in the clinical
practice, namely systemic and pulmonary arterial pressures.
These signals were represented in their frequency domain and
were then given as input to the DNN. An appropriate selection
of the number of Fourier coefficient allowed to retain only
relevant physiological frequencies, control size of input, and
clean possible noise. In addition to the pressure signals, the
input of the DNN included information about the device
setting (RPM).

Owing to this architecture, only one DNN has to be trained
to include every possibility of the working range of the device.
This makes our framework suitable for a fast and automated
implementation. Our DNN proved excellent reliability, being
able to predict Emax,lv with a mean relative error of <10%.
Furthermore, the 0D model allowed to precisely recover values
of LVEF, ventricular volumes, and ventricular pressures, as
indicated by the small relative error (<5%) between their actual
and predicted values. Moreover, the average time to predict
LV parameters from input signal was fast (<1 s) using a
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A B

C D

FIGURE 3 | Performance of architecture #2 (see Supplementary Table 2) on the test set. For each of the four parameters, the exact value is plotted against the

predicted one. (A) Emax,lv [mmHg/ml], end-systolic left ventricular elastance; (B) Emax,lv,0 [mmHg/ml], end-systolic left ventricular elastance in absence of

baroregulation; (C) GEmax,lv [mmHg/ml/(spikes/ml)], maximum baroreceptor gain; (D) kE,lv [1/ml], slope of end-diastolic pressure-volume curve.

personal computer. Thus, real-time implementation could be
easily considered.

The determination of Emax,lv is challenging, requiring
left-side heart chambers catheterization, a technique whose
implementation is not realistic in the daily clinical practice. Non-
invasive methods, including echocardiography and magnetic
resonance imaging, coupled to measurement of arterial blood
pressure have been proposed (24, 25), however their use is
mainly restricted to the experimental setting. Furthermore, none
of these techniques have so far been applied to assess Emax,lv

in patients assisted with a LVAD. It is noteworthy that a
few preclinical studies have highlighted significant difficulties
to determine Emax,lv in the presence of a LVAD. In a study
performed using an in vitro cardiac simulator under control
and heart failure conditions, Jhune et al. (26) showed that acute
LVAD support induced a “pseudo-improvement” of calculated
ventricular elastance, highly dependent on the LVAD speed.
In two experimental animal studies, a comparable dependence
of ventricular elastance on LVAD pump speed has also been
reported by Vandenberghe et al. (27) in a calf model, whereas
Sugai et al. (28) did not find such dependence in a goat model.

In the present work, the determination of Emax,lv remained
accurate whatever the degree of residual LV function, LVAD
setting, and loading conditions. Therefore, our method has the
ability to determine Emax,lv independently from all potential
influences of the aforementioned parameters, thereby avoiding
misleading information. The framework was able to generate
large amounts of data encompassing the whole working range
of the device and every stage of heart failure severity, thereby
permitting to appropriately train the DNN and guarantee the
accuracy of predictions. Therefore, the implementation of our
framework allowed to leverage the power of DNN to predict key
parameters whose determination would be otherwise extremely
cumbersome. An important issue to emphasize here is that the
value of Emax,lv retrieved with our DNN cannot be calibrated with
an effective measurement, which should require simultaneous
recordings of intracardiac pressure and volume. Therefore, the
absolute value of Emax,lv as obtained from our framework, should
be interpreted with caution, whereas variations of this value
along time would provide invaluable information to identify
rapidly changing hemodynamic condition such as can occur in
the acute setting.
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TABLE 2 | Results of 0D simulations using exact and predicted parameters of the

test set.

LVEF LVEDV LVESV LVEDP LVESP PCWP

Exact

Mean 53.0 141 67.8 3.66 113 7.43

Min 24.4 86.0 28.7 1.03 39.0 3.11

Max 71.1 220 166 12.0 135 16.7

SD 9.16 22.0 22.5 1.70 14.1 2.30

Predicted

Mean 52.6 142 68.9 3.71 112 7.49

Min 24.3 85.6 29.2 1.05 39.2 3.15

Max 70.1 217 159 12.9 135 17.3

SD 9.30 22.6 23.3 1.75 14.5 2.34

Error

Mean 1.04 1.62 2.15 0.112 0.881 0.107

Min 1.17e-4 8.11e-5 5.83e-7 9.44e-7 5.53e-6 2.14e-5

Max 8.36 16.8 17.5 1.27 20.4 1.09

SD 1.04 1.52 2.15 0.127 1.39 0.109

CI min 1.02 1.59 2.11 0.109 0.855 0.105

CI max 1.06 1.65 2.19 0.114 0.908 0.109

Relative error

Mean 0.0204 0.0111 0.0317 0.0295 8.82e-3 0.0138

The error on the retrieved haemodynamic parameters is expressed as absolute or relative.

LVEF [%], left ventricular ejection fraction; LVEDP [mmHg], left ventricular end-diastolic

pressure; LVESP [ml], left ventricular end-systolic pressure; LVEDV [ml], left ventricular

end-diastolic volume; LVESV [ml], left ventricular end-systolic volume; PCWP [mmHg],

pulmonary capillary wedge pressure.

The implementation of our tool could be notably useful
in the post-operative phase of LVAD implantation. Indeed, in
this context, LVAD RPM must be constantly adjusted to find
the optimal settings of the device: although too high RPMs
may lead to suction events promoting a reduction of pump
flow, too low RPMs may cause inadequately low LVAD flow
with systemic hypoperfusion, as well as left ventricle insufficient
unloading and pulmonary oedema. These disturbances are
likely to be influenced by the residual left ventricular systolic
function, whose real time evaluation using our method would
therefore be extremely helpful for hemodynamic optimization
(29–31). Owing to the rapidity of the framework to make
predictions on low-performance devices (e.g., standard personal
computer), its direct implementation in the monitoring system
of the patient might be straightforwardly considered. Arterial
signals could be analyzed to make real-time predictions of
LV parameters. Moreover, further development may include
automatized algorithm to optimally set RPM in function of
the predictions. This concept could be already implemented in
the catheterism laboratory when performing ramp test during
routine follow-up to optimize LVAD outflow or evaluate LV
function recovery.

Some limitation of our work has to be acknowledged. Firstly,
our framework was exclusively trained and run using numeric
data. Obviously a next step will be to assess the performance of

this framework using clinical data of pulmonary and systemic
arterial pressure. Although this could be relatively challenging
owing to the noise included in the signals under clinical
acquisition, this limitation could be overcome by reducing the
number of Fourier coefficients. Secondly, the 0D model used
to train the DNN did not include possible alterations in left
sided valve dysfunction such as mitral valve regurgitation, or
right ventricle dysfunction, which may be both associated with
LVAD implementation. Future refinements of our model should
therefore take into account such possibilities.

5. CONCLUSION

In summary, we developed a novel method to assess systolic
function of the mechanically assisted left ventricle, based on
a DNN trained with data obtained from a 0D model of the
cardiovascular system taking into account the presence of a
LVAD. This DNN is fed with simple pressure signals (systemic
and pulmonary) and with the rotation speed of the device,
allowing to predict end-systolic elastance and other parameters
of left ventricular function with excellent accuracy. Our method
could represent a useful tool to optimize LV-LVAD interactions
early after implantation as well as during chronic therapy, and to
evaluate the possible functional recovery of the left ventricle.
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