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Lower extremity arterial occlusive disease (AOD) results in significant morbidity and

mortality for the population, with up to 10% of patients ultimately requiring amputation. An

alternative method for non-surgical revascularization which is yet to be fully understood

is the optimization of the body’s own natural collateral arterial network in a process

known as arteriogenesis. Under conditions of conductance vessel stenosis or occlusion

resulting in increased flow, shear forces, and pressure gradients within collaterals, positive

remodeling occurs to increase the diameter and capacity of these vessels. The creation

of a distal arteriovenous fistula (AVF) will drive increased arteriogenesis as compared to

collateral formation with the occlusion of a conductance vessel alone by further increasing

flow through these arterioles, demonstrating the capacity for arteriogenesis to form larger,

more efficient collaterals beyond what is spontaneously achieved after arterial occlusion.

Arteries rely on an extracellular matrix (ECM) composed of elastic fibers and collagens

that provide stability under hemodynamic stress, and ECM remodeling is necessary to

allow for increased diameter and flow conductance in mature arterial structures. When

positive remodeling occurs, digestion of lamella and the internal elastic lamina (IEL) by

matrix metalloproteinases (MMPs) and other elastases results in the rearrangement and

thinning of elastic structures and may be replaced with disordered elastin synthesis

without recovery of elastic function. This results in transmission of wall strain to collagen

and potential for aneurysmal degeneration along collateral networks, as is seen in the

pancreaticoduodenal artery (PDA) after celiac occlusion and inferior mesenteric artery

(IMA) with concurrent celiac and superior mesenteric artery (SMA) occlusions. Further

understanding into the development of collaterals is required to both better understand

aneurysmal degeneration and optimize collateral formation in AOD.

Keywords: arteriogenesis, extracellular matrix, elastic fiber, outward remodeling, collateral arteries, arterial

occlusive disease

INTRODUCTION

The incidence of lower extremity arterial occlusive disease (AOD) has continued to increase
over the past several decades resulting in significant morbidity and mortality for the population.
Symptoms progress slowly after onset, however between 5 and 10 years after diagnosis 20–30%
of patients will experience progressive symptoms requiring intervention with up to 10%
requiring amputation (1, 2). Non-surgical therapies for symptomatic patients include behavioral
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and pharmacological risk factor modification and exercise
therapy. Revascularization, however, depends on invasive
interventions like endoluminal angioplasty and stenting or
surgical bypass, as examples. Despite improving methods and
technologies, revascularization procedures pose some risk to the
individual and have anatomical requirements. As a result, some
patients are not suitable candidates for revascularization.

Fortunately, individuals with AOD often benefit from some
level of natural adaptation which manifests as development of
collateral arterial networks. When large conductance arteries
become obstructed, flow patterns immediately change and
distal perfusion becomes increasingly dependent on collateral
development (3). This process is known as arteriogenesis
and involves the outward remodeling and growth of pre-
existing arterioles to create an effective collateral network (4).
Compared with angiogenesis, which results in the local growth
and development of de novo capillaries in ischemic beds,
arteriogenesis is the primary means by which blood flow is
recovered to distal tissue (5). Effective, functional collateral
arteries may minimize clinical symptoms of AOD and allow
for conservative management of symptoms (6, 7). Functional
coronary collateral networks associate with reduced mortality as
well (3, 8–10). Collateral artery networks can readily be identified
on arteriograms obtained from patients with peripheral AOD as
demonstrated in Figure 1.

Unfortunately, collateral vessels formed do not spontaneously
restore maximal conductance to levels equal to that of the
occluded artery they seek to replace. In an early experimental
model of arterial occlusion, spontaneously developing collaterals

FIGURE 1 | Clinical findings of PAD in symptomatic patients. (A) Aortoiliac

arteriogram demonstrates bilateral common iliac artery occlusive disease, with

evidence of compensation by large lumbar and inferior mesenteric arterial

collaterals (Green arrowhead). (B) Left common femoral artery occlusive

disease (blue arrow) with prominent developed left obturator artery collateral

(Green arrowhead). (C) Left lower limb popliteal artery occlusion with

numerous collateral arteries, including developed branches of the descending

genicular artery (Green arrowhead). (D) Normal left lower limb arteriogram

shows small size and limited opacification of branches of the descending

genicular artery at baseline (Blue arrow).

only restore 35–40% of maximum conductance of the occluded
artery (11) and does not exceed 50% (12). We have previously
shown, however, that collateral capacity has a significantly
higher ceiling than what may be achieved spontaneously
after large artery occlusion, suggesting potential utility for
pharmacotherapies that may augment collateral network
development (13). In the following review, we describe current
knowledge of mechanisms of arteriogenesis.

Origins of Collateral Arteries
Collateral arteries naturally develop from pre-existing arterial
connections across arterial territories that span an occluded
conductance vessel (14). Although not readily identifiable
by conventional arteriogram in the absence of pathology
(Figure 1D), collateral anastomoses are widely present among
healthy individuals and persist from development (15). Such
arterial anastomoses have been shown to exist in all arterial
territories, but may vary by tissue and species, leading to
differences in perfusion protection in the case of arterial
occlusion (16). Among mice strains, the differences in baseline
collateral connections have been shown to be genetically
determined (17–19). In human coronary disease patients,
Hollander et al. showed that improved human coronary collateral
flow indices was associated with higher palmar collateral flow
indices, indicating coherence of collateral connections between
different circulatory beds within an individual (20).

By Longland’s classification, collateral arterial pathways are
comprised of three components; the proximal, communicating,
and the distal branches, more conveniently referred to as the
stem, the midzone, and the re-entrant arteries (21). The midzone
is the area of greatest focus because this is where the greatest
degree of outward structural remodeling occurs, effectively
transforming resistance vessels such as arterioles into collateral
arteries which have a role in blood flow conductance.

Arterial Extracellular Matrix Structure
The arterial extracellular matrix (ECM) is primarily composed
of elastic fibers and various collagens and is necessary to
provide structural stability to the vessel under conditions of
hemodynamic stress. Elastin stores energy and distributes stress
along the vessel wall while collagen, which is primarily located in
the adventitia, prevents over distension of the vessel and provides
a resilient framework, though it is unable to store energy (22).
In the setting of excessive wall strain, such as what occurs in
mid-zone collaterals during arterial occlusive disease, collagen
in the adventitia limits increases in arterial diameter and over-
stretching of elastic tissues. This is evidenced in the straightening
of collagen fibers and is known as the “two-phase” material
property which supports arterial function and stability (23–27).
Unfortunately, this sets limits on potential outward diameter
expansion and must be overcome for collateral enlargement
to occur.

Elastin fibers consist of a heavily crosslinked, dense elastin
protein core surrounded by peripherally oriented proteins
and proteoglycans. These fibers have an estimated half-life
approaching the human lifespan and are created predominantly
in neonatal and early postnatal life with very little new elastin

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 November 2021 | Volume 8 | Article 761007

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Kulkarni et al. Arteriogenesis and Extracellular Matrix Remodeling

made during adulthood (28, 29). Their construction consists
of tropopelastin monomers produced by vascular smooth
muscle cells (VSMCs) and endothelial cells which then self-
assemble in the extracellular space, assisted by a microfibril
scaffold. Lysine residues within tropoelastin are modified by
the enzyme lysyl oxidase (LOX) which leads to covalent cross-
link formation, greatly contributing to the elastic polymer’s
resilience and durability (28–30). When damaged physiologically
or pathologically, elastic fibers can be salvaged if integrity
is preserved. Lost elastic fiber integrity may be replaced
with disordered elastin synthesis without recovery of elastic
function (31–35).

Elastic fibers are present throughout the arterial wall but
are most prominently featured in the dense sheets separating
rows of resident VSMCs known as lamellae. These lamellae are
present within the tunica media. Between the tunica intima and
media, a prominent lamina underpins the endothelium and is
better known as the internal elastic lamina (IEL). These elastic
lamellae contain fenestrations which vary in size and frequency
depending on the arterial branch order, and allow for cellular
communication, diffusion, and molecular transport (36–39).
More importantly, these lamellae become active sites of arterial
remodeling during postnatal growth of arterial structures and
arteriogenesis (40, 41). Large elastic arteries (such as the common
femoral artery) consist of thick, wrinkled elastin with small and
rounded fenestrations, while secondary and more distal vessels
have a fine meshwork of fibers in place of an established IEL (39).
Under low pressure the IEL appears wrinkled and wavy due to
redundancy and is observed to flatten at higher pressures as the
artery distends.

In small arteries Type IV collagen forms the basement
membrane while type I collagen bundles are abundant in the
adventitia. Collagen fibers have a similar wavy appearance in all
vessels. This baseline variability in ECM structure is significant
in that it may have clinical consequences regarding remodeling
capacity of these vessels. Alternatively, collagen fibers have
half-lives as low as 2 weeks under experimental conditions of
hypertension, and likely must be continually synthesized and
replaced (42, 43).

Flow Patterns Regulate Vessel Diameter
As arterial occlusive disease progresses, flow patterns
automatically adapt as blood flow follows the path of least
resistance. This may result in large flow rate increases among
inter-territorial connections. The endothelial cells are influenced
by the resulting shear stress elevations imparted by this increased
flow and may become activated (5, 44). Arteriogenesis is initiated
in response to sustained elevations in shear force gradients
(45). Through a mechanism that is not well-elucidated, vascular
endothelial cells transduce the increased shear forces and initially
respond with endothelial nitric oxide (NO) gene expression as
well as cytokine and adhesion molecule release (46).

Assuming laminar conditions, the primary forces acting on
the vascular wall are fluid shear stress (FSS) and circumferential
wall stress (CWS). FSS is experienced as the frictional force
of blood exerted against the vascular wall, specifically the
endothelium, which is believed to act as the primary modulator

of this input (47). The force of increased flow as interpreted by
the endothelium is widely regarded as the initial event leading to
vasodilation and downstream chronic vascular remodeling (48).
The initial abrupt elevation in shear force followed by a gradual
normalization is subsequently associated with remodeling of
all three layers of the vascular wall, extracellular matrix, and
ultimately yields vessel diameter expansion (49, 50).

Increased volume flow through a vessel has been shown to
induce outward remodeling and diameter growth (51–53). As
luminal diameter increases, fluid shear stress necessarily drops
precipitously, and may provide a “set point” for growth. This
self-regulating mechanism, which has been described as the
shear stress “set point theory,” states that fluid shear stress at
the endothelial level essentially will return to normal, signaling
resolution of remodeling. Increases in the vessel radius leads
to decreases in wall shear stress and provides the system with
a negative feedback autoregulatory loop (48). The mechanism
for this process is incompletely understood, however there are
theories related to epigenetics and DNA hypermethylation which
could influence mechanosensitivity, as well as influences from
VEGFR3 in setting a vessels innate setpoint (54, 55).

Events of Arteriogenesis
Increased FSS, Endothelial Mechanotransduction,

Vasodilation
Loss of a conductance artery necessarily contributes to
altered pathways for blood flow due to shifting in pressure
gradients. Pre-existing collateral connections between
territories separated by a conductance artery occlusion will
be subjected to increased flow and shear stress. The endothelium
within these collateral pathways detects the shear alterations
through mechanotransduction cascades that are complex and
incompletely understood. The endothelial glycocalyx has been
shown to be important in endothelial mechanotransduction
and its absence leads to diminished arteriogenesis (56, 57).
Nucleotides are released extracellularly in response to shear
stress and subsequent purinergic receptor activation leads to
endothelial cell mediated vasodilation (58–60). Caveolae are sites
of signaling activity in response to FSS alterations in cultured
endothelial cells and are necessary for flow-mediated remodeling
responses (61, 62). Various integrins are implicated in shear
force transduction and endothelial-mediated vasodilatory
response (63, 64), and the functional remodeling required for
arteriogenesis including production of elastase (64–67).

Nitric oxide has been implicated in arteriogenesis, but
its role is complex. Endothelia respond to increased shear
stress with increased endothelial nitric oxide synthase (eNOS)
expression and subsequent production of NO, a potent
vasodilator (68, 69). Purinergic receptors activated in response
to elevated FSS and are necessary for flow-mediated NO
production and subsequent vasodilation (59, 60, 70). Some
described arteriogenesis experiments have demonstrated that
early perfusion recovery depends on vasodilatory mechanisms,
and NO production (71). Additionally, while loss of eNOS
alone does not alter arteriogenesis, loss of inducible nitric oxide
synthase (iNOS) does inhibit collateral development (72). NO has
a role in remodeling via MMP activation, andinhibition of NOS
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results in a significant decrease in MMP activity (73). Chronic
inhibition of NOS reduces diameter enlargement relative to
controls and impairs vessel autoregulation to its shear stress set
point (74). Notably, loss of endothelium decreases vessel response
to chronic flow alterations (75).

Although short-lived vasoactive signals may produce
immediate vasoconstriction or vasodilation mediated by
VSMC shortening or lengthening, cessation of the signal
results in return to baseline vessel diameter. Sustained
signal, however, produces additional adaptation of resident
VSMCs through “length autoregulation,” reorienting cell-cell
and cell-ECM adhesion and thus increasing or decreasing
VSMC overlap (76). Such adaptations result in maximal
allowable diameter increase of the arterial segment without
breakdown of the ECM, referred to as mechanoadaptation
(76, 77).

Endothelial Expression of Adhesion Molecules,

Chemokines, and Leukocyte Recruitment
Endothelial cells activated by prolonged elevations in shear
stress begin to express increased levels of vascular cell adhesion
molecule-1 (VCAM-1) and intercellular adhesion molecule 1
(ICAM-1). Adhesion molecule expression recruits circulating
leukocytes to the developing collateral artery by promoting
adherence and transmigration into the developing vessel wall
(78–81). Inhibition of ICAM-1 via monoclonal antibodies
directly reduces leukocyte migration, and ICAM-1 deficiency
reduces collateral perfusion in response to arterial occlusion (82,
83). Endothelial VCAM-1 and ICAM-1 expression in response
to flow alterations is regulated in part by thy P2Y2 purinergic
receptor (84–86), and its absence results in reduced inflammatory
cell recruitment and diminished collateral development (87).

Shear stress induced endothelial activation also promotes the
release of several cytokines including monocyte chemoattractant
protein-1 (MCP-1), TNF-α, and granulocyte macrophage
colony stimulating factor (GM-CSF) which importantly attract
monocytes (46, 88, 89). MCP-1 attracts monocytes to areas of
active remodeling as well as upregulation of cellular adhesion
molecule ICAM-1 (79). Local infusions of MCP-1 to developing
collateral arteries have been shown to improve arteriogenesis.
However, in an experimental model of arteriogenesis it was
found that local tissue macrophage proliferation in response
to MCP-1 was more important than blood-borne monocyte
recruitment for mediating collateral development (90).

Adhesion molecule expression by activated endothelium
and local cytokine production recruits a broad population of
inflammatory cells to participate in arteriogenesis. Neutrophils
appear to be recruited first, and produce cytokines such as
midkine, which has been suggested to mediate VEGF release
(91, 92). We have also shown that within the first 48 h, there is
a significant upregulation of neutrophil elastase transcription in
whole vessel analysis, suggesting that neutrophil presence may be
important in initiation of ECM remodeling. Neutrophils have a
short time presence outside of the circulation, however, and are
generally absent later in developing collaterals, suggesting their

role may be limited. Natural killer cells and CD4+ T cells have
been implicated in arteriogenesis as well (93, 94).

Additionally, administration of lipopolysaccharide (LPS)
stimulates TNF-a and is also capable of increasing perivascular
concentrations of monocytes/macrophages leading to collateral
growth and development (95). Once activated, monocytes,
as well as T lymphocytes, release MMPs along with TNF-
a and growth factors such as b-FGF and PDGF which serve
to induce smooth muscle cell phenotype switching from a
contractile to a proliferative phenotype, permitting migration
(95–98). It has been shown that intra-arterial injection of
MCP-1 and GM-CSF are capable of increasing collateral
diameter due to recruitment of circulating monocytes, and is
inhibited by monocyte depletion (82, 99, 100). Macrophages
have been demonstrated as being important mediators of
arteriogenesis (101). Of course, macrophages have complex
functions depending on their phenotypes, and as a result may
play pro-inflammatory or reparative roles. Even in the absence of
flow induced changes, macrophages have been shown to promote
degradation of the IEL, a key occurrence to allow for outward
remodeling (78, 101, 102).

Proliferation of Resident Cells
Collateral arterial growth occurs with the proliferation of resident
tissue cells, which can expand the vessel mass nearly 25 times the
original (103). Activated endothelium release mitogenic factors
as well as promote local proliferation and ECM remodeling.
Endothelial proliferation has been shown to precede that of
VSMCs and may be directly induced by shear stress activation
(95). VSMCs are not exposed to shear forces, and direct control
of the phenotypic modulation and proliferation necessary are less
well-defined. Typically, VSMCs are maintained in what is known
as a contractile phenotype (oriented circumferentially around a
vessel) which is typically the differentiated, quiescent form for
VSMCs. These cells are separated from the intima by the IEL and
contained within their local microenvironment by a basal lamina
which envelopes these cells (104). VSMCs will dedifferentiate,
reverting to a synthetic phenotype capable of proliferation and
migration during the expansion of arteriogenesis (105). FGF
and PDGF have been found to be important growth factors
involved in upregulating vascular smooth muscle cell (VSMC)
growth and differentiation leading to phenotype switching, actin
polymerization, and maturation (106–108). Increased PDGF
resulting from increased shear is suggested to be an important
early factor involved in the cellular adaptation of vessels to flow
mediated via the endothelium (109).

As VSMC populations migrate and expand, a neointima
forms in the developing collateral artery, appearing as
early as 3 days following occlusion (79). Formation of
the neointima depends on ECM modifications to remove
barriers to migration. VSMCs may release MMPs and plasmin
activators (which convert the pro-enzyme plasminogen
to active plasmin) and degrade several ECM components
(110). Experimental evidence has suggested that VSMC
migration and proliferation depend on MMP activity and IEL
degradation (111). Unlike instances of neointima formation
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FIGURE 2 | Internal elastic lamina (IEL) remodeling in a rodent model of arteriogenesis. Rat hindlimbs were rendered ischemic by placement of femoral artery ligation

with distal arteriovenous fistula or treated as controls with sham operation (incision and exposure without further arterial manipulation) as we have previously described

(13). Profunda femoral arteries were harvested at 12 weeks and imaged with multiphoton microscopy. Note the wrinkled topology of the IEL with small regular

fenestrations in the control vessel, which is lost in the remodeled vessel as the fenestrations are greatly enlarged. Images acquired with Olympus FV1000MPE utilizing

830 nm laser. Bar = 50 um. Multiphoton microscopy methods described previously (39).

in intimal hyperplasia or atherosclerosis, in arteriogenesis
the increased wall thickness is balanced by overall increase
in luminal diameter. Eventually luminal diameter increases
enough to reduce local FSS back to within an acceptable
range, the mitogenic stimuli dissipate, and VSMCs return to a
contractile phenotype.

ECM Remodeling—Alteration in Vascular Structure
Diameter increase along with ECM remodeling requires
the rearrangement of elastic tissue in the internal elastic
lamina. Ultimately, elastolysis allows for vessel diameter
enlargement, and ECM remodeling is necessary to allow for
increased diameter and flow conductance in mature arterial
structures (112). In the developing collateral artery, this
appears as fenestration enlargement of the IEL, such that
outward remodeling during collateral development is achieved
while simultaneously maintaining IEL continuity. Others have
demonstrated that the fenestrations are the active sites of
both outward and inward remodeling of the IEL (40, 41,
113, 114). We have found that after femoral artery ligation
with distal arteriovenous fistula creation (FAL + AVF), an
initially dense elastin network transforms into a loose meshwork
with the general pattern of IEL reorganization, demonstrating
increases in fenestration size bordered by cords of branching
elastic fibers (Figure 2). Increases in circulating desmosine
(an elastin breakdown product) within 1 week after FAL +

AVF were found which disappear after 2 weeks, (Andraska

et al. submitted to the current issue) supporting that elastin
degradation is important early in arteriogenesis. It has been
shown that collateral artery development requires activated
MMP-2 and MMP-9, and no fragmentation of the IEL noted
when administered MMP inhibitors (115). Cathespins, also
involved in vascular remodeling, have elastolytic properties as
well and are found to be upregulated in developing collateral
arteries (116–119).

The damage to the elastic fibers during arteriogenesis must

be limited in order to maintain fiber integrity and prevent
loss of IEL continuity. Tissue inhibitor of metalloproteinases

(TIMP1) and plasminogen activator inhibitor 1 (PAI-1) also

play vital roles in collateral development by inhibiting MMP
function and preventing excessive breakdown of ECM (111). It
would seem that elastic fiber preservation and repair is necessary
during arteriogenesis, given that construction of new elastic fibers
construction is unlikely to occur.

Cross linking of elastin and collagen fibers is mediated via
the enzyme lysyl oxidase (LOX) and is essential to maintaining
the integrity of the ECM. LOX expression is increased in
remodeling of FAL + AVF arterioles and we found that
inhibiting LOX [using β-aminopropionitrile (BAPN)] resulted
in rapid fragmentation and loss of continuity of the IEL
from collateral arteries. This suggests the role of LOX in
the repair and stabilization of proteolytically digested elastic
fibers during arteriole remodeling. This suggests the proteolytic
balance between breakdown and repair during remodeling,
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FIGURE 3 | Process of collateral artery recruitment and remodeling. Following occlusion of a conductance vessel, there is immediate increase in flow across

pre-existing collaterals. The resulting elevated fluid shear stress (FSS) is recognized by endothelial cells via mechanoreceptors, which leads to nitric oxide (NO)

production and subsequent relaxation of vascular smooth muscle cells (VSMCs) and then vasodilation. Prolonged vasodilation produces mechanoadaptation of

collaterals. With sustained elevation of FSS, endothelial cells are activated to express intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1

(VCAM-1) and monocyte chemoattractant protein-1 (MCP1) which recruit inflammatory cells to the developing collateral artery. With the aid of a population of

perivascular macrophages, growth factors and cytokines such as tumor necrosis factor-alpha (TNF-α), fibroblast growth factor (FGF) are produced, increasing

phenotypic modification of VSMCs and proliferation. Elastolytic enzymes such as matrix metalloproteinases (MMPs) are produced, which partially degrade the elastic

framework, releasing latent transforming growth factor-beta (TGF-β) complexes. As diameter expands, FSS decreases and the pressure for outward remodeling

dissipates. VSMCs return to differentiated phenotype and collateral artery extracellular matrix (ECM) stabilizes.

possibly related to cross linking of newly synthesized tropoelastin
monomers in the later stages of arteriogenesis (31–34). Notably,
increased tropoelastin expression has been seen in models of

vascular remodeling previously (120). This may be necessary
for ECM stabilization in a setting where whole new fibers
cannot be constructed. As such, repaired elastin polymers
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may not achieve full strength as some original peptide bonds
cannot be recovered, and total elastin content cannot keep
pace with increasing vessel size resulting in thinning of the
IEL (32).

Implications of Extensive Elastic
Remodeling During Arteriogenesis
Loss of elastic laminar definition is also a consistent histologic
feature of arterial aneurysm development. In some cases, the
development of specific types of arterial aneurysms have been
linked to flow-mediated remodeling of the IEL, sometimes
occurring within collateral arterial networks. For instance,
aneurysm degeneration has been observed in mesenteric
arterial collaterals in response to isolated celiac occlusion
[resulting in pancreaticoduodenal arterial aneurysms (121–
123)] or concurrent celiac and superior mesenteric arterial
occlusion [resulting in inferior mesenteric arterial aneurysms
(124, 125)]. Disruption in the IEL and changes in the media
are essential features in the development and propagation of
human cerebral aneurysms (126–128). Morphologic assessments
of the aneurysm wall have demonstrated malalignment in medial
smooth muscle cells and accumulation of macrophages, MMP-
9, and myeloperoxidase, essential components of elastin and IEL
degradation (129, 130). Degeneration of the IEL and longitudinal
elongation (conversion from a contractile to a “synthetic”
phenotype) is similarly found at sites of intracerebral aneurysms
as well (131).

In the case of cerebral aneurysm pathogenesis, focally
increased fluid shear stress provides the local impetus for
IEL degradation and enlargement of fenestrations (132–
134). It is possible that this would mechanically weaken
the vessel wall and predispose to aneurysmal degeneration
(132). Notably, cerebral aneurysms are frequently associated
with elevated shear stress, and occur more frequently in
association with a carotid artery occlusion (130, 135–137).
Given the irreplaceable nature of elastic fibers, aggressive
diameter expansion risks exhausting local baseline elastin
content which can create weakened and aneurysm prone
collaterals. The underlying pathology of what may otherwise
appear to be disparate manifestations of aneurysmal
disease may relate to mechanisms of remodeling like those
of arteriogenesis.

Limitations of Experimental Arteriogenesis
Research
The use of arterial ligation in animal models of arteriogenesis
typically creates an acute ischemia and is an important limitation
regarding extrapolating animal models to human disease which
tends to develop chronically. Numerous studies in larger animals,
however, have employed surgically placed ameroid constrictors
as a method to simulate more gradual arterial occlusion.
Human arterial occlusive disease is variable, with (perhaps
most commonly) a slowly worsening stenosis in the case of
chronic atherosclerosis, but also via sudden arterial occlusion
with thromboembolism or in situ thrombosis, or even arterial

transection in trauma. Evidence of collateral artery formation
may be found in all instances.

Future Therapies
Interventions are currently being directed toward improving
arteriogenesis as well as angiogenesis and are under clinical
investigation with the hope that these will lead to more
effective and non-surgical therapies for AOD. Unfortunately,
however, current knowledge of arteriogenesis is limited,
and methods to enhance the inflammation and positive
remodeling of collateral arteries through growth factor or
cytokine supplementation are known to have opposing
effects by exacerbating atherosclerosis (138). Developing
effective therapies to augment arteriogenesis yet not promote
atherogenesis requires more detailed understanding of the
molecular mechanisms involved.

CONCLUSION

Arteriogenesis is a complex mechanism for collateral arterial
pathways to develop quickly into larger and higher capacity
vessels capable of effectively perfusing tissues distal to a
conductance vessel occlusion (Figure 3). Increased fluid
shear stress, typically caused by flow adaptations in AOD
due to large vessel occlusion, initiates endothelial activation
ultimately resulting in a cascade of inflammation, cellular
proliferation, migration, and tissue remodeling. While details of
the molecular signaling processes underpinning arteriogenesis
are continually emerging, effective methods to improve collateral
development as a clinically useful therapy remain elusive.
Continued efforts aimed at manipulating and enhancing
functional collaterals promises to reveal possible therapies
to medically revascularize patients suffering from practically
any manifestation of AOD. However, caution will likely be
necessary once adapting to clinical use, as there are shared
pathways between arteriogenesis and atherogenesis, and outward
remodeling of arteriogenesis may produce weakened ECM
structures that theoretically would be at risk for aneurysmal

degeneration. Further investigations are required into this
field to fully appreciate the molecular cascades involved in

linking these processes and constitute potential avenues for
continued investigation.
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