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Mitochondrial dysfunction has been proven to play a critical role in the pathogenesis

of cardiovascular diseases. The phenomenon of intercellular mitochondrial transfer has

been discovered in the cardiovascular system. Studies have shown that cell-to-cell

mitochondrial transfer plays an essential role in regulating cardiovascular system

development and maintaining normal tissue homeostasis under physiological conditions.

In pathological conditions, damaged cells transfer dysfunctional mitochondria toward

recipient cells to ask for help and take up exogenous functional mitochondria to

alleviate injury. In this review, we summarized the mechanism of mitochondrial transfer

in the cardiovascular system and outlined the fate and functional role of donor

mitochondria. We also discussed the advantage and challenges of mitochondrial

transfer strategies, including cell-based mitochondrial transplantation, extracellular

vesicle-based mitochondrial transplantation, and naked mitochondrial transplantation,

for the treatment of cardiovascular disorders. We hope this review will provide

perspectives on mitochondrial-targeted therapeutics in cardiovascular diseases.

Keywords: cardiovascular disease, mitochondria, mitochondrial transfer, mitochondrial transplantation, tunneling

nanotubes, extracellular vesicles

INTRODUCTION

Cardiovascular diseases refer to a group of disorders affecting the heart and blood vessels,
including coronary artery disease (such as myocardial infarction), arrhythmia, hypertensive heart
disease, valvular heart disease, cardiomyopathy, et al. (1, 2). Mitochondria not only serve as
power plants in cells but also act as crucial regulators in many biological processes, including
reactive oxygen species (ROS) signaling, redox balance, calcium homeostasis, protein quality
control, and programmed cell death (3, 4). The abnormal morphology and dysfunction of
mitochondria have been proven as the principal mechanisms in the pathogenesis of cardiovascular
diseases, such as heart failure, myocardial infarction, atherosclerosis, and hypertension (4–6). So
mitochondria-targeted therapy is suggested to be a potential treatment strategy for cardiovascular
diseases. In recent years, a large number of pharmaceutical compounds and nutritional
supplements that can boost mitochondrial bioenergetics efficiency have been developed. However,
clinical trials of these agents for cardiovascular diseases were hardly approved to carry out, even
less to evaluate their clinical effectiveness and safety. The main obstacle is because many protein
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components of mitochondria are the network hubs of
multiple biological pathways. If a chemical compound
targeting one of these hubs is used, it can not only modify
the anticipated biological pathways but also change other
unexpected mitochondrial processes (5). Therefore, patients
with cardiovascular diseases would fail to achieve the desired
outcomes by using these mitochondrial-targeted drugs (5).
Given the complexity of the biological function of mitochondria,
researchers have begun to consider rescuing the injured cells
through mitochondrial transfer, that is, replacing damaged
mitochondria with healthy mitochondria from donor cells.

The intercellular mitochondrial transfer was reported for the
first time by Spees and colleagues in 2006. They demonstrated
that transferring functional mitochondria of bone marrow-
derived stem cells to defective parenchymal cells increases
the aerobic respiration capacity of recipient mitochondria (7).
Nowadays, more and more studies have revealed that cells in
the cardiovascular system (such as cardiomyocytes, vascular
smooth muscle cells, endothelial cells, et al.) can act as donors
or recipients during mitochondrial transfer under physiological
conditions (8–12). However, harmful stimuli (such as ischemia-
reperfusion, oxidative stress, and toxic chemicals) can change
the direction and efficiency of intercellular mitochondrial
transfer. Studies have shown that cells can eliminate defective
mitochondria by delivering them to recipient cells (such
as macrophages) to maintain homeostasis. And the released
mitochondria can also act as a distress signal to activate the rescue
properties of recipient cells (12, 13). Meanwhile, damaged cells
can take up exogenous functional mitochondria and integrate
them into endogenous mitochondria networks, which improve
their biological process and enhance their repairability (14, 15).
In this review, we summarized the mechanism and function
of mitochondrial transfer in the cardiovascular system. We
also discussed the advantages and challenges of mitochondrial
transfer strategies in the treatment of cardiovascular disorders.
We hope this review will provide perspectives on mitochondrial-
targeted therapeutics in cardiovascular diseases.

MECHANISMS OF INTERCELLULAR
MITOCHONDRIAL TRANSFER

Intercellular transfer of mitochondria in the cardiovascular
system is through several pathways, including tunneling
nanotubes (TNTs), extracellular vesicles (EVs), naked
mitochondria extrusion, and others.

Mitochondrial Transfer via Tunneling
Nanotubes
TNTs, also called membrane nanotubes, are long tubular
membrane structures (Figure 1). TNTs were discovered as
unique structures for intercellular communication for the
first time by Rustom and coworkers in 2004 (16). Recent
studies have shown that cells in cardiovascular systems (such
as cardiomyocytes, cardiac fibroblasts, endothelial cells, and
vascular smooth muscle cells) can exchange mitochondria with
their neighboring cells via TNTs (Table 1) (8–12, 15, 17–24).

The intercellular transfer of mitochondria through TNTs could
be unidirectional or bidirectional. The diameter of TNTs ranges
from 50 to 1,000 nm (8, 17, 21, 22, 24). The length of TNTs, which
differs in various types of cells, is usually 5–120µm (8, 9, 17).
Actin is the principal component of TNTs, and filamentous actin
(F-actin) polymerization is necessary for the assembly of TNTs
(15, 18, 23). Besides actin, another cytoskeleton component,
microtubule, is also found in some TNTs (23). Both F-actin and
microtubules could act as cytoskeletal tracks for the movement
of mitochondria. TNTs containing both microtubules and F-
actin are large in diameter (>0.7µm) and responsible for the
long-distance delivery of mitochondria. TNTs containing only
actin are small in diameter (<0.7µm) and in charge of the
short-distance transport of mitochondria (19, 21, 25–28).

There are two different mechanisms involved in the formation
of TNTs. (1) Cell dislodgment mechanism. Cells contact each
other, then quickly migrate in opposite directions, retaining
a thread of membrane between these two detached cells
which finally develop into TNTs (9, 18). (2) Actin-driven

protrusion mechanism. Filopodia-like membrane protrusions
extend beyond the cell and elongate in an F-actin polymerization-
dependent manner. Then the elongated protrusions connect
with the target cells or other protrusions to form the TNTs
(9, 12, 29). Unlike other cellular protrusions, these filopodia-
like protrusions do not anchor to the substratum but suspend in
the culture medium, which makes it possible for long-distance
communication between cells (30).

M-Sec, also known as tumor necrosis factor α-inducible
protein 2 (TNFαIP2), is reported as a key trigger of TNTs
formation. Studies have shown that interaction of M-Sec with
RalA can induce the assemble of exocyst complex and then
initiate F-actin polymerization, while Cdc42 may be required
for the extension process of TNTs (31). The expression of M-
sec expression is regulated by many stimuli. Oxidative stress
can activate p53, which in turn upregulates M-Sec expression
by enhancing epidermal growth factor receptor expression
or activating Akt/PI3K/mTOR pathway (32). Treatment of
mesenchymal stem cells (MSCs) with TNF-α can increase M-Sec
expression and trigger TNTs formation with cardiomyocytes via
the NF-κB signaling pathway (15).

Some studies have demonstrated that gap junction protein
connexin 43 (CX43) is necessary for TNTs formation and
TNT-mediated intercellular mitochondrial transfer in non-
cardiovascular systems (33–35). However, new evidence has
shown that there is no Cx43 exists in the TNTs between
cardiomyocytes and cardiac fibroblasts (9). Wang and coworkers
have found that Cx43 only anchors at one end of TNT between
two human umbilical vein endothelial cells (36). Since gap
junctions do not allow the passage of large molecules (>1.2 kDa),
Cx43 in the TNTs might only mediate intercellular electrical
coupling but not cell-to-cell mitochondrial delivery (36). The
role of Cx43 in the formation of TNTs and TNT-mediated
mitochondrial transfer in the cardiovascular system still needs to
be further explored.

Recently, mitochondrial Rho GTPase 1 (Miro1) has been
reported to play a critical role in mediating mitochondrial
movement along the TNTs (14, 15). Miro1 is a tail-anchored
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FIGURE 1 | Mitochondrial transfer via tunneling nanotubes (TNTs). TNTs are formed via cell dislodgment mechanism or actin-driven protrusion mechanism. TNTs

containing only actin are small in diameter. TNTs containing both F-actin and microtubules are large in diameter. M-Sec is necessary for the formation of TNTs, while

Cdc42 is required for the extension of TNTs. Mitochondrial Rho GTPase 1 (Miro1), a tail-anchored mitochondrial outer membrane protein, plays a critical role in

mediating mitochondrial movement along the TNTs. After combing with the adaptor protein TRAK1/2, Miro1 can recruit motor protein kinesin and initiate

microtubule-based mitochondrial movement. Miro1 can also mediate actin-based mitochondrial transport via binding with motor protein Myo19.

mitochondrial outer membrane protein. After combing with the
adaptor protein TRAK1/2, Miro1 can recruit motor proteins
(such as kinesin) and initiate microtubule-based mitochondrial
movement (37). In a cardiomyocytes and cardiac myofibroblasts
co-culture system, mitochondrial transport along microtubules
in TNTs is mediated by KIF5B, which is a membrane of the
kinesin superfamily (23). Recent studies have shown that Miro1
can alsomediate actin-basedmitochondrial transport via binding
with motor protein Myo19 within individual mouse fibroblasts
(38). However, whether Miro1 and Myo19 are involved in the
mitochondrial movement along F-actin in TNTs still needs to be
further investigated.

Mitochondrial Transfer via Extracellular
Vesicles
Another pathway for cell-to-cell mitochondrial transfer is
through EVs (Figure 2). The properties of EVs that transfer
intact mitochondria or mitochondrial components in the
cardiovascular system are listed in Table 2.

EVs are phospholipid membrane-bound microparticles
released by cells. Exosomes and microvesicles are two major
forms of EVs. Exosomes are small EVs (30–150 nm in diameter)
that originated from the endosomal networks and are considered
to deliver lipids, RNAs, and mitochondrial components (such

as mtDNA). Microvesicles derived from cellular plasma
membranes are larger than exosomes (100–1,000 nm in
diameter) (43). Since mitochondria are elongated organelles
with a diameter of 500–1,000 nm, the intact mitochondria more
likely exist in the microvesicles but not in the exosomes (44).
Many harmful stimuli, such as lipopolysaccharide, can induce
endothelial cells to release EVs. Then the EVs are taken up
by the recipient cells and cause inflammatory responses. The
inflammatory responses might be due to the pro-inflammatory
effect of mtDNA in the EVs (39, 41). On the contrary,
hypoxia-injured cardiomyocytes can uptake the EVs containing
respiratory-competent mitochondria to increase their rescue
ability (40).

Recent studies have suggested that selective packaging of
mitochondrial content into EVs depends on optic atrophy 1
(OPA1) and sorting nexin 9 (Snx9) proteins (45), but the
exact mechanism is unclear. The formation of exosomes is
initiated via membrane invagination to generate multivesicular
late endosomes. Then the multivesicular late endosomes fuse
with the plasma membrane, leading to the release of exosomes
into the extracellular space. The biogenesis and release process
of microvesicles is different from exosomes. Microvesicles are
generated via membrane blebbing and then released into
the extracellular environment by separating from the plasma
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TABLE 1 | Properties of mitochondrial transfer-related TNTs in cardiovascular system.

Donor cells Recipient cells Cytoskeleton

compounds

Diameter Length Stimulus References

Bidirectional mitochondrial transfer

MSCs Cardiomyocytes or

cardiac myoblasts

F-actin 200–500 nm – Physiological condition,

hypoxia, doxorubicin, tumor

necrosis factor-α

(15, 17)

MSCs Vascular smooth

muscle cells

F-actin – – Physiological condition (10)

MSCs HUVECs F-actin, or both

F-actin and

microtubules

– – Bidirectional (physiological

condition), unidirectional

(hypoxia, cytarabine)

(12, 18)

Cardiomyocytes Cardiac fibroblasts F-actin and

microtubules

– 13.9 ± 10.4µm Physiological condition (9)

Microvascular

endothelial cells

Microvascular

endothelial cells

F-actin or

microtubules or both

180–400 nm 10–100µm Physiological condition (19)

Unidirectional mitochondrial transfer

Cardiomyocytes MSCs F-actin, or both

F-actin and

microtubules

760 ± 30 nm;

or ∼100 nm

31.66 ± 1.43µm Physiological condition;

hypoxia

(11, 20–22)

Cardiomyocytes Cardiac

myofibroblasts

F-actin and

microtubules

– Hypoxia (23)

Cardiomyocytes Endothelial progenitor

cells

– 50–800 nm 5–120µm Physiological condition (8)

Stem cell Neonatal

cardiomyocytes

F-actin and

microtubules

500–1,000 nm 80–100µm Physiological condition,

lipopolysaccharide

(24)

TNTs, tunneling nanotubes; HUVECs, umbilical vein endothelial cells; MSCs, mesenchymal stem cells.

membrane in Ca2+-dependent enzymatic machinery (46).
Integrins on the surface of EVs have been widely reported as
major regulators of anchoring EVs on recipient cells (47, 48).
Once attaching the recipient cells, EVs can directly fuse with the
recipient cell membrane or be engulfed by recipient cells through
multiple pathways, including clathrin-dependent endocytosis,
caveolin-mediated endocytosis, lipid raft-mediated endocytosis,
phagocytosis, and micropinocytosis (49–51).

In 2020, a new type of mitochondria-containing EVs called
exophers was discovered in hearts by Nicolas et al. (42).
The structure of exophers from cardiac tissues is similar to
that of neural exophers of C. elegans, which mainly contain
misfolded proteins and damaged mitochondria (52). Different
from the traditional EVs, cardiac exophers are large membrane-
surrounded microparticles with an average diameter of 3.5µm,
which allows intact mitochondria to be packed in (42). The
formation of cardiac exophers is motivated by the cardiac-
specific autophagy mechanism. A large number of exophers
extruded by cardiomyocytes can be engulfed by cardiac-resident
macrophages via Mertk-mediated endocytosis. Such kind of
crosstalk between cardiomyocytes and immune cells is required
for the maintenance of mitochondrial fitness and cardiovascular
health (42).

Mitochondrial Transfer via Naked
Mitochondria Extrusion
Many studies have shown that the intact respiratory competent
mitochondria exist in healthy human and animal blood which
might be released by resting or activated platelets (53, 54).

Likewise, mitochondria can also be released into the environment
in the form of naked organelles bymany normal or abnormal cells
beyond platelets (54). For example, extracellular mitochondria
are found in the endothelial progenitor cells culture system under
physiological conditions (55). Monocytic cells can extrude naked
mitochondria after being attacked by lipopolysaccharide (41). It
has been proven that intact cell-free mitochondria are released
from platelets through an actin-dependent but microtubule-
independent mechanism (56).

However, the uptake mechanism of cell-free mitochondria
by recipient cells has not been fully clarified. A few previous
reports have shown that MSCs engulf platelet-derived functional
mitochondria through clathrin-mediated endocytosis and
enhance their pro-angiogenic activity (49). Some evidence
has demonstrated that autologous mitochondria can be
internalized into cardiomyocytes through actin-dependent
endocytosis. Neither caveola-mediated nor clathrin-mediated
endocytosis is involved in the mitochondrial internalization
into cardiomyocytes (57). It has been reported that H9C2
rat cardiomyocytes can recognize and engulf exogenous
mitochondria released from human uterine endometrial
gland-derived MSCs in a co-incubation system. The uptake of
mitochondria by cardiomyocytes is mainly via micropinocytosis
(58). During the mitochondrial internalization process, cells
can discriminate intact mitochondria from other similar
microparticles and only engulf mitochondria (59). So the
internalization mechanism of naked mitochondria might be
different according to the types of recipient cells and the origin
of naked mitochondria.
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FIGURE 2 | Mitochondrial transfer via EVs. The intercellular mitochondrial transfer can be mediated through EVs including exosomes, microvesicles, and exophers.

Exosomes are smaller than microvesicles. Exophers are large membrane-surrounded microparticles usually containing damaged mitochondria and misfolded

proteins. Exosomes or microvesicles can directly fuse with the recipient cell membrane or be engulfed by recipient cells through multiple pathways, including

clathrin-dependent endocytosis, caveolin-mediated endocytosis, lipid raft-mediated endocytosis, phagocytosis, and micropinocytosis. Cardiac exophers can

internalized into recipient cells via Mertk-mediated endocytosis.

TABLE 2 | Characteristics of mitochondrial transfer-related EVs in cardiovascular system.

EVs Donor cells Recipient cells Size Compounds Effect on recipient cells References

Exosomes KSHV-infected

HUVECs

Uninfected HUVECs 30–40 nm mtDNA Antiviral effect (39)

Microvesicles Healthy iCMs Hypoxia-injured

iCMs

98–677 nm intact mitochondria Improvement of

intracellular energetics

(40)

Microvesicles Lipopolysaccharide

stimulated THP-1

monocytic cells

HUVECs 206.6 ± 89.8 nm Intact mitochondria, and

some mitochondrial

components

Activation of inflammatory

response

(41)

Exophers Cardiomyocytes Cardiac-resident

macrophages

3.5 ± 0.1µm Mitochondria Preservation of metabolic

stability

(42)

EVs, extracellular vesicles; KSHV, Kaposi’s sarcoma-associated herpesvirus; HUVECs, human umbilical vein endothelial cells; mtDNA, mitochondrial DNA; iCMs, induced pluripotent

stem cell–derived cardiomyocytes.

Mitochondrial Transfer via Other Pathways
Other pathways, such as cell fusion, are also found to be
involved in intercellular mitochondrial transfer. In 2003,
bone marrow-derived MSCs was reported to donate their
mitochondria to cardiomyocytes through cell fusion.
The cell fusion between MSCs and skeletal muscles is
at a very low rate, suggesting that cell fusion is a kind
of cell-specific machinery for cell-to-cell mitochondrial
transfer (60).

FATE OF DONOR MITOCHONDRIA IN
RECIPIENT CELLS

Studies have shown that most healthy donor mitochondria
can successfully escape from the endo-lysosomal system after
being transferred into damaged cardiomyocytes and quickly
integrate into the host mitochondrial network (61, 62). The
combination of donor and recipient mitochondria within
cardiomyocytes is a transient event that lasts about 4 h (62).
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The mechanism of mitochondrial integration might involve
dynamic movements of mitochondrial fusion and fission.
Many studies have demonstrated that mitofusin 1 (Mfn1) and
Mfn2 are necessary for the fusion of mitochondrial outer
membrane, optic atrophy 1 (Opa1) is responsible for the fusion
of mitochondrial inner membrane (63), and dynamin-related
protein 1 (Drp1) is required for mitochondrial fission (64,
65). In non-cardiomyocytes, mitochondrial transplantation can
enhance the expression of Mfn2 and Opa1 and decrease the
level of Drp1, which results in mitochondrial fusion (66). In
the co-culture system of iPS-derived cardiomyocytes and cardiac
fibroblasts, the mitochondrial fusion of donor and recipient
mitochondria might be more likely due to the high Mfn1
and Opa1 protein levels in mitochondria (62). A minority of
donor mitochondria that cannot flee from lysosomes undergo
degradation through autophagy (62). This phenomenon has
been confirmed by Louwagie and coworkers, whose studies have
shown that the number of lysosomes in the recipient cells elevates
after 4 h of mitochondrial transfer, accompanied by a higher
mitophagy of donor mitochondria and a lower mitophagy of host
mitochondria (61).

On the contrary, the main function of transferring defective
mitochondria from damaged cells to healthy cells is to ask for
help. After that, these foreign mitochondria in recipient cells
will eventually be trapped in the LC3B-labeled phagosomes and
eliminated viamitophagy, which ensures the normal functions of
recipient mitochondria (14).

Besidesmitochondrial fusion, a structure calledmitochondrial
nanotunnels also allows the exchange of matrix between
two individual mitochondria. The mitochondrial nanotunnels
in cardiomyocytes are a thin double-membrane tunneling
structure with 40–200 nm in diameter and 0.7–14µm in length
(67, 68). Mitochondrial components like mitochondrial DNA,
proteins, lipids can freely diffuse through the mitochondrial
nanotunnels. Although the rate of mitochondrial matrix
exchange via mitochondrial nanotunnels is slower than that of
mitochondrial fusion mode, it provides the possibility for long-
range communication between two individual mitochondria (67,
68). Whether the mitochondrial nanotunnels participate in the
communication of donor and recipient mitochondria still needs
to be further explored.

ROLE OF MITOCHONDRIAL TRANSFER

Role of Mitochondrial Transfer Under
Physiological Conditions
The cell-to-cell mitochondrial transfer has been detected in the
cardiovascular system under physiological conditions (Table 3).
In 2005, the unidirectional mitochondrial transfer from neonatal
cardiomyocytes to endothelial progenitor cells was observed
for the first time by Koyanagi et al. (8). After receiving
donor mitochondria, endothelial progenitor cells acquire a
cardiomyocyte-like phenotype through reprogramming (8).
Meanwhile, a bidirectional mitochondrial transfer has been
detected between cardiac myocytes and MSCs in a co-culture
system (22). Migration of mitochondria from MSCs into

fully differentiated cardiomyocytes can reprogram the adult
cardiomyocytes and regress them to a progenitor-like state
(20). Likewise, the mitochondrial transfer from embryonic
cardiomyocytes to MSCs initiates stem cells differentiation
toward cardiac cells, which might be an essential mechanism
of stem cell-based therapies for cardiovascular disorders (22).
Studies have also shown that mitochondrial transfer between
vascular smooth muscle cells and MSCs is required to
promote stem cells proliferation (10). These results suggest that
intercellular mitochondrial transfer might play an important role
in the regulation of cardiovascular system development.

Although cardiomyocytes account for about 70–85% of
the adult myocardial tissue volume (72), non-myocytes in
cardiac tissues are essential for heart health. Cardiomyocytes
and cardiac fibroblasts are the two most abundant cell types
in mammalian hearts. Recent studies have demonstrated that
mitochondrial exchange between cardiomyocytes and fibroblasts
is a distinct intercellular communication pattern, which might
be indispensable for normal cardiac function (9). But the
exact molecular mechanism remains unclear. In 2020, Nicolas-
Avila and colleagues found that cardiomyocytes can eliminate
their abnormal mitochondria by delivering them to heart-
resident macrophages under physiological conditions. Harmful
stimuli, such as ischemia or isoproterenol challenge, can enhance
the efficiency of mitochondrial transfer and accelerate the
clearance of dysfunctional mitochondria (42). Themitochondrial
transfer from cardiomyocytes to macrophages is beneficial
to maintain the mitochondrial fitness of cardiomyocytes,
reduce the accumulation of pro-inflammatory material, and
prevent the activation of inflammasome (42). Studies have
also demonstrated a low mitochondrial transfer between
heart-resident macrophages and other non-myocytes (such as
endothelial cells), suggesting intercellular mitochondrial transfer
within the heart has a highly cell-specific feature. These studies
demonstrated that cell-to-cell mitochondrial transfer might be
essential for maintaining normal cardiac homeostasis.

Role of Mitochondrial Transfer Under
Pathophysiological Conditions
Under pathophysiology conditions such as ischemic
cardiomyopathy, damaged cells can not only release
dysfunctional mitochondria to ask for help but also take
up exogenous functional mitochondria to rescue their own
mitochondria network (Table 3). The transfer of healthy
mitochondria toward injured cells has multiple protective
mechanisms include the following. (1) Improvement of

mitochondrial biogenesis. The perturbation of mitochondrial
biogenesis is known as the fundamental mechanism of
cardiovascular diseases (6). Transfer of healthy mitochondria
to the injured cardiomyocytes or endothelial cells can increase
cellular ATP levels through elevating oxidative phosphorylation
and tricarboxylic acid (TCA) cycle and reducing glycolysis
(12, 15, 57, 61, 69). The improvement of mitochondrial
biogenesis is due to the renewal of damaged mitochondrial DNA
and increased expression of mitochondrial respiration-related
protein through activation of peroxisome proliferator-activated
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TABLE 3 | Role of mitochondrial transfer under physiological and pathophysiological conditions.

Role of mitochondrial transfer Mechanism References

Physiological condition

(1) Regulation of cardiovascular system

development

• Reprograming the adult cardiomyocytes and endothelial progenitor cells

• Promoting stem cells proliferation and differentiation toward cardiac cells

(8, 22)

(10, 22)

(2) Maintaining normal cardiac homeostasis • Clearance of dysfunctional mitochondria of cardiomyocytes by

macrophages

(42)

Pathophysiological condition

(1) Release of dysfunctional mitochondria to ask for

help

• Mitochondria from damaged cardiomyocytes or endothelial cells acted as

a danger signaling for stem cells

(14)

(2) Rescuing damaged cells by taking up functional

mitochondria

• Improvement of mitochondrial biogenesis (elevating oxidative

phosphorylation, reducing glycolysis, and increasing cellular ATP levels)

• Enhancement of antioxidant capacity (overexpression of heme

oxygenase-1)

• Reduction of apoptosis (decrease of Bax/Bcl-2 ratio and the inhibition of

caspase-3 activity)

(12, 15, 40, 57, 61, 69–71)

(14, 15, 70)

(11, 61)

receptor-gamma coactivator 1-alpha (PGC-1α)-mediated
pathway (40, 57, 70, 71). It has been reported that this beneficial
effect of the mitochondrial transfer can last for a long time
(at least 28 days) in ischemic cardiomyocytes (73), which is in
contrast to the short-term improvement of energy metabolism
found in normal cardiomyocytes (74). (2) Enhancement of

antioxidant capacity. Mitochondria are vital organelles that
regulate redox balance via their pro-oxidant and antioxidant
functions. Oxidative stress-induced injury is involved in
the pathogenesis of many cardiovascular diseases, including
atherosclerosis, myocardial ischemia-reperfusion injury, and
hypertension (75–77). Inflammatory response, triggered by
excessive ROS level, is also associated with vascular dysfunction
in many pathophysiology conditions (78, 79). Recent studies
have shown that the delivery of healthy mitochondria to
cardiac cells or endothelial cells can protect them against
oxidative damage (14, 70). Transplantation of MSCs to a
doxorubicin-induced animal cardiomyopathy model also
alleviates cardiac inflammation via mitochondrial transfer (15).
The protective mechanism might be due to the overexpression
of heme oxygenase-1, which has well-known properties of anti-
oxidative and anti-inflammatory activities (14). (3) Reduction
of apoptosis. Apoptosis is one of the most common patterns
of programmed cell death in the cardiovascular system (80).
Cardiomyocytes and endothelial cells are prone to apoptosis
under various cellular stress (such as hypoxia, chemicals, and
metabolic stress). Many studies have shown that transfer of
healthy mitochondria to these injury cells can reduce apoptosis
(11, 15, 18, 23, 69). The anti-apoptotic effect of mitochondrial
transfer has been shown to have a gender-specific characteristic
in pregestational diabetes mellitus-exposed offspring (61). The
mechanism of mitochondrial transfer-induced anti-apoptosis
might involve the decrease of Bax/Bcl-2 ratio and the inhibition
of caspase-3 activity (11, 61).

In short, a series of studies implied the significance of
mitochondrial transfer in the cardiovascular system. In
physiological conditions, cardiac fibroblasts and cardiomyocytes
show frequent intercellular communication through

bidirectional mitochondrial transfer, which is critical in
maintaining normal cardiac function (9). Although this
phenomenon is observed in an in vitro model, whether it
exists in vivo has not been confirmed. Meanwhile, transferring
distressed mitochondria to macrophages is also critical to
the fitness of cardiomyocytes (42). It is undoubted that
mitochondria containing the information of donor cells
once internalized into recipient cells can trigger a cascade
of response, which in turn acts on donor cells. For instance,
cardiomyocytes and endothelium suffered ischemia/reperfusion
injury deliver mitochondria as signals to MSCs to ask for help.
After receiving mitochondria, MSCs enhance the biogenesis
of mitochondria and promote the capacity of anti-apoptosis,
then generously donate functional mitochondria to distressed
cells (14).

THERAPEUTIC STRATEGIES OF
MITOCHONDRIAL TRANSFER FOR
CARDIOVASCULAR DISEASES

Since transferring healthy mitochondria to damaged cells can
alleviate injury and enhance the repairability of the target
cells. Mitochondrial transplantation has been suggested as a
promising therapeutic strategy for cardiovascular diseases. The
most common methods of mitochondrial transplantation used
for the treatment of cardiovascular diseases are cell-mediated
therapy and cell-free therapy (including naked mitochondria
transplantation and EV-based transplantation) (Figure 3 and
Table 4).

Cell-Based Mitochondrial Transplantation
MSCs and progenitor cells have been recognized as the preferred
mitochondria donors for the treatment of cardiovascular
diseases due to their abundant sources and high mitochondrial
respiratory activity. Animal experiments and clinical trials have
shown that transplantation of MSCs can successfully repair
injured myocardium in ischemic cardiomyopathy (81–84). The
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FIGURE 3 | Therapeutic strategies of mitochondrial transfer for cardiovascular diseases. The most common methods of mitochondrial transplantation used for the

treatment of cardiovascular diseases (such as ischemic cardiomyopathy, anthracycline-induced cardiomyopathy) are cell-mediated therapy and cell-free therapy

(including naked mitochondria transplantation and EV-based transplantation). Routes of administration can be intramyocardial injection, intracoronary delivery, and

intravenous injection. After approaching the recipient cells, exogenous mitochondria can integrate with recipient mitochondria through mitochondrial fusion and fission

machinery, or be trapped by lysosomes and be autophagy degraded. Some donor mitochondria might only communicate with recipient mitochondria via

mitochondrial nanotunnels, without undergoing mitochondrial fusion. The transfer of healthy mitochondria toward injured cells has multiple protective mechanisms

including improvement of mitochondrial biogenesis, enhancement of antioxidant capacity and reduction of apoptosis.

protective mechanism of MSCs therapy has been proven mainly
via mitochondrial transfer in vitro or in vivo studies. For
example, MSCs can prevent vascular endothelial cells injury in
an ischemia-reperfusion model by enhancing aerobic respiration
and reducing apoptosis through transferring mitochondria
to endothelial cells (12). Mitochondria transferring from
MSCs can protect cardiomyocytes against oxidative stress-
induced injury by improving mitochondrial respiration function
(11, 14, 15, 17, 70). MSCs transplantation has also been
reported to reduce myocardial fibrosis, alleviate left ventricular
dilatation, and improve cardiac function in an animal model of
anthracycline-induced cardiomyopathy through mitochondrial
transfer (15).

MSCs used in clinical trials can be originated from
widely various tissues. Paliwal and coworkers have reported
that the MSCs derived from pulp and Wharton’s jelly have
lower mitochondrial transfer abilities but higher mitochondrial
respiration capacities than those of MSCs from bone marrow
and adipose (70). Compared with bone marrow-derived MSCs,
human-induced pluripotent stem cell-derived MSCs have
higher efficiency of mitochondrial transfer due to their higher
expression of Miro1 and TNFαIP2 (15). So the difference

in mitochondrial transfer capacity and effectiveness of these
tissue-specific MSCs need to be considered in cell-based therapy
for cardiovascular diseases.

Whether the beneficial effect of MSCs transplantation is
mainly due to mitochondrial transfer remains controversial.
A few previous studies have reported that MSCs can rescue

damaged cells through paracrine mechanisms (96). However,
many in vitro studies have proven that the cardiovascular
protective effect of stem cell-based therapy is mainly dependent
on the transfer of functional mitochondria rather than the
secretion of paracrine factors (12, 15). Since MSCs have
limited trans-differentiation abilities into cardiomyocytes or
other vascular components in vivo, it seems that the protective
effect of MSCs transplantation is also unlikely due to their
differentiation capacity (97). However, recent studies have shown
that the emergence of many safety issues such as undesired
differentiation, pro-arrhythmia, and microcirculation occlusion
limit the clinical use of stem cell-based therapy (98–100).

Naked Mitochondria Transplantation
Naked mitochondrial transplantation refers to the
transplantation of isolated and uncoated mitochondria to
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TABLE 4 | Summary of mitochondrial transfer strategies for cardiovascular diseases.

Cell-based mitochondrial

transplantation

EV-based mitochondrial

transplantation

Naked mitochondrial transplantation

Origins MSCs and progenitor cells MSCs-derived EVs Mitochondria isolated from healthy cardiac or skeletal

muscle

Application Ischemia-reperfusion injury, and

anthracycline-induced

cardiomyopathy

Ischemia-reperfusion injury Right heart failure, ischemia-reperfusion injury, and

ischemia/reperfusion injury of diabetic heart

Route of

administration

Intramyocardial injection Intracoronary or intravenous

injection

Intramyocardial, intracoronary, or intravenous injection

Major outcome Improving cardiac function

Alleviating left ventricular dilatation

Reducing myocardial fibrosis

Improving myocardial

contractility

Preventing left

ventricular remodeling

Decreasing infarct size

Improving ventricular function

Enhancing coronary blood flow

Delaying the progression of right heart failure

Advantages Abundant sources

Good quality and integrity

of mitochondria

High stability of mitochondria

No risk of microvascular

obstruction

No risk of cardiac arrhythmia

No risk of autoimmune response

No risk of microvascular obstruction

No risk of cardiac arrhythmia

Without intramyocardial hematoma

Disadvantages Undesired differentiation

Cardiac arrhythmia

Microcirculation occlusion

Difference in mitochondrial transfer

capacity and effectiveness due to

origins of MSCs

Heterogeneity of EVs’ cargo

content due to different cellular

origins and isolation methods

Lower stability than EV-coated mitochondia

Low yields of good-quality mitochondria

Limited viability of transferred mitochondria

For intramyocardial injection: (1) multiple injections are

required; (2) The need for thoracotomy prior to the

intramyocardial injection; (3) lower mitochondrial

internalization (3∼7%) than that of intracoronary injection;

(4) clusters found in intramyocardial injection site

For intravenous injection: lack of tissue-specific delivery

Reference (15, 81–84) (40) (62, 71, 73, 85–95)

EV, extracellular vesicle; MSCs, mesenchymal stem cells.

the injured tissues through circulation delivery or local injection
(85, 86). The transplantation of naked mitochondria for the
treatment of cardiovascular diseases can be traced back to
2009 when McCully’s laboratory at Harvard demonstrated for
the first time that intramyocardial injection of respiration-
competent mitochondria could reduce infarct size and promote
postischemic functional recovery in an animal model of
heart ischemia-reperfusion injury (85). The optimal dose
of mitochondria needed for efficiently protecting against
ischemia-reperfusion injury ranges from 2 × 105 to 2 × 108

per gram wet weight (62, 71, 73, 87). Autologous mitochondria
isolated from healthy cardiac or skeletal muscle are the
dominant sources of donor mitochondria (85, 87, 101). The
uptake of autologous mitochondria by cardiomyocytes is
usually within minutes via internalization (62, 73). Exogenous
mitochondria can also enter into cardiomyocytes without being
cleared by lysosomes or autophagosomes. However, it takes
more than 8 h for cardiomyocytes to engulf the xenogeneic
mitochondria (73). In 2017, the first clinical use of mitochondrial
transplantation was performed in five pediatric patients who
suffered from cardiac ischemia-reperfusion injury. Four in five
patients who accepted intramyocardial injection of autologous
mitochondria have shown an improvement in ventricular
function without any short-term side effects (such as arrhythmia,
mitochondrial autoimmune response, and intramyocardial
hematoma) (101).

Although intramyocardial injection of mitochondria has
been proven efficient and safe in the treatment of myocardial
ischemic disease, there are still a few limitations. For example,
only a small number of donor mitochondria is allowed to
inject within the myocardium per shot, and the percentage
of mitochondrial internalization at each injection site is
also pretty low (about 3–7%) (71, 73, 87). So multiple
injections are required to ensure the extensive distribution
of donor mitochondria throughout the ischemic heart,
which increases the difficulty of operation. In addition,
the need for thoracotomy prior to the intramyocardial
injection may also be a huge obstacle limiting the clinical
application of mitochondrial transplantation for potential
patients (101).

Since 2016, researchers have begun to test the feasibility
of intracoronary delivery as an alternative mitochondrial
transplantation method (88). Both autologous and exogenous
mitochondria can rapidly spread throughout the whole
heart within 10min of coronary perfusion rather than
occur in clusters as found in intramyocardial injection.
Furthermore, intracoronary delivery also results in a higher
mitochondrial internalization into cardiomyocytes (∼23%) than
intramyocardial injection (88). In animal models of regional
ischemia-reperfusion injury, both preischemic or postischemic
intracoronary injection of autologous mitochondria can
decrease infarct size, enhance coronary blood flow, and
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increase cardiac function (88–91). Intracoronary injection of
healthy mitochondria also has powerful cardiac protection
against globally ischemic injury of donor hearts and global
ischemia/reperfusion injury of diabetic heart (88, 92–94). No
signs of microvascular obstruction and cardiac arrhythmia are
observed after intracoronary injection of mitochondria (91). The
safety and efficacy of intracoronary delivery of mitochondria
make it a promising treatment for myocardial infarction through
percutaneous coronary intervention.

Considering the clinical use of mitochondrial transplantation,
intravenous injection of mitochondria might be more feasible
than intramyocardial and intracoronary administration.
Intravenous delivery of mitochondria has been used as a
promising therapeutic method for fatty liver and Parkinson’s
disease (102, 103). Recent studies have shown that intravenous
injection of viable exogenous mitochondria for 3 weeks can
improve right ventricular function in an animal model of
pulmonary hypertension (86). After systemic administration,
the mitochondria are observed in various tissues, including
heart (102, 103). The stability of naked mitochondria in
the bloodstream and tissue-specific delivery may be the key
factors for successful therapy in ischemic or non-ischemic
cardiovascular disorders.

Besides ischemic heart injury, recent studies have also found
that mitochondrial transplantation can delay the progression
of right heart failure (86, 95) and improve myocardium
metabolism of offspring born to diabetic mothers (61). Although
studies have confirmed the efficiency of naked mitochondrial
transplantation, how to obtain high yields of good-quality
mitochondria is still a challenge. Enhancing the efficiency of
mitochondrial internalization into target cells and maintaining
the viability of transferred mitochondria are also crucial
problems to assure the efficient clinical application of naked
mitochondria transplantation.

EV-Based Mitochondrial Transplantation
Another method of cell-free therapy is mitochondria-rich EVs
transplantation. EVs have been recognized as a powerful platform
for mitochondrial delivery (40, 104, 105). MSCs from different
tissues are the main sources of EVs (106). Although many
studies have proven that MSCs-derived EVs can serve as a
potential therapy for the treatment of cardiovascular disease,
whether the protective effect is mainly dependent on their
mitochondria cargo is unclear (107). In 2021, Ikeda’s laboratory
at Stanford isolated some mitochondria-rich EVs from human-
induced pluripotent stem cell-derived cardiomyocytes. The
diameter of these EVs ranges from 98 to 677 nm (40). The
outer lipid bilayer of EVs usually serves as a security guard
that keeps the mitochondria maintaining their morphological
and functional integrity. The mitochondria encapsulated within
EVs are found more stable than naked mitochondria under
extracellular environmental stress, such as calcium overload
and oxidative stress (40). In vitro and in vivo studies have
demonstrated that transplantation of mitochondria-rich EVs
can restore intracellular bioenergetics, prevent post-ischemic left
ventricular remodeling, and improve myocardial contractility

(40). Since the diameters of MSC-derived EVs are usually
<10µm (108), intravenous or intracoronary injection of EVs
has no risk of microvascular obstruction. The intramyocardial
injection of mitochondria-rich EVs into the peri-infarct region
does not induce cardiac arrhythmia (40), which supports
the opinion of Adamiak and coworkers that MSC-derived
EVs are safer than MSCs (109). The cargo content of
EVs mainly includes mitochondria and their components,
nucleic acids, lipids, and proteins, which can be altered
according to their cellular origins and isolation methods
(107). The complex composition of different EVs makes
them have distinctive mechanisms and effects on various
diseases. Ikeda and coworkers have found that the beneficial
effect of mitochondria-rich EVs transplantation on myocardial
ischemia-reperfusion injury was not only due to mitochondria
cargo but also due to non-mitochondrial cargo (40). In
order to reduce the heterogeneity of EVs and guarantee the
therapeutic effect, it is necessary to set up a standardized EV
isolation protocol. Meanwhile, how to improve the targeting
specificity of EVs is also an issue needed to be further
investigated (110).

In conclusion, many in vivo studies have proven the
effectiveness of mitochondrial transplantation in the treatment
of different cardiovascular diseases. Ischemia/reperfusion injury
is one of the most common diseases in the cardiovascular
system. Researchers delivered mitochondria to rescue damaged
cardiac tissue through different administrational routes in
various species (14, 40, 69, 73). Comfortingly, all of these
studies have confirmed the significant improvement of cardiac
function after mitochondrial transplantation. In a clinical
trial, autologous mitochondria from skeletal muscle were
injected into the damaged cardiomyocytes of pediatric patients
suffering ischemia/reperfusion injury, which effectively promote
the recovery of postischemic myocardium without adverse
short-term complications (101). Functional mitochondrial
delivery has been used for some other cardiovascular
diseases (including heart failure, anthracycline-induced
cardiomyopathy, pregestational diabetes-induced cardiac
malfunction, heart transplantation) and to some extent improve
the prognosis (15, 61, 70, 94).

ETHICAL ISSUES

In 2015, the United Kingdom became the first country in the
world to legislate and permit the clinical use of mitochondrial
donation technology (111). However, there are still controversies
about the ethical issues of the mitochondrial transfer strategy.
(1) Mitochondrial-nuclear incompatibility. Studies have shown
that the efficiency of cellular energy metabolism depends on
about 2000 mitochondrial proteins. Most of these proteins
are encoded by the nuclear genome, and only 13 proteins
are encoded by the mitochondrial genome (112). So the
compatibility of donor mitochondria and recipient cell nuclei
is critical for the normal mitochondrial respiratory function
of recipient cells (113–115). Many researchers have suggested
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that mitochondria originated only from the same cells or
species are the ideal donors for reducing mitochondria-
nuclear incompatibility and ensuring successful mitochondrial
transfer (116, 117). (2) Transmission of detrimental mutation.

The mutation rate of mtDNA is significantly higher than
that of nuclear DNA due to a lack of histone protection
and less efficient repairability (118). Meanwhile, studies have
shown that mitochondrial fragmentation of donor mitochondria
increases when using the standard mitochondrial isolation
methods. And elevated mitochondrial fission is closely related
to mtDNA abnormalities (119, 120). The mutated mtDNA
of donor mitochondria can be transmitted to the recipient
cells during intercellular mitochondrial transfer. When the
accumulation of mutated mtDNA exceeds the threshold,
cellular dysfunction, and abnormal morphology will occur
(121). Such detrimental effects on recipient cells might be
unpredictable due to intra- and inter-cellular mitochondrial
heterogeneity (122). Therefore, the establishment of ethical
guidelines is a prerequisite for ensuring the safe application
of mitochondrial transfer strategies in the treatment of
cardiovascular diseases.

DISCUSSION AND FUTURE
PERSPECTIVES

Mitochondrial dysfunction plays a crucial role in the
development and progression of cardiovascular disorders,
which provides the possibility for mitochondrial transfer as an
effective therapeutic strategy in the treatment of cardiovascular
diseases. With the emergence of new technologies, trends
in mitochondrial transplantation therapeutics are changing
from cell-based to cell-free therapy. EVs-based mitochondrial

delivery is considered more promising than naked mitochondria
transplantation in the treatment of cardiovascular diseases,
but it still has some limitations. Recently, some researchers
developed a new delivery system by artificially encapsulating
isolated mitochondria with some biocompatible polymers (such
as dextran triphenylphosphonium complexes, transactivator
of transcription dextran complexes) (69, 123). The polymer-
coated delivery system, which almost exclusively contains
mitochondria, is considered better than the EV-based delivery
system. Meanwhile, the polymer-coated mitochondria have a
higher transfer efficiency and a more powerful rescue capability
than those of naked mitochondria, suggesting that they might
become a more feasible and promising strategic alternative for
mitochondrial transplantation in the future (69, 123). Although
many preclinical experiments have proven the advantages of
mitochondrial delivery in treating cardiovascular diseases, there
are still a few technical challenges and ethical issues that need
to be resolved (124). The efficiency and safety of mitochondrial
transplantation in treating cardiovascular diseases still need to
be further evaluated before conducting clinical trials.
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