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Background: Right atrial (RA) function has emerged as an important determinant

of outcome in pulmonary arterial hypertension (PAH). However, studies exploring RA

function after initiation of specific pulmonary vascular treatment and its association with

outcome in patients with incident PAH are lacking.

Methods: RA peak longitudinal strain (PLS), passive strain (PS), and peak active

contraction strain (PACS) were retrospectively assessed in 56 treatment-naïve patients

with PAH at baseline and during follow-up after initiation of specific monotherapy

or combination therapy. Patients were grouped according to their individual RA

functional response to treatment, based on change from baseline (1): worsened (first

1-tertile), stable (second 1-tertile), and improved (third 1-tertile). The Spearman’s rho

correlation and linear regression analysis were used to determine associations. Time

to clinical worsening (defined as deterioration of functional class or 6-min walking

distance, disease-related hospital admission, or death) was measured from the follow-up

assessment. The association of RA functional treatment response with time to clinical

worsening was assessed using the Kaplan–Meier and the Cox regression analyses.

Results: Median (interquartile range) time to echocardiographic follow-up was 11 (9–12)

months. Of the 56 patients, 37 patients (66%) received specific dual or triple combination

therapy. 1 RA PLS during follow-up was significantly associated with changes in key

hemodynamic and echocardiographic parameters. The change of pulmonary vascular

resistance, right ventricular (RV) end-systolic area, and global longitudinal strain were

independently associated with 1 RA PLS. The median time to clinical worsening after

echocardiographic follow-up was 6 (2–14) months [17 events (30%)]. In the multivariate

Cox regression analysis, worsening of RA PLS was significantly associated with clinical

deterioration (hazard ratio: 4.87; 95%CI: 1.26–18.76; p= 0.022). Patients with worsened

RA PLS had a significantly poorer prognosis than those with stable or improved
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RA PLS (log-rank p = 0.012). By contrast, PS and PACS did not yield significant

prognostic information.

Conclusion: Treatment-naïve patients with PAH may show different RA functional

response patterns to PAH therapy. These functional patterns are significantly associated

with clinically relevant outcome measures. Improvements of RA function are driven by

reductions of afterload, RV remodeling, and RV dysfunction.

Keywords: pulmonary hypertension, echocardiography, speckle tracking, outcome, right atrium

INTRODUCTION

Pulmonary arterial hypertension (PAH) is a severe multifactorial
disease characterized by increased total pulmonary resistance
with subsequent right ventricular (RV) pressure overload (1).
Increased RV afterload results in adaptive and maladaptive RV
remodeling (hypertrophy and dilatation, respectively), eventually
leading to RV failure (2). In addition to the right ventricle,
remodeling of the right atrium has come into focus in pulmonary
hypertension (PH) in the recent years. Alterations of right
atrial (RA) function are relevant prognostic markers of adverse
outcomes (3, 4). RA function is characterized by three phases:
a reservoir phase during atrial filling when the tricuspid
valve is closed, a conduit phase during passive emptying of
the right atrium into the right ventricle when the tricuspid
valve is open, and an active “contractile” phase during atrial
systole (contraction) (5). Initially, chronic RV pressure overload
causes an increase in RA contractility and RA dilation due to
elevated RV diastolic pressure and tricuspid regurgitation (6).
RV remodeling leads to impaired RA function, which results in
worsening of reservoir (4), conduit (7), and contractile functions
(8). The interaction of the right atrium and right ventricle
may play a crucial role in PH. A loss of that interaction in
the sense of RA-RV “uncoupling” results in alterations of RA
function to a failing reservoir phase and an impaired conduit
component that are inevitably associated with a reduction of
cardiac output and RV filling (6). Most recently, it was shown that
longitudinal assessment of RA function after treatment initiation
may serve as an additional predictive marker in children with PH
(9). However, the clinical relevance of RA functional response
to specific vasoactive treatment in adult patients with PAH is
currently unknown. Therefore, we aimed to longitudinally assess
and characterize RA function in treatment-naïve adult patients
with PAH.

MATERIALS AND METHODS

Study Design and Patients
Data from consecutive, treatment-naïve adult patients referred
to our PH clinic between December 2017 and April 2020 and
enrolled in the prospectively recruiting the Giessen PH Registry
(10) were retrospectively analyzed. The diagnosis of PAH was
made by the multidisciplinary PH board at the University
Hospital Giessen according to the updated recommendations
(11). Patients with pacemakers (n = 1) or atrial fibrillation
or atrial flutter (n = 2) at the time of evaluation were

excluded. All the patients received individual targeted PAH
therapy based on current guidelines and best standard of
care (12). Prior to treatment initiation, patients underwent
baseline evaluation. Median time between baseline right heart
catheterization and echocardiography was 16.5 (2–46.3) days.
Invasive pulmonary hemodynamics and pulmonary arterial
capacitance (PAC) were measured as previously defined (13).
All the participants gave a written informed consent for the
enrollment into the Giessen PH Registry. The investigation
conforms to the Declaration of Helsinki and was approved by the
Ethics Committee of the Faculty of Medicine at the University of
Giessen (approval #266/11).

Echocardiography
All the measurements were performed as recommended by
current echocardiographic guidelines (14, 15) and obtained using
a Vivid E9 device (GE Healthcare, Wauwatosa, Wisconsin, USA).
Tricuspid annular plane systolic excursion (TAPSE) and RV
fractional area change (FAC) were quantified. RA area was
measured at end-systole. RA pressure (RAP) was estimated
by evaluation of inferior vena cava diameters (expiratory
and inspiratory) and percent collapse during inspiration.
Pulmonary arterial systolic pressure (PASP) was calculated
as the transtricuspid gradient + RAP (16). Tricuspid valve
regurgitation was graded as mild, moderate, or severe as
recommended (17). RV global longitudinal strain was measured
as previously described (18).

Echocardiographic images were analyzed by an independent
investigator who was not directly involved in the image
acquisition and who was blinded to the clinical data.
Measurements were made using EchoPac software (version
201, GE Healthcare, Wauwatosa, Wisconsin, USA).

Tracing of the right atrium was performed as shown in
Figure 1 according to the current recommendations (7, 19, 20).
Using a right ventricle-focused apical four-chamber view, the
region of interest was manually placed on the RA endocardial
border. After automatic tracing of the six segments, every
segment was manually adjusted to the thickness of the RA wall.
The zero reference was set at the R wave and all the strains
were positive. RA peak longitudinal strain (PLS) and peak active
contraction strain (PACS) were assessed as measures of the
reservoir phase and contraction phase, respectively. RA passive
strain (PS), indicative of conduit function, was calculated from
the difference between RA peak longitudinal and active strain as
shown in Figure 1. Intra- and interobserver variability for PLS
were assessed in a random subset (20%) of the cohort.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 December 2021 | Volume 8 | Article 775039

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Richter et al. Right Atrial Functional Response

FIGURE 1 | Illustration of the assessment of RA strain. (A) First, the RV-focused apical four-chamber view was used with selection of the cardiac cycle and

adjustment of the electrocardiogram (to R-wave). (B) Second, the RA endocardial border was traced as the region of interest, covering the RA lateral wall, roof, and

septal wall. (C) Third, processing provided an overview wherever speckle tracking was feasible for the selected regions. (D) Fourth, the different phases were identified

and the strain values determined. PACS, peak active contraction strain; PLS, peak longitudinal strain; PS, passive strain; RA, right atrial; RV, right ventricular.

Outcome
Clinical worsening was assessed after follow-up
echocardiography and was defined as any of the following:
reduction in exercise capacity (−15% compared with the
baseline 6-min walk test), worsening in the WHO functional
class, clinical deterioration requiring hospital admission (need
for new PAH therapies or intravenous diuretics), or death (21).
Follow-up was assessed until July 2021.

Statistical Analysis
The Kolmogorov–Smirnov test was used for assessment of
normal distribution. The Pearson’s chi-squared test, related-
samples Wilcoxon signed-rank test, the paired samples t-test,
the independent samples Kruskal–Wallis test, or the one-way
ANOVA was used to analyze differences between groups, as

appropriate. The Spearman’s rank correlation was used to
measure association between variables. Inter- and intraobserver
variability were assessed using intraclass correlation coefficients
and coefficient of variation.

A backward (based on likelihood ratio) multivariate linear
regression model was built to determine the parameter most
strongly related to the change of RA function. Variable selection
was limited to three variables to avoid overfitting and was
based on clinical relevance. Model 1 included the absolute
change of mean pulmonary arterial pressure (mPAP), PAC, and
pulmonary vascular resistance (PVR). Model 2 included the
absolute change of TAPSE/PASP, FAC, and RV end-systolic area.
Model 3 incorporated the absolute change of TAPSE/PASP, FAC,
and RV global longitudinal strain. Multicollinearity was assessed
using the variance inflation factor.
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The uni- and multivariate Cox proportional hazards models
were built to assess the relationship between RA function and
the clinical outcome, with RA function included either as a
continuous variable or as a categorical variable based on tertiles
(with tertile III, “improved,” set as the reference category). Owing
to the limited number of events, adjusted covariates were limited
to age and sex. For further evaluation, the Kaplan–Meier analyses
with log-rank tests were used, with all the events or censoring
times measured from the date of follow-up echocardiography.

For all the analyses, p < 0.05 was considered as
statistically significant.

The SPSS version 26.0 and 27.0 (IBM, Armonk, New York,
USA) and GraphPad Prism version 8.4.3 (GraphPad Software,
San Diego, USA) were used for statistical analyses.

RESULTS

Patients
Themajority of the patients with incident PAH presented with an
advanced WHO functional class (Table 1). Baseline pulmonary
hemodynamics demonstrated a precapillary pattern of PH with
substantially elevated pulmonary pressures and resistance. As
shown in Table 2, patients presented with substantial RV and
RA enlargement, depressed RV systolic function measured by
FAC, and impaired RA function compared with values previously
reported in healthy controls (19). Baseline PLS and PACS
were associated with the severity of tricuspid regurgitation. We
observed significantly higher PLS and PACS values in patients
with mild-to-moderate tricuspid regurgitation compared with
patients with severe regurgitation (Supplementary Figure S1).

Median (interquartile range) time to echocardiographic
follow-up was 11 (9–12) months. The majority of patients
(66%) received specific dual or triple combination therapy
as maximal treatment. Under specific treatment, pulmonary
hemodynamic indices and RV remodeling showed substantial
improvement (Tables 1, 2). However, RA PLS, PS, and PACS
remained unchanged despite significantly decreased RA size
during follow-up.

Intraclass correlation coefficients and coefficients of variation
showed good inter- and intraobserver agreement for RA PLS
(Supplementary Table S1).

Clinical Relevance of Longitudinal RA
Function
We observed significant associations of baseline RA PLS, PS, and
PACS with key baseline parameters (Supplementary Table S2).
Among various associations, we observed a strong correlation
of baseline RA PLS with baseline RV global longitudinal strain
(rho: −0.639; p < 0.001) and B-type natriuretic peptide (BNP)
(rho:−0.569; p < 0.001).

The difference of RA PLS (1 RA PLS) from baseline to follow-
up was significantly associated with a change of the following
parameters during follow-up:1 TAPSE/PASP,1 BNP,1 PVR,1
PAC,1mPAP (rho:−0.428; p= 0.008; plot not shown) and1RV
end-systolic area. Of note, we observed the strongest association
of 1 RA PLS with 1 RV global longitudinal strain (Figure 2). 1
RA PACS was significantly associated with 1 BNP (rho: −0.400;

TABLE 1 | Characteristics of the patient.

Characteristics Patients with PAH (n = 56)

Baseline Follow-up p value

Male/female, n/n 21/35

Age, years 62 ± 15

PAH subtype, n (%)

Idiopathic PAH 55 (98.2)

PAH with overt features

of venous/capillary

involvement

1 (1.8)

WHO FC, n (%)

I 4 (7.1) <0.001

II 11 (19.6) 16 (28.6)

III 40 (71.4) 29 (51.8)

IV 5 (8.9) 7 (12.5)

BNP (pg/ml) 133 [65–307]* 89 [29–249]* 0.003

Right heart catheterization
†

Mean pulmonary arterial

pressure, mm Hg

42 ± 10 40 ± 10 0.003

Right atrial pressure,

mm Hg

8 [6–10] 8 [6–11] 0.127

Pulmonary vascular

resistance, Wood Units

7.6 ± 3.1 6.0 ± 3.0 0.066

Cardiac index, l/min/m2 2.4 ± 0.5 2.8 ± 0.7 0.147

Pulmonary arterial

wedge pressure, mm Hg

11 [8–13] 10 [9–13] 0.547

Pulmonary arterial

capacitance, ml/mm Hg

1.5 [1.0–2.0] 1.7 [1.2–2.7] 0.003

Maximal treatment, n (%)

Monotherapy 19 (33.9)

Dual therapy 25 (44.6)

Triple therapy 12 (21.4)

PH, pulmonary hypertension; FC, functional class; BNP, B-type natriuretic peptide.

Values represent mean ± SD, unless otherwise specified.

*Available in 55 patients.
†
Follow-up right heart catheter data were available in 38 patients.

p = 0.003), 1 PVR (rho: −0.341; p = 0.036) and 1 PAC (rho:
−0.349; p = 0.032), while 1 PS was only associated with 1 RV
end-diastolic area (rho: −0.323; p = 0.017; plots not shown). Of
note, no association was observed between1 PS and1 RV global
longitudinal strain (p= 0.204; plot not shown).

In the multivariate linear regression analysis model 1
(including 1 PVR, 1 PAC, and 1 mPAP), we found that 1 PVR
was independently associated with 1 RA PLS [multivariate B-
coefficient (95% CI): −1.59 (−2.44 to −0.73); p < 0.001]. In the
corresponding multivariate model 2 (including 1 TAPSE/PASP,
1 FAC, and 1 RV end-systolic area), we found that 1 RV
end-systolic area was independently associated with 1 RA PLS
[multivariate B-coefficient (95% CI): −1.09 (−1.74 to −0.45);
p < 0.001]. Model 3 (including 1 TAPSE/PASP, 1 FAC, and
1 RV global longitudinal strain) showed that 1 RV global
longitudinal change was independently associated with 1 RA
PLS [multivariate B-coefficient (95% CI): 1.16 (0.60–1.72); p <

0.001]. In addition, model 2 showed that 1 TAPSE/PASP was
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TABLE 2 | Echocardiographic measurements.

Patients with PAH (n = 56)

Baseline Follow-up P-value

Right ventricle

RV end-diastolic area, cm2 27 [22–32] 23 [18–29]* <0.001

RV end-systolic area, cm2 20 [16–24] 15 [12–19]* <0.001

Fractional area change, % 25 ± 11 29 ± 11* 0.010

TAPSE, mm 20 [18–22] 21 [19–23] 0.105

PASP, mmHg 67 ± 23
†

61 ± 21
‡

0.089

TAPSE/PASP, mm/mmHg 0.29

[0.21–0.40]
†

0.35

[0.27–0.44]
‡

0.109

RV global longitudinal strain, % −15.1 ± 4.7 −16.8 ± 4.8
‡

0.007

Tricuspid valve regurgitation <0.001

None/mild 23 (41.1) 26 (46.4)

Moderate 29 (51.8) 21 (37.5)

Severe 4 (7.1) 9 (16.1)

Right atrium

RA area, cm2 17 [15–20] 15 [12–20] 0.014

Peak longitudinal strain, % 31 [23–36] 29 [22–39] 0.864

Passive strain, % 8 ± 5 10 ± 8* 0.0117

Peak active contraction strain, % 21 ± 7 20 ± 10* 0.704

Inferior vena cava diameter, mm 18 [15–20]
†

18 [14–21]§ 0.928

PAH, pulmonary arterial hypertension; PASP, pulmonary arterial systolic pressure; RA, right

atrial; RV, right ventricular; TAPSE, tricuspid annular plane systolic excursion.

Values represent mean ± SD or median (interquartile range) (for normally or non-normally

distributed parameters, respectively), unless otherwise specified.

*Available in 55 patients.
†
Available in 52 patients.

‡
Available in 54 patients.

§Available in 49 patients.

significantly associated with 1 RA PS [multivariate B-coefficient
(95% CI): 14.43 (4.82–24.05); p < 0.001]. Of note, the models
could not identify a significant predictor for 1 RA PACS (data
not shown).

For further analysis, the patients were grouped into
tertiles according to their 1 RA PLS: worsened (1 −17.8
to −4.2%), stable (1 −4.2% to 4.0%), and improved (1
4.0% to 44.6%) longitudinal RA function (Figures 3A,B).
1 RA PS and PACS were grouped in an analogous manner
(Supplementary Figure S2). As shown in Table 3, no significant
differences in baseline hemodynamic or echocardiographic
parameters were observed when stratifying by tertile of 1 RA
PLS. However, during follow-up, patients with improved RA
PLS showed a significantly greater reduction of mPAP and
PVR and improvement of PAC, RV strain, TAPSE/PASP, and
BNP compared with patients with stable or worsened RA PLS
(Table 3). Finally, we grouped 1 RA PLS, 1 RA PS, and 1 RA
PACS according to the number of specific vasoactive treatments
used (mono, dual, or triple therapy; Supplementary Figure S3).
1 RA PLS and 1 RA PACS showed no significant differences
dependent on the treatment regimen used, while 1 RA PS
was highest in patients receiving monotherapy. Of note, we
observed a reduction of RV end-systolic area in both treatment

groups (monotherapy and combination therapy). However,
an improvement in FAC was only observed in those patients
receiving combination therapy (Supplementary Figure S4).

Prognostic Impact of RA Functional
Response to Treatment
In total, 17 clinical worsening events [12 hospitalizations
(including four escalations of specific PAH therapy and five
deaths) were observed during a median follow-up period of 6 (2–
14) months (mean 9 ± 8 months) after the echocardiographic
follow-up. First, we explored the prognostic relevance of 1 RA
function as a continuous variable in the univariate Cox regression
analysis. 1 RA PLS (per one unit increase) was significantly
associated with the composite endpoint with a hazard ratio of
0.925 (95% CI: 0.873–0.981; p = 0.009), while 1 PS (p = 0.085)
and 1 PACS (p= 0.167) were not.

Second, we performed the univariate Cox regression analysis
with the RA PLS treatment response patterns stratified by tertile.
The pattern was significantly associated with clinical worsening.
Patients with worsening of RA PLS during follow-up (tertile
I) showed a hazard ratio of 4.16 (95% CI: 1.15–14.96; p =

0.029) for the composite endpoint. Similarly, worsening of RA
PS during follow-up (tertile I) was significantly associated with
the composite endpoint with a hazard ratio of 4.93 (95% CI:
1.08–22.54; p = 0.040). Patients with stable RA PS or stable PLS
(tertile II) showed non-significantly increased hazard ratios of
2.76 (95% CI: 0.53–14.32; p = 0.226) and 1.10 (95% CI: 0.22–
5.47; p = 0.907), respectively. In the multivariate Cox regression
analysis, adjusting for age and sex, worsening of RA PLS during
follow-up was significantly associated with clinical deterioration
(multivariate hazard ratio: 4.87; 95% CI: 1.26–18.76; p = 0.022).
This was supported by the Kaplan–Meier analysis which showed
a significantly higher clinical worsening event rate in patients
with worsened RA PLS compared with patients who had stable
or improved RA PLS during follow-up (log-rank p = 0.012;
Figure 3C). In addition, worsening RA PS remained significantly
associated with the composite endpoint within the multivariate
model (multivariate hazard ratio: 5.18; 95% CI: 1.13–23.83;
p = 0.035). However, in the Kaplan–Meier analysis, 1 RA PS
stratified by tertile was not able to predict outcome (log-rank
p = 0.063; plot not shown). Of note, 1 RA PACS was not able
to predict outcome in the Cox regression analysis (tertile 1: p =

0.319; tertile 2: p= 0.972) or the Kaplan–Meier analysis (log-rank
p= 0.491; plot not shown).

DISCUSSION

In this study, we have demonstrated that therapy-naïve PAH
may show different responses to treatment with respect to RA
functional parameters. Moreover, these response patterns are
associated with clinically relevant outcome parameters.

Within the last decade, the prognostic and clinical importance
of RA function in patients with PH has increasingly come into
focus (5, 22). Measurements of altered RA function (reservoir,
conduit, or active contractile function) are helpful tools for
the evaluation of the severity of RV dysfunction and prognosis
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FIGURE 2 | Correlation of the absolute change of RA PLS during echocardiographic follow-up with the absolute change of (A) TAPSE/PASP (n = 44), (B) BNP (n =

54), (C) PVR (n = 38), (D) RV end-systolic area (n = 55), (E) PAC (n = 38), and (F) RV global longitudinal strain (n = 54). 1, change; BNP, B-type natriuretic peptide;

mPAP, mean pulmonary arterial pressure; PAC, pulmonary arterial capacitance; PASP, pulmonary arterial systolic pressure; PVR, pulmonary vascular resistance; RA

PLS, right atrial peak longitudinal strain; RV, right ventricular; TAPSE, tricuspid annular plane systolic excursion; WU, Wood Units.
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[tertile I (worsened): 1 −17.8% to −4.2%; tertile II (stable): 1 −4.2% to 4.0%; and tertile III (improved): 1 4.0% to 44.6%]. Box-plots show median, interquartile range,

and minimum to maximum values. (C) The Kaplan–Meier plots of time to clinical worsening since follow-up echocardiography stratified by RA function based on RA

PLS. RA, right atrial; PACS, peak active contraction strain; PLS, peak longitudinal strain.

in PH (4, 9). Furthermore, RA phasic performance is altered
in relation to impaired diastolic function of the chronically
overloaded right ventricle, leading to backward venous flow and
systemic congestion through RA functional impairment (23).
In addition, alterations of RV systolic function accompanied
by maladaptive RV remodeling and secondary tricuspid valve
regurgitation directly result in loss of phasic RA function, leading
to RA remodeling (6, 22). Recently, the longitudinal assessment
of RA function after initiation of PAH treatment has been
shown to serve as an additional parameter to predict outcome in
childrenwith PH (9). It is as of yet unknownwhether RA function
and its response to PAH treatment during follow-up would also
serve as clinically relevant marker in adults.

1 RA PLS emerged as a clinically relevant parameter in our
study. This is consistent with data from Alenezi and coworkers,
who identified PLS as the RA parameter of major clinical
relevance (4). The relevance of RA PLS may underline the
importance of the reservoir function itself and the early impact
of RV maladaptation on this specific phase (24). Of note, we
observed no prognostic relevance of 1 RA PS (as a measure of
the conduit phase) using the Kaplan–Meier analysis, although
RA conduit fraction percent (defined as the percentage of total
RA area change happening prior to the electrical p wave) was
previously associated with risk of adverse events in pediatric PAH
(9, 25). Although both parameters mirror RA conduit function,
they might not be directly comparable. Furthermore, pediatric
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TABLE 3 | Key baseline parameters and changes during follow-up stratified by tertile of longitudinal RA function.

Characteristics RA peak longitudinal strain tertile

Worsened (n = 19) Stable (n = 18) Improved (n = 19) p value

Baseline

BNP, pg/ml 106 [88–220] 182 [44–559]* 160 [62–429] 0.797

Mean pulmonary arterial pressure, mm Hg 41 ± 10 40 ± 9 46 ± 11 0.187

Right atrial pressure, mm Hg 8 [5–9] 8 [6–13] 8 [6–10] 0.508

Pulmonary vascular resistance, Wood Units 7 ± 3 7 ± 3 9 ± 3 0.178

Cardiac index, l/min/m2 2.4 ± 0.4 2.5 ± 0.6 2.3 ± 0.5 0.399

Pulmonary arterial capacitance, ml/mmHg 1.4 [1.1–2.3] 1.6 [1.1–1.9] 1.4 [0.9–1.9] 0.624

RV end-diastolic area, cm2 23 [18–29] 28 [23–35] 28 [25–32] 0.095

RV end-systolic area, cm2 18 [12–22] 18 [17–20] 22 [17–27] 0.131

Fractional area change, % 27 ± 8 24 ± 14 24 ± 10 0.655

TAPSE/PASP, mm/mmHg 0.29 [0.22–0.40] 0.31 [0.21–0.46] 0.28 [0.18–0.41] 0.668

RV global longitudinal strain, % −17.2 ± 3.7 −13.1 ± 5.5 −14.7 ± 4.3 0.050

RA area, cm2 17 [14–20] 18 [17–20] 18 [14–22] 0.288

1 During follow-up

1 Mean pulmonary arterial pressure, mm Hg 2 ± 10
†

−7 ± 11
‡

−8 ± 8
†

0.039

1 Pulmonary arterial capacitance, ml/mm Hg −0.02 [−0.53–0.27]
†

0.63 [−0.11–1.00]
‡

0.88 [0.36–1.4]
†

0.006

1 Pulmonary vascular resistance, Wood Units −0.1 ± 3.0
†

−2.4 ± 3.7
‡

−4.2 ± 2.8
†

0.009

1 BNP, pg/ml 0 [−71–68] −61 [−154–6]§ −83 [−305 to −21] 0.015

1 TAPSE/PASP −0.02 [−0.08–0.02] 0.04 [−0.04–0.14]* 0.09 [0.03–0.17] 0.018

1 RA area, cm2 1 ± 7 −3 ± 4 −3 ± 5 0.083

1 RV end-diastolic area, cm2 −2 ± 6* −4 ± 3 −5 ± 5 0.103

1 RV end-systolic area, cm2 −1 ± 4 −5 ± 4 −6 ± 5 0.005

1 Fractional area change, % 1 ± 11¶ 6 ± 13 7.1 ± 15 0.271

1 RV global longitudinal strain, % −1.7 [−3.7 to −0.7]* 1.2 [−0.9–4.8] 4.6 [2.6–5.8] <0.001

1, change; BNP, B-type natriuretic peptide; PASP, pulmonary arterial systolic pressure; RA, right atrial; RV, right ventricular; TAPSE, tricuspid annular plane systolic excursion.

Values represent mean ± SD or median (interquartile range) (for normally or non-normally distributed parameters, respectively), unless otherwise specified.

*Available in 17 patients.
†
Available in 13 patients.

‡
Available in 12 patients.

§Available in 16 patients.
¶Available in 18 patients.

PAH might differ significantly from PAH in adults; limited data
exist on comparison of these two populations.

Although we observed no general normalization or
restoration of RA function in the overall study population
after starting PAH treatment, subanalysis revealed different
individual patterns of RA functional response by means of
changes in PLS. We were able to identify three different patterns
of RA function, with either improved, stable, or worsened
reservoir function (as mirrored by RA PLS). Moreover, our data
indicate that improvement or deterioration of RA function is
directly associated with the extent of RV reverse remodeling.
Substantial improvement of RA function was associated with a
relevant reduction of afterload, pressure, and RV volume under
specific therapy. In turn, impairment of RV function during
follow-up was directly related to worsening of RA PLS with a
subsequent higher probability for a clinical worsening event,
highlighting the importance of RA-RV interplay. Improvement
of RV function (strain, FAC, and RV volume) after starting PAH
treatment was therefore associated with improved RA function.

Moreover, our data indicate that RA strain is a dependent
variable whose improvements are secondary to improvements
in pulmonary arterial and RV parameters. Patients who failed to
improve under specific therapy, with no RV reverse remodeling
or reduction of afterload, eventually showed worsened RA
mechanics as measured by peak RA strain. Of note, RA PLS
mirrors RA reservoir function during RV contraction (26).
Therefore, the observed association of RV global longitudinal
strain with RA PLS indicates that improved RV systolic function
also translates into improved RA reservoir function. Again, this
highlights the interplay and importance of the RA-RV axis (6).

Decreased afterload leads to better RV function and obviously
to better RA filling, presumably through less RV filling at end-
diastole and improved venous return. As there is a continuum of
elevated PVR, reduced RV function and consecutive impairment
of RA function in PH, a failure of the RA-RV axis eventually
enhances consecutive dyspnea and congestion (23). Thus, the key
target of PH medication is afterload reduction which indirectly
improves downstream RV and RA function through improved
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hemodynamic interplay. Our data emphasize that the RA-RV axis
is a unit rather than two separate entities and that RV and RA
function are inextricably linked to each other. Therapies directly
supporting RA function (27) may play an important role in this
context and studies are warranted.

Limitations
This study has some limitations. First of all, this is a retrospective
single-center study and our results may need to be validated
in larger prospective cohorts. The sample size and event rate
limited the multivariate models and prevented further in-depth
analysis. However, to the best of our knowledge, this is the largest
study conducted so far focusing on the clinical relevance of
RA function in treatment-naïve patients with PAH. Moreover,
we were able to provide follow-up data on RA function after
treatment initiation, providing additional important information
regarding the adaptation of RA function during treatment. The
relatively short follow-up period of the study cohort may be an
additional limitation.

Conclusion
After initiation of specific pulmonary vascular therapy, patients
with PAHmay show different patterns of RA functional response.
Recovery of RA functional parameters is significantly related
to improvement of RV function. Patients with improvement of
RA function in response to PAH therapy have better outcomes
than those with stable or worsening RA function. RA functional
improvement may thus serve as an additional predictor of
treatment response.
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