



# **Commentary: Cardiovascular Outcome in Patients Treated With SGLT2 Inhibitors for Heart Failure: A Meta-Analysis**

### Mei Qiu\* and Li-Min Zhao\*

Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China

### **OPEN ACCESS**

## Edited by:

Qian Yang, First Affiliated Hospital of Chinese PLA General Hospital, China

#### Reviewed by:

Atsushi Tanaka, Saga University, Japan Cynthia Fritschi, University of Illinois at Chicago, United States

#### \*Correspondence:

Mei Qiu 13798214835@sina.cn orcid.org/0000-0001-5013-657X Li-Min Zhao zlmrain@sohu.com

#### Specialty section:

This article was submitted to Cardiovascular Therapeutics, a section of the journal Frontiers in Cardiovascular Medicine

> Received: 16 September 2021 Accepted: 27 September 2021 Published: 26 October 2021

#### Citation:

Qiu M and Zhao L-M (2021) Commentary: Cardiovascular Outcome in Patients Treated With SGLT2 Inhibitors for Heart Failure: A Meta-Analysis. Front. Cardiovasc. Med. 8:778284. doi: 10.3389/fcvm.2021.778284 Keywords: SGLT2 inhibitors (gliflozins), heart failure, NYHA class, region, race, HFPEF, HFrEF-heart failure with reduced ejection fraction

#### A Commentary on

# Cardiovascular Outcome in Patients Treated With SGLT2 Inhibitors for Heart Failure: A Meta-Analysis

by Gager, G. M, Gelbenegger, G., Jilma, B., von Lewinski, D., Sourij, H., Eyileten, C., Filipiak, K., Postula, M., Siller-Matula, J. M. (2021). Front. Cardiovasc. Med. 8:691907. doi: 10.3389/fcvm.2021.691907

## INTRODUCTION

In the meta-analysis of Gager et al. (1) recently published in the journal *Frontiers in Cardiovascular Medicine*, the authors identified that sodium-glucose co-transporter-2 (SGLT2) inhibitors could reduce heart failure (HF) events and all-cause mortality in patients with HF and that the benefit of this drug class on the primary endpoint (i.e., a composite of hospitalization for HF HHF) or cardiovascular mortality (CVM) was consistent across relevant HF subgroups defined by the following clinically important factors: the status of type 2 diabetes at baseline, type of HF (according to left ventricular ejection fraction, LVEF), cause of HF, specific SGLT2 inhibitors, gender, age, estimated glomerular filtration rate (eGFR), body mass index, and concomitant medications. However, Gager et al. (1) failed to evaluate the effect of SGLT2 inhibitors in several subgroups defined by three other clinically important factors: race, region, and baseline New York Heart Association (NYHA) class. Hence, we aimed to conduct another meta-analysis to examine whether these factors affect the efficacy of gliflozins in patients with HF or not.

Moreover, Gager et al. in their meta-analysis (1), failed to include the latest EMPEROR-Preserved trial (2) assessing empagliflozin in patients with HF with an LVEF of > 40%. Since that trial (2) provided the new data in the subgroup of HF with mildly reduced LVEF (HFmrEF) and the subgroup of HF with preserved LVEF (HFpEF), we repeated the subgroup analysis according to LVEF by adding these new data, although this subgroup analysis had been performed in the meta-analysis of Gager et al. (1).

1

## METHODS AND FINDINGS

We only included in this meta-analysis large cardiovascular outcome trials (CVOTs) that compared the HF outcomes of

SGLT2 inhibitors with those of placebo in patients with HF. The only endpoint of interest for this meta-analysis was the composite HF outcome, which was defined as a composite of HHF or CVM. Embase and PubMed were searched (from inception to August

| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rd Batio                                                                                                                                                     | Weight                                                           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% CI                                                                                                                                                       | (%)                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | Hazard Ratio                                                                                                                                                                                                                                                                                                              | Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Region: Asia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | with 95% CI                                                                                                                                                                                                                                                                                                               | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .49, 0.87]                                                                                                                                                   | 6.71                                                             | Race: Asian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EMPEROR-Reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .38, 0.79]                                                                                                                                                   | 4.50                                                             | DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.64 [ 0.48, 0.86]                                                                                                                                                                                                                                                                                                        | 9.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SOLOIST-WHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .23, 1.57]                                                                                                                                                   | 0.68                                                             | EMPEROR-Reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 0.57 [ 0.41, 0.79]                                                                                                                                                                                                                                                                                                        | 8.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EMPEROR-Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .41, 0.85]                                                                                                                                                   | 4.27                                                             | EMPEROR-Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 0.65 [ 0.46, 0.92]                                                                                                                                                                                                                                                                                                        | 7.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Heterogeneity: $t^2 = 0.00$ , $I^2 = 0.00\%$ , $H^2 = 1.00$<br>Test of $\theta_i = \theta_i$ : Q(3) = 0.53, p = 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60[0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .50, 0.73]                                                                                                                                                   |                                                                  | Heterogeneity: $\tau^2 = 0.00$ , $I^2 = 0.00\%$ , $H^2 = 1.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                             | 0.62 [ 0.52, 0.74]                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i = \theta_j$ . $Q(3) = 0.53$ , $p = 0.91$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | Test of $\theta_i = \theta_i$ : Q(2) = 0.38, p = 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 0.02[ 0.02, 0.74]                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Region: Europe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | $1031010_1 = 0_1$ . $0(2) = 0.000$ , $p = 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .69, 1.02]                                                                                                                                                   |                                                                  | Race: Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EMPEROR-Reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .74, 1.19]                                                                                                                                                   | 9.47                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SOLOIST-WHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .50, 0.95]                                                                                                                                                   | 5.52                                                             | DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.62 [ 0.37, 1.04]                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EMPEROR-Preserved<br>Heterogeneity: $\tau^2 = 0.00$ , $I^2 = 0.00\%$ , $H^2 = 1.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .65, 0.98]                                                                                                                                                   | 11.56                                                            | EMPEROR-Reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 0.46 [ 0.28, 0.75]                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i = \theta_i$ : Q(3) = 2.50, p = 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.83 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .74, 0.93]                                                                                                                                                   |                                                                  | SOLOIST-WHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 1.12 [ 0.51, 2.45]                                                                                                                                                                                                                                                                                                        | 1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1000000 = 0.0000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | EMPEROR-Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 0.73 [ 0.42, 1.26]                                                                                                                                                                                                                                                                                                        | 3.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Region: Latin America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | Heterogeneity: $\tau^2 = 0.02$ , $I^2 = 15.52\%$ , $H^2 = 1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 0.64 [ 0.47, 0.87]                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .47, 0.88]                                                                                                                                                   | 5.75                                                             | Test of $\theta_i = \theta_i$ : Q(3) = 3.91, p = 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EMPEROR-Reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .57, 0.93]                                                                                                                                                   | 8.96                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SOLOIST-WHF<br>EMPEBOB-Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .43, 0.95]                                                                                                                                                   | 3.77<br>7.86                                                     | Race: White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EMPEROR–Preserved<br>Heterogeneity: $\tau^2 = 0.00$ , $I^2 = 0.00\%$ , $H^2 = 1.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.67, 1.13]                                                                                                                                                  | 1.66                                                             | DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.78 [ 0.66, 0.92]                                                                                                                                                                                                                                                                                                        | 16 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test of $\theta_i = \theta_i$ : Q(3) = 2.82, p = 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0.74[0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | EMPEROR-Reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 0.88 [ 0.75, 1.04]                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Region: North America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | SOLOIST-WHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 0.63 [ 0.49, 0.81]                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .51, 1.04]                                                                                                                                                   | 4.69                                                             | EMPEROR-Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 0.81 [ 0.69, 0.95]                                                                                                                                                                                                                                                                                                        | 16.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EMPEROR-Reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .48, 1.00]                                                                                                                                                   | 4.23<br>3.77                                                     | Heterogeneity: $\tau^2 = 0.00$ , $I^2 = 23.61\%$ , $H^2 = 1.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                             | 0.79 [ 0.72, 0.88]                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SOLOIST-WHF<br>EMPEBOB-Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .43, 0.95]                                                                                                                                                   | 3.77<br>5.34                                                     | Test of $\theta_i = \theta_j$ : Q(3) = 4.88, p = 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Heterogeneity: $\tau^2 = 0.00$ , $I^2 = 0.00\%$ , $H^2 = 1.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .58, 0.84]                                                                                                                                                   | 5.54                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i = \theta_i$ : Q(3) = 0.28, p = 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.701 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                  | Overall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                             | 0.72 [ 0.64, 0.80]                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | Heterogeneity: $\tau^2 = 0.01$ , $I^2 = 43.44\%$ , $H^2 = 1.77$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Overall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • 0.74 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .68, 0.80]                                                                                                                                                   |                                                                  | Test of $\theta_i = \theta_i$ : Q(10) = 16.61, p = 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Heterogeneity: τ <sup>2</sup> = 0.00, I <sup>2</sup> = 13.33%, H <sup>2</sup> = 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | $1000 \text{ f}_{i} = 0$ , $Q(10) = 10.01$ , $p = 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i = \theta_j$ : Q(15) = 14.97, p = 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  | Test of group differences: $Q_b(2) = 6.26$ , $p = 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                             |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i = \theta_j$ : Q(15) = 14.97, p = 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2 1                         | 2                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>0</sub> (3) = 8.84, p = 0.03<br>Bandom-effects REML model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/4 1/2 1<br>Favours SGLT2 inhibitors Favours placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>0</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/4 1/2 1<br>Favours SGLT2 inhibitors Favours placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              |                                                                  | Random-effects REML model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2 1                         |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i=\theta_i.~Q(15)=14.97,~p=0.45$ Test of group differences: $Q_{\rm b}(3)=8.84,~p=0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Favours SGLT2 inhibitors Favours placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rd Patio                                                                                                                                                     | Weight                                                           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2 1                         | urs placebo                                                                                                                                                                                                                                                                                                               | Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, $p = 0.45$<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, $p = 0.03$<br>Random–effects REML model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Favours SGLT2 Inhibitors Favours placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | Weight                                                           | Random-effects REML model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2 1                         |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, $p = 0.45$<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, $p = 0.03$<br>Random–effects REML model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Favours SGLT2 Inhibitors Favours placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rd Ratio<br>95% Cl                                                                                                                                           | Weight<br>(%)                                                    | Random-effects REML model F D Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2 1                         | urs placebo<br>Hazard Ratio                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of 0, = 0; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Favours SGLT2 Inhibitors Favours placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | •                                                                | Random-effects REML model F D Study LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2 1                         | urs placebo<br>Hazard Ratio<br>with 95% Cl                                                                                                                                                                                                                                                                                | Weigh<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, $p = 0.45$<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, $p = 0.03$<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Favours SGLT2 inhibitors Favours placebo<br>Hazarr<br>With 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% CI                                                                                                                                                       | (%)                                                              | Random-effects REML model         F           D         Study           LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]                                                                                                                                                                                                                                                                         | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test of 0, = 0; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favours placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95% CI                                                                                                                                                       | (%)                                                              | Random-effects REML model         F           D         Study           LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2 1                         | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]                                                                                                                                                                                                                                                   | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test of 0, = 0; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favours placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95% CI                                                                                                                                                       | (%)                                                              | Build for the second | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]                                                                                                                                                                                                                                                                         | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test of 0, = 0; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Favours SGLT2 inhibitors         Favours placebo           Hazan         with 9           0.63 [ 0.         0.71 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95% CI<br>0.52, 0.76]<br>0.60, 0.85]                                                                                                                         | (%)<br>15.37<br>15.97                                            | Random-effects REML model         F           D         Study           LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]                                                                                                                                                                                                                                                   | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test of 0, = 0; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Favours SGLT2 inhibitors         Favours placebo           Hazan         with 9           0.63 [ 0.         0.71 [ 0.           0.58 [ 0.         0.58 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95% CI<br>0.52, 0.76]<br>0.60, 0.85]<br>0.40, 0.84]                                                                                                          | (%)<br>15.37<br>15.97<br>5.74                                    | Build for the second | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]                                                                                                                                                                                                                                                   | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test of 0, = 0; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Favours SGLT2 inhibitors         Favours placebo           Hazan         with 9           0.63 [ 0.         0.71 [ 0.           0.58 [ 0.         0.58 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95% CI<br>0.52, 0.76]<br>0.60, 0.85]                                                                                                                         | (%)<br>15.37<br>15.97<br>5.74                                    | Build for the second | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]                                                                                                                                                                                                                                                   | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test of 0, = 0; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Favours SGLT2 inhibitors         Favours placebo           Hazan         with 9           0.63 [ 0.         0.71 [ 0.           0.58 [ 0.         0.58 [ 0.           0.57 [ 0.         0.57 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95% CI<br>0.52, 0.76]<br>0.60, 0.85]<br>0.40, 0.84]                                                                                                          | (%)<br>15.37<br>15.97<br>5.74                                    | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]                                                                                                                                                                                                                                                   | (%)<br>1.7(<br>11.8;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test of $0, = 0$ ; Q(15) = 14.97, $p = 0.45$<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, $p = 0.03$<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00, l^2 = 5.02\%, H^2 = 1.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Favours SGLT2 inhibitors         Favours placebo           Hazan         with 9           0.63 [ 0.         0.71 [ 0.           0.58 [ 0.         0.58 [ 0.           0.57 [ 0.         0.57 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95% Cl<br>0.52, 0.76]<br>0.60, 0.85]<br>0.40, 0.84]<br>0.64, 0.87]                                                                                           | (%)<br>15.37<br>15.97<br>5.74                                    | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% CI<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.70 [ 0.59, 0.84]                                                                                                                                                                                                       | (%)<br>1.7(<br>11.8;<br>16.1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test of $0, = 0$ ; Q(15) = 14.97, $p = 0.45$<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, $p = 0.03$<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00, l^2 = 5.02\%, H^2 = 1.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Favours SGLT2 inhibitors         Favours placebo           Hazan         with 9           0.63 [ 0.         0.71 [ 0.           0.58 [ 0.         0.58 [ 0.           0.57 [ 0.         0.57 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95% Cl<br>0.52, 0.76]<br>0.60, 0.85]<br>0.40, 0.84]<br>0.64, 0.87]                                                                                           | (%)<br>15.37<br>15.97<br>5.74                                    | $\label{eq:response} \begin{array}{l} \mbox{F} \\ \mbox{Barbon effects REML model} \\ \mbox{D} \\ \mbox{Study} \\ \mbox{LVEF at baseline: >40% to <50%} \\ \mbox{SOLOIST-WHF} \\ \mbox{EMPEROR-Preserved} \\ \mbox{Heterogeneity: } t^2 = 0.00, t^2 = 0.00\%, tt^2 = 1.00 \\ \mbox{Test of } \theta_i = \theta_i; O(1) = 0.02, p = 0.90 \\ \mbox{LVEF at baseline: $\leq 40\% \\ \mbox{DAPA-HF: LVEF $> Median \\ \mbox{DAPA-HF: LVEF $> Median \\ \mbox{DAPA-HF: LVEF $> Median \\ \end{tabular} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.70 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]                                                                                                                                                                                 | (%)<br>1.76<br>11.83<br>16.16<br>12.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test of $0, = 0$ ; Q(15) = 14.97, $p = 0.45$<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, $p = 0.03$<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00, l^2 = 5.02\%, H^2 = 1.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Favours SGLT2 inhibitors         Favours placebo           Hazan         with 9           0.63 [ 0.         0.71 [ 0.           0.58 [ 0.         0.58 [ 0.           0.57 [ 0.         0.57 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95% Cl<br>0.52, 0.76]<br>0.60, 0.85]<br>0.40, 0.84]<br>0.64, 0.87]                                                                                           | (%)<br>15.37<br>15.97<br>5.74                                    | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.70 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]                                                                                                                                                           | (%)<br>1.7(<br>11.8;<br>16.1(<br>12.4;<br>18.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>4</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneily: $t^2 = 0.00$ , $l^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Favours SGLT2 inhibitors         Favours placebo           Hazan         with 9           0.63 [ 0.         0.71 [ 0.           0.58 [ 0.         0.58 [ 0.           0.57 [ 0.         0.57 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95% Cl<br>0.52, 0.76]<br>0.60, 0.85]<br>0.40, 0.84]<br>0.64, 0.87]                                                                                           | (%)<br>15.37<br>15.97<br>5.74                                    | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | avours SGLT2 inhibitors Favo  | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.70 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]                                                                                                                                     | (%)<br>1.7(<br>11.8;<br>16.1(<br>12.4;<br>18.0)<br>8.1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>4</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV                                                                                                                                                                                                                                                                                                                                                                                                                                  | Favours SGLT2 inhibitors         Favours placebo           Hazar         with 9           0.63 [ 0.         0.71 [ 0.           0.58 [ 0.         0.69 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95% Cl<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]                                                                            | (%)<br>15.37<br>15.97<br>5.74<br>18.31                           | $\label{eq:result} \begin{array}{l} \mbox{F} \\ \mbox{Baseline: >40% to <50%} \\ \mbox{SoLOIST-WHF} \\ \mbox{EMPEROR-Preserved} \\ \mbox{Heterogeneity: } \ell = 0.00, l^2 = 0.00\%, H^2 = 1.00 \\ \mbox{Test of } \theta_i = \theta_i \cdot \mathbf{Q}(1) = 0.02, p = 0.90 \\ \\ EVEF at baseline: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% CI<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.69 [ 0.51, 0.93]                                                                                                               | (%)<br>1.7(<br>11.8;<br>16.1(<br>12.4;<br>18.0)<br>8.1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>4</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $l^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                       | Favours SGLT2 inhibitors Favours placebo<br>Hazar<br>with 9<br>0.63 [ 0.<br>0.71 [ 0.<br>0.58 [ 0.<br>0.58 [ 0.<br>0.69 [ 0.<br>0.69 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]                                                                            | (%)<br>15.37<br>15.97<br>5.74<br>18.31                           | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.70 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]                                                                                                                                     | (%)<br>1.7(<br>11.8;<br>16.1(<br>12.4;<br>18.0)<br>8.1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>4</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $l^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF                                                                                                                                                                                                                                                                                                                                                                                                                       | Favours SGLT2 inhibitors Favours placebo<br>Hazar<br>with 9<br>0.63 [ 0.<br>0.71 [ 0.<br>0.58 [ 0.<br>0.58 [ 0.<br>0.69 [ 0.<br>0.69 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% Cl<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]                                                                            | (%)<br>15.37<br>15.97<br>5.74<br>18.31                           | $\label{eq:response} \begin{array}{l} \mbox{F} \\ \mbox{Baseline: >40% to <50%} \\ \mbox{SoLOIST-WHF} \\ \mbox{EMPEROR-Preserved} \\ \mbox{Heterogeneity: } \ell = 0.00, l^2 = 0.00\%, H^2 = 1.00 \\ \mbox{Test of } \theta_i = \theta_i \cdot \mathbf{Q}(1) = 0.02, p = 0.90 \\ \\ EVEF at baseline: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% CI<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.69 [ 0.51, 0.93]                                                                                                               | (%)<br>1.7(<br>11.8;<br>16.1(<br>12.4;<br>18.0)<br>8.1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>4</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{t} = 0.00, \hat{t}^2 = 5.02\%, \hat{H}^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced                                                                                                                                                                                                                                                                                                                                                                                          | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.90 [ 0.         0.83 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]                                              | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89         | $\label{eq:response} \begin{array}{l} \mbox{F} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% CI<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.69 [ 0.51, 0.93]                                                                                                               | (%)<br>1.7(<br>11.8;<br>16.1(<br>12.4;<br>18.0)<br>8.1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test of $\theta_i = 0$ ; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{t} = 0.00$ , $I^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = \theta_i$ ; Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF                                                                                                                                                                                                                                                                                                                                                                                        | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.03 [ 0.         0.83 [ 0.           0.03 [ 0.         0.83 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]                               | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model<br><b>D</b><br>Study<br><b>LVEF at baseline:</b> >40% to <50%<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 0.00\%$ , $H^2 = 1.00$<br>Test of $0_1 = 0$ ; $Q(1) = 0.02$ , $p = 0.90$<br><b>LVEF at baseline:</b> $\le 40\%$<br>DAPA-HF: LVEF $\le$ Median<br>DAPA-HF: LVEF $\le$ Median<br>EMPEROR-Reduced: LVEF $\le 30\%$<br>EMPEROR-Reduced: LVEF $\le 30\%$<br>SOLOIST-WHF<br>Heterogeneity: $t^2 = 0.01$ , $t^2 = 44.23\%$ , $H^2 = 1.79$<br>Test of $0_1 = 0$ ; $Q(4) = 7.29$ , $p = 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% CI<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.69 [ 0.51, 0.93]                                                                                                               | (%)<br>1.7(<br>11.8;<br>16.1(<br>12.4;<br>18.0)<br>8.1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>4</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{t} = 0.00, \hat{t}^2 = 5.02\%, \hat{H}^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF                                                                                                                                                                                                                                                                                                                                                                           | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.03 [ 0.         0.83 [ 0.           0.03 [ 0.         0.83 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]                                              | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model<br><b>D</b><br>Study<br><b>LVEF at baseline:</b> >40% to <50%<br>SOLDIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 0.00\%$ , $H^2 = 1.00$<br>Test of $\theta_i = \theta_i$ : Q(1) = 0.02, p = 0.90<br><b>LVEF at baseline:</b> ≤40%<br>DAPA-HF: LVEF ≤ Median<br>DAPA-HF: LVEF ≤ Median<br>DAPA-HF: LVEF ≤ Median<br>EMPEROR-Reduced: LVEF ≤30%<br>EMPEROR-Reduced: LVEF ≤30%<br>SOLDIST-WHF<br>Heterogeneity: $t^2 = 0.01$ , $t^2 = 44.23\%$ , $H^2 = 1.79$<br>Test of $\theta_i = \theta_i$ : Q(4) = 7.29, p = 0.12<br><b>LVEF at baseline:</b> ≥50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% CI<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.69 [ 0.51, 0.93]<br>0.75 [ 0.66, 0.85]                                                                                         | (%)<br>1.74<br>11.8<br>16.14<br>12.4<br>18.09<br>8.14<br>7.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{t} = 0.00$ , $\hat{t}^2 = 5.02\%$ , $\hat{H}^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF                                                                                                                                                                                                                                                                                                                                   | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.83 [ 0.         0.83 [ 0.           0.83 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]                | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model<br><b>D</b><br>Study<br><b>LVEF at baseline:</b> >40% to <50%<br>SOLDISTWHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 0.00\%$ , $H^2 = 1.00$<br>Test of $\theta_i = \theta_i$ (Q(1) = 0.02, p = 0.90<br><b>LVEF at baseline:</b> ≤40%<br>DAPA-HF: LVEF ≤Median<br>DAPA-HF: LVEF ≤Median<br>DAPA-HF: LVEF ≤Median<br>DAPA-HF: LVEF ≤Median<br>DAPA-HF: LVEF ≤Median<br>DAPA-HF: LVEF ≤Median<br>EMPEROR-Reduced: LVEF ≤30%<br>SOLDIST-WHF<br>Heterogeneity: $t^2 = 0.01$ , $t^2 = 44.23\%$ , $H^2 = 1.79$<br>Test of $\theta_i = \theta_i$ (Q(4) = 7.29, p = 0.12<br><b>LVEF at baseline:</b> ≥50%<br>SOLDIST-WHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% CI<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.99 [ 0.51, 0.93]<br>0.75 [ 0.66, 0.85]                                                                                         | (%)<br>1.7(<br>11.83<br>16.1(<br>12.43<br>18.09<br>8.14<br>7.09<br>2.2 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test of $\theta_i = 0$ ; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = 0$ ; Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 0.00\%$ , $H^2 = 1.00$                                                                                                                                                                                                                                                                             | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.83 [ 0.         0.83 [ 0.           0.83 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]                               | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.51, 0.93]<br>0.75 [ 0.66, 0.85]<br>0.80 [ 0.64, 0.99]                                                                   | (%)<br>1.7(<br>11.83<br>16.1(<br>12.43<br>18.09<br>8.14<br>7.09<br>2.2 <sup>2</sup><br>11.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test of $\theta_i = 0$ ; Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = 0$ ; Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 0.00\%$ , $H^2 = 1.00$                                                                                                                                                                                                                                                                             | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.83 [ 0.         0.83 [ 0.           0.83 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]                | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.70 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.51, 0.93]<br>0.75 [ 0.66, 0.85]<br>0.66 [ 0.38, 1.15]<br>0.80 [ 0.64, 0.99]<br>0.87 [ 0.69, 1.10]                       | (%)<br>1.7(<br>11.83<br>16.1(<br>12.43<br>18.09<br>8.14<br>7.09<br>2.2 <sup>2</sup><br>11.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 0.00\%$ , $H^2 = 1.00$                                                                                                                                                                                                                                                               | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.83 [ 0.         0.83 [ 0.           0.83 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]                | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.51, 0.93]<br>0.75 [ 0.66, 0.85]<br>0.80 [ 0.64, 0.99]                                                                   | (%)<br>1.7(<br>11.83<br>16.1(<br>12.43<br>18.09<br>8.14<br>7.09<br>2.27<br>11.7(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Test of $\theta_i = \theta_i: Q(15) = 14.97, p = 0.45$<br>Test of group differences: $Q_n(3) = 8.84, p = 0.03$<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{\tau} = 0.00, \hat{1}^2 = 5.02\%, \hat{H}^2 = 1.05$<br>Test of $\theta_i = \theta_i: Q(3) = 3.02, p = 0.39$<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF                                                                                                                                                                                                                                                                              | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.88 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]<br>1.77, 0.97] | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.70 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.51, 0.93]<br>0.75 [ 0.66, 0.85]<br>0.66 [ 0.38, 1.15]<br>0.80 [ 0.64, 0.99]<br>0.87 [ 0.69, 1.10]                       | (%)<br>1.7(<br>11.83<br>16.1(<br>12.43<br>18.09<br>8.14<br>7.09<br>2.27<br>11.7(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Test of $\theta_i = \theta_i: Q(15) = 14.97, p = 0.45$<br>Test of group differences: $Q_u(3) = 8.84, p = 0.03$<br>Random-effects REML model<br><b>C</b><br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{t} = 0.00, I^2 = 5.02\%, H^2 = 1.05$<br>Test of $\theta_i = \theta_i: Q(3) = 3.02, p = 0.39$<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{t} = 0.00, I^2 = 0.00\%, H^2 = 1.00$<br>Test of $\theta_i = \theta_i: Q(3) = 0.34, p = 0.95$                                                                                                                                                                                                                                                  | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.88 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]                | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model       F         Study       LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.70 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.51, 0.93]<br>0.75 [ 0.66, 0.85]<br>0.66 [ 0.38, 1.15]<br>0.80 [ 0.64, 0.99]<br>0.87 [ 0.69, 1.10]                       | (%)<br>1.7(<br>11.83<br>16.1(<br>12.43<br>18.09<br>8.14<br>7.09<br>2.27<br>11.7(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Test of $\theta_i = \theta_i: Q(15) = 14.97, p = 0.45$<br>Test of group differences: $Q_u(3) = 8.84, p = 0.03$<br>Random-effects REML model<br><b>C</b><br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{t} = 0.00, I^2 = 5.02\%, H^2 = 1.05$<br>Test of $\theta_i = \theta_i: Q(3) = 3.02, p = 0.39$<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{t} = 0.00, I^2 = 0.00\%, H^2 = 1.00$<br>Test of $\theta_i = \theta_i: Q(3) = 0.34, p = 0.95$                                                                                                                                                                                                                                                  | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.88 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]<br>1.77, 0.97] | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model       F         D       Study         LVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.57, 0.78]<br>0.75 [ 0.66, 0.85]<br>0.75 [ 0.66, 0.85]<br>0.80 [ 0.64, 0.99]<br>0.87 [ 0.89, 1.10]<br>0.82 [ 0.70, 0.95] | (%)<br>1.7(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8( |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{\tau} = 0.00$ , $I^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{\tau} = 0.00, I^2 = 0.00\%$ , $H^2 = 1.00$<br>Test of $\theta_i = \theta_i$ : Q(3) = 0.34, p = 0.95<br>Overall<br>Heterogeneity: $\hat{\tau} = 0.01$ , $I^2 = 38.84\%$ , $H^2 = 1.64$                                                                                                         | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.88 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]<br>1.77, 0.97] | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model       F         D       Study         UVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SOLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.70 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.51, 0.93]<br>0.75 [ 0.66, 0.85]<br>0.66 [ 0.38, 1.15]<br>0.80 [ 0.64, 0.99]<br>0.87 [ 0.69, 1.10]                       | (%)<br>1.7(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8( |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{\tau} = 0.00$ , $I^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $\hat{\tau} = 0.00, I^2 = 0.00\%$ , $H^2 = 1.00$<br>Test of $\theta_i = \theta_i$ : Q(3) = 0.34, p = 0.95<br>Overall<br>Heterogeneity: $\hat{\tau} = 0.01$ , $I^2 = 38.84\%$ , $H^2 = 1.64$                                                                                                         | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.88 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]<br>1.77, 0.97] | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Example and the second seco | Favours SOLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.57, 0.78]<br>0.75 [ 0.66, 0.85]<br>0.75 [ 0.66, 0.85]<br>0.80 [ 0.64, 0.99]<br>0.87 [ 0.89, 1.10]<br>0.82 [ 0.70, 0.95] | (%)<br>1.7(<br>11.8)<br>16.1(<br>12.4)<br>18.09<br>8.14<br>7.09<br>2.2'<br>11.7'<br>10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>6</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model<br>C<br>Study<br>Baseline NYHA class: Class II<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 5.02\%$ , $H^2 = 1.05$<br>Test of $\theta_i = \theta_i$ : Q(3) = 3.02, p = 0.39<br>Baseline NYHA class: Class III or IV<br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00$ , $t^2 = 0.00\%$ , $H^2 = 1.00$<br>Test of $\theta_i = \theta_i$ : Q(3) = 0.34, p = 0.95<br>Overall<br>Heterogeneity: $t^2 = 0.01$ , $t^2 = 38.84\%$ , $H^2 = 1.64$<br>Test of $\theta_i = \theta_i$ : Q(7) = 11.51, p = 0.12                               | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.58 [ 0.         0.75 [ 0.           0.69 [ 0.         0.69 [ 0.           0.83 [ 0.         0.83 [ 0.           0.88 [ 0.         0.88 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]<br>1.77, 0.97] | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Random-effects REML model       F         D       Study         UVEF at baseline: >40% to <50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SOLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.57, 0.78]<br>0.75 [ 0.66, 0.85]<br>0.75 [ 0.66, 0.85]<br>0.80 [ 0.64, 0.99]<br>0.87 [ 0.89, 1.10]<br>0.82 [ 0.70, 0.95] | (%)<br>1.7(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8(<br>11.8( |
| Test of $\theta_i = \theta_i: Q(15) = 14.97, p = 0.45$<br>Test of group differences: $Q_i(3) = 8.84, p = 0.03$<br>Random-effects REML model<br><b>C</b><br>Study<br><b>Baseline NYHA class: Class II</b><br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00, t^2 = 5.02\%, H^2 = 1.05$<br>Test of $\theta_i = \theta_i: Q(3) = 3.02, p = 0.39$<br><b>Baseline NYHA class: Class III or IV</b><br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00, t^2 = 0.00\%, H^2 = 1.00$<br>Test of $\theta_i = \theta_i: Q(3) = 0.34, p = 0.95$<br><b>Overall</b><br>Heterogeneity: $t^2 = 0.01, t^2 = 38.84\%, H^2 = 1.64$<br>Test of $\theta_i = \theta_i: Q(7) = 11.51, p = 0.12$ | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.75 [ 0.         0.69 [ 0.           0.63 [ 0.         0.75 [ 0.           0.63 [ 0.         0.63 [ 0.           0.63 [ 0.         0.75 [ 0.           0.63 [ 0.         0.68 [ 0.           0.83 [ 0.         0.88 [ 0.           0.86 [ 0.         0.86 [ 0.           0.76 [ 0.         0.76 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.74, 1.09]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]<br>1.77, 0.97] | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | $\label{eq:response} \begin{array}{l} {\sf F} \\ \hline {\sf B} \\ \hline {\sf Study} \\ \hline {\sf UVEF at baseline: >40% to <50\% \\ SOLOIST-WHF \\ \hline {\sf EMPEROR-Preserved} \\ \hline {\sf Heterogeneity: $\vec{t}$ = 0.00, $\vec{t}$ = 0.00\%, $\vec{H}$^2 = 1.00 \\ \hline {\sf Test of $0$, = $0$; $O(1) = 0.02, $p$ = 0.90 \\ \hline {\sf LVEF at baseline: $\le 40\% \\ DAPA-HF: LVEF $\le Median \\ EMPEROR-Reduced: LVEF $\le 30\% \\ SOLOIST-WHF \\ \hline {\sf Heterogeneity: $\vec{t}$ = 0.01, $\vec{t}$ = 44.23\%, $\vec{H}$^2 = 1.79 \\ \hline {\sf Test of $0$, = $0$; $O(4) = 7.29, $p$ = 0.12 \\ \hline {\sf LVEF at baseline: $\ge 50\% \\ SOLOIST-WHF \\ \hline {\sf EMPEROR-Preserved: LVEF $\ge 50\% to <60\% \\ \hline {\sf EMPEROR-Preserved: LVEF $\ge 66\% \\ \hline {\sf Heterogeneity: $\vec{t}$ = 0.00, $\vec{t}$ = 0.00\%, $\vec{H}$^2 = 1.00 \\ \hline {\sf Test of $0$, = $0$; $O(2) = 0.39, $p$ = 0.64 \\ \hline \\ \hline {\sf Overall } \\ \hline {\sf Heterogeneity: $\vec{t}$ = 0.00, $\vec{t}$ = 17.97\%, $\vec{H}$ = 1.22 \\ \hline {\sf Test of $0$, = $0$; $O(9] = 9.79, $p$ = 0.37 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.57, 0.78]<br>0.75 [ 0.66, 0.85]<br>0.75 [ 0.66, 0.85]<br>0.80 [ 0.64, 0.99]<br>0.87 [ 0.89, 1.10]<br>0.82 [ 0.70, 0.95] | (%)<br>1.7(<br>11.8)<br>16.1(<br>12.4)<br>18.09<br>8.14<br>7.09<br>2.2'<br>11.7'<br>10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test of $\theta_i = \theta_i$ : Q(15) = 14.97, p = 0.45<br>Test of group differences: Q <sub>0</sub> (3) = 8.84, p = 0.03<br>Random-effects REML model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Favours SGLT2 inhibitors Favours placebo<br>Hazarr<br>with 9<br>0.63 [ 0.<br>0.71 [ 0.<br>0.58 [ 0.<br>0.75 [ 0.<br>0.69 [ 0.<br>0.83 [ 0.<br>0.69 [ 0.<br>0.83 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.88 [ 0.<br>0.75 [ 0.<br>0.75 [ 0.<br>0.88 [ 0.<br>0.76 [ 0.<br>0.75 [ 0.<br>0.76 [ 0.<br>0.<br>0.76 [ 0.<br>0.<br>0.<br>0.76 [ 0.<br>0.<br>0.76 [ 0.<br>0.<br>0.<br>0.76 [ 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0 | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]<br>1.77, 0.97]<br>1.69, 0.84] | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | Example and the second seco | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.59, 0.84]<br>0.81 [ 0.66, 1.00]<br>0.67 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.69 [ 0.57, 0.78]<br>0.75 [ 0.66, 0.85]<br>0.75 [ 0.66, 0.85]<br>0.80 [ 0.64, 0.99]<br>0.87 [ 0.89, 1.10]<br>0.82 [ 0.70, 0.95] | (%)<br>1.76<br>11.83<br>16.16<br>12.43<br>18.05<br>8.14<br>7.05<br>2.21<br>11.74<br>10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test of $\theta_i = \theta_i: Q(15) = 14.97, p = 0.45$<br>Test of group differences: $Q_i(3) = 8.84, p = 0.03$<br>Random-effects REML model<br><b>C</b><br>Study<br><b>Baseline NYHA class: Class II</b><br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00, t^2 = 5.02\%, H^2 = 1.05$<br>Test of $\theta_i = \theta_i: Q(3) = 3.02, p = 0.39$<br><b>Baseline NYHA class: Class III or IV</b><br>DAPA-HF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Reduced<br>SOLOIST-WHF<br>EMPEROR-Preserved<br>Heterogeneity: $t^2 = 0.00, t^2 = 0.00\%, H^2 = 1.00$<br>Test of $\theta_i = \theta_i: Q(3) = 0.34, p = 0.95$<br><b>Overall</b><br>Heterogeneity: $t^2 = 0.01, t^2 = 38.84\%, H^2 = 1.64$<br>Test of $\theta_i = \theta_i: Q(7) = 11.51, p = 0.12$ | Favours SGLT2 inhibitors         Favours placebo           Hazar         0.63 [ 0.           0.71 [ 0.         0.71 [ 0.           0.75 [ 0.         0.69 [ 0.           0.63 [ 0.         0.75 [ 0.           0.63 [ 0.         0.63 [ 0.           0.63 [ 0.         0.75 [ 0.           0.63 [ 0.         0.68 [ 0.           0.83 [ 0.         0.88 [ 0.           0.86 [ 0.         0.86 [ 0.           0.76 [ 0.         0.76 [ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95% CI<br>1.52, 0.76]<br>1.60, 0.85]<br>1.40, 0.84]<br>1.64, 0.87]<br>1.63, 0.76]<br>1.66, 1.04]<br>1.60, 1.16]<br>1.68, 1.09]<br>1.77, 0.97]<br>1.69, 0.84] | (%)<br>15.37<br>15.97<br>5.74<br>18.31<br>14.45<br>11.89<br>6.95 | $\label{eq:response} \begin{array}{l} {\sf F} \\ \hline {\sf B} \\ \hline {\sf Study} \\ \hline {\sf UVEF at baseline: >40% to <50\% \\ SOLOIST-WHF \\ \hline {\sf EMPEROR-Preserved} \\ \hline {\sf Heterogeneity: $\vec{t}$ = 0.00, $\vec{t}$ = 0.00\%, $\vec{H}$^2 = 1.00 \\ \hline {\sf Test of $0$, = $0$; $O(1) = 0.02, $p$ = 0.90 \\ \hline {\sf LVEF at baseline: $\le 40\% \\ DAPA-HF: LVEF $\le Median \\ EMPEROR-Reduced: LVEF $\le 30\% \\ SOLOIST-WHF \\ \hline {\sf Heterogeneity: $\vec{t}$ = 0.01, $\vec{t}$ = 44.23\%, $\vec{H}$^2 = 1.79 \\ \hline {\sf Test of $0$, = $0$; $O(4) = 7.29, $p$ = 0.12 \\ \hline {\sf LVEF at baseline: $\ge 50\% \\ SOLOIST-WHF \\ \hline {\sf EMPEROR-Preserved: LVEF $\ge 50\% to <60\% \\ \hline {\sf EMPEROR-Preserved: LVEF $\ge 66\% \\ \hline {\sf Heterogeneity: $\vec{t}$ = 0.00, $\vec{t}$ = 0.00\%, $\vec{H}$^2 = 1.00 \\ \hline {\sf Test of $0$, = $0$; $O(2) = 0.39, $p$ = 0.64 \\ \hline \\ \hline {\sf Overall } \\ \hline {\sf Heterogeneity: $\vec{t}$ = 0.00, $\vec{t}$ = 17.97\%, $\vec{H}$ = 1.22 \\ \hline {\sf Test of $0$, = $0$; $O(9] = 9.79, $p$ = 0.37 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Favours SGLT2 inhibitors Favo | Hazard Ratio<br>with 95% Cl<br>0.74 [ 0.40, 1.38]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.57, 0.88]<br>0.71 [ 0.58, 0.88]<br>0.77 [ 0.57, 0.78]<br>0.99 [ 0.75, 1.30]<br>0.67 [ 0.57, 0.78]<br>0.75 [ 0.66, 0.85]<br>0.75 [ 0.66, 0.85]<br>0.87 [ 0.69, 1.10]<br>0.82 [ 0.70, 0.95]<br>0.76 [ 0.69, 0.82] | (%)<br>1.76<br>11.83<br>16.16<br>12.43<br>18.05<br>8.14<br>7.05<br>2.21<br>11.74<br>10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

FIGURE 1 | Forest plots illustrating the effect of SGLT2 inhibitors on composite HF outcome in patients with HF by four important factors. (A) Effects of SGLT2 inhibitors on composite HF outcome in HF patients by Regions. (B) Effects of SGLT2 inhibitors on composite HF outcome in HF patients by Race. (C) Effects of SGLT2 inhibitors on composite HF outcome in HF patients by Baseline NYHA class. (D) Effects of SGLT2 inhibitors on composite HF outcome in HF patients by LVEF at baseline. SGLT2, sodium-glucose co-transporter-2; HF, heart failure; CI, confidence interval; NYHA, New York Heart Association; LVEF, left ventricular ejection fraction; Composite HF outcome: defined as a composite of hospitalization for HF or cardiovascular mortality.

31st, 2021), using the following retrieval terms: "heart failure," "HFpEF," "HF with reduced LVEF (HFrEF)," "SGLT2 inhibitors," "empagliflozin," "canagliflozin," "ertugliflozin," "dapagliflozin," "sotagliflozin," and "randomized controlled trial." Finally, we included four CVOTs (2-5) focusing on assessing gliflozins in patients with HF. We extracted trial-level survival data (i.e., hazard ratios, HRs, and 95% confidence intervals, CIs) in various subgroups of interest from included trials, and, based on them, performed a random-effects meta-analysis. Subgroup analyses were conducted according to the following four factors: region (Asia, Latin America, North America, and Europe), race (White, Asian, and Black), baseline NYHA class (Class II and Class III or IV), and LVEF at baseline (LVEF  $\leq$  40%, i.e., HFrEF, LVEF > 40 to <50%, i.e., HFmrEF, and LVEF > 50%, i.e., HFpEF). Subgroup differences were examined by Cochran's Q test, with P < 0.05 indicating statistical significance. We completed data analyses using Stata (version 16.0).

Compared with placebo, SGLT2 inhibitors reduced the composite HF outcome by 40% in patients with HF enrolled in Asia (HR.6, 95% CI 0.50-0.73), 17% in those enrolled in Europe (HR 0.83, 95% CI 0.74-0.93), 26% in those enrolled in Latin America (HR 0.74, 95% CI 0.64-0.85), and 30% in those enrolled in North America (HR 0.7, 95% CI 0.58-0.84); and yielded more reductions in those enrolled in Asia than in the other three continents ( $P_{subgroup} = 0.03$ ; Figure 1A). SGLT2 inhibitors yielded more reductions in that outcome in Asian patients (38% reduction, HR 0.62, 95% CI 0.52-0.74) and Black patients (36% reduction, HR 0.64, 95% CI 0.47-0.87) than in White patients (21% reduction, HR 0.79, 95% CI 0.72-0.88), with a significant subgroup difference  $(P_{subgroup} = 0.04; Figure 1B)$ . SGLT2 inhibitors yielded more reductions in that outcome in patients with NYHA class II (31% reduction, HR 0.69, 95% CI 0.63-0.76) than NYHA classes III-IV (14% reduction, HR 0.86, 95% CI 0.77-0.97), with a significant subgroup difference ( $P_{subgroup} < 0.01$ ; Figure 1C). SGLT2 inhibitors reduced that outcome by 24% (HR 0.76, 95% CI 0.69-0.82) whether in patients with HFmrEF, patients with HFrEF patients, or patients with HFpEF patients ( $P_{subgroup} =$ 0.53; Figure 1D).

## DISCUSSION

The meta-analysis of Gager et al. (1) confirmed the consistent efficacy of SGLT2 inhibitors on the composite HF outcome (i.e.,

## REFERENCES

- Gager GM, Gelbenegger G, Jilma B, von Lewinski D, Sourij H, Eyileten C, et al. Cardiovascular outcome in patients treated with SGLT2 inhibitors for heart failure: a meta-analysis. Front Cardiovasc Med. (2021) 8:691907. doi: 10.3389/fcvm.2021.69 1907
- Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. *N Engl J Med.* (2021). doi: 10.1056/NEJMoa210 7038. [Epub ahead of print].

a composite of HHF/CVM) in various HF subgroups defined by several important factors, such as baseline diabetes status, type of SGLT2 inhibitors, and baseline level of eGFR. However, Gager et al. (1) failed to perform subgroup analyses according to three other important factors: region, race, and baseline NYHA class. Thus, their findings (1) could not guide whether SGLT2 inhibitors should be used in patients with HF patients living in a specific region, those with a specific race, or those with a specific NYHA class. Furthermore, Gager et al. (1) also failed to include the latest CVOT of gliflozins, namely, EMPEROR-Preserved (2).

Conversely, we included all the published CVOTs focusing on comparing gliflozins with placebo in patients with HF, including the latest one (2). More importantly, our meta-analysis focused on subgroup analyses according to region, race, baseline NYHA class, and baseline LVEF. Accordingly, it revealed that SGLT2 inhibitors vs. placebo significantly reduced the composite HF outcome regardless of these four factors, while SGLT2 inhibitors might yield more reductions in that outcome in patients with HF living in Asia, Asian and Black patients with HF, and HF patients with NYHA class II. These findings suggest that as for preventing HF events, SGLT2 inhibitors should be recommended in patients with HF regardless of region, race, baseline NYHA class, and baseline LVEF, and especially in Asian and Black patients with HF and those with NYHA class II. Moreover, the ongoing DELIVER trial (NCT03619213) will further determine the efficacy of SGLT2 inhibitor dapagliflozin in patients with HFpEF or HFmrEF. Due to the limited number of patients with NYHA classes III-IV among included trials, further clinical trials for such a specific population may be beneficial.

In summary, based on the findings from the meta-analysis of Gager et al. (1) and ours, SGLT2 inhibitors should be recommended in a broad population of patients with HF patients, those with diabetes or not, those with reduced eGFR or not, and those with preserved/reduced LVEF. Moreover, SGLT2 inhibitors should be more recommended in Asian and Black patients with HF and patients with HF and with NYHA class II because of the greater benefits of this drug class in these HF subpopulations.

## AUTHOR CONTRIBUTIONS

MQ: design. MQ and L-MZ: conduct/data collection, analysis, and writing manuscript. All authors contributed to the article and approved the submitted version.

- Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. (2020) 383:1413–24. doi: 10.1056/NEJMoa202 2190
- Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. (2021) 384:117–28. doi: 10.1056/NEJMoa203 0183
- McMurray J, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. *N Engl J Med.* (2019) 381:1995–2008. doi: 10.1056/NEJMoa1911303

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

**Publisher's Note:** All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Qiu and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.