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Background: Heart failure with preserved ejection fraction (HFpEF) is increasingly

recognized as a major global public health burden and lacks effective risk stratification.

We aimed to assess a multi-biomarker model in improving risk prediction in HFpEF.

Methods: We analyzed 18 biomarkers from the main pathophysiological domains of

HF in 380 patients hospitalized for HFpEF from a prospective cohort. The association

between these biomarkers and 2-year risk of all-cause death was assessed by Cox

proportional hazards model. Support vector machine (SVM), a supervised machine

learning method, was used to develop a prediction model of 2-year all-cause and

cardiovascular death using a combination of 18 biomarkers and clinical indicators.

The improvement of this model was evaluated by c-statistics, net reclassification

improvement (NRI), and integrated discrimination improvement (IDI).

Results: The median age of patients was 71-years, and 50.5% were female.

Multiple biomarkers independently predicted the 2-year risk of death in Cox regression

model, including N-terminal pro B-type brain-type natriuretic peptide (NT-proBNP),

high-sensitivity cardiac troponin T (hs-TnT), growth differentiation factor-15 (GDF-15),

tumor necrosis factor-α (TNFα), endoglin, and 3 biomarkers of extracellular matrix

turnover [tissue inhibitor of metalloproteinases (TIMP)-1, matrix metalloproteinase

(MMP)-2, and MMP-9) (FDR < 0.05). The SVM model effectively predicted the 2-year

risk of all-cause death in patients with acute HFpEF in training set (AUC 0.834, 95% CI:

0.771–0.895) and validation set (AUC 0.798, 95% CI: 0.719–0.877). The NRI and IDI

indicated that the SVM model significantly improved patient classification compared to

the reference model in both sets (p < 0.05).

Conclusions: Multiple circulating biomarkers coupled with an appropriate

machine-learning method could effectively predict the risk of long-term mortality in

patients with acute HFpEF. It is a promising strategy for improving risk stratification

in HFpEF.
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INTRODUCTION

Heart failure (HF) is a leading cardiovascular disorder with
high morbidity and mortality (1). Based on measurement of left
ventricular ejection fraction (LVEF), HF is categorized into heart
failure with reduced ejection fraction (HFrEF, LVEF <40%),
HF with preserved ejection fraction (HFpEF, LVEF ≥50%), and
HF with a mid-range ejection fraction of 40 to 50% (2, 3).
HFpEF accounts for nearly half of HF patients worldwide,
which is increasingly recognized as a major challenge for clinical
practice due to no effective management and pharmacological
interventions (2–4). Therefore, accurate risk stratification is
critical for tailoring treatment and long-term management
strategies for individual patients.

The underlying pathophysiology is currently considered
to be different between HFrEF and HFpEF (5, 6). HFrEF
manifests as an eccentric remodeling accompanied with chamber
dilatation and often being volume-overload leading to forward
failure typically as a consequence of myocardial infarction.
HFpEF is a type of concentric remodeling and/or ventricular
hypertrophy characterized by impaired ventricular relaxation
and/or filling, resulting in increased filling pressure and usually
leading to backward failure. Recent evidences suggest that
the mutual effect of cardiovascular and non-cardiovascular
comorbidities [e.g., obesity (7), hypertension (8), diabetes
(9), coronary artery disease (10), and chronic kidney disease
(11)] induces an inflammatory state, leading to myocardial
structural and functional alterations in patients with HF. The
guidelines of the European Society of Cardiology (ESC) (2)
and the American Heart Association (AHA) (3) suggest that
the incorporation of biomarkers with clinical and imaging tools
can be beneficial for establishing the diagnosis and assessing
disease severity in heart failure, including biomarkers of brain-
type natriuretic peptide (BNP), N-terminal pro-BNP (NT-
proBNP), and cardiac troponin. Other diagnostic biomarkers,
such as soluble suppression of tumorigenicity 2 (sST2), galectin-
3, and growth differentiation factor-15 (GDF-15), could be
beneficial in guiding HF therapy. However, the majority of
the clinical biomarker data have been derived from studies
in undifferentiated HF or HFrEF, while valuable prognostic
biomarkers in patients with HFpEF are still very limited.
Currently, there are emerging studies increasingly focusing on
HFpEF which reported that strategies based on multi-biomarker
and supervised/unsupervised machine learning models could
improve risk stratification and prognostic prediction in HFpEF
patients (12–15); however, most of them focused on traditional
biomarkers, and more accurate risk stratification strategies are
still needed.

In this study, we looked at 18 biomarkers which cover the
main pathophysiological domains of HF, have been reported to
be associated with heart failure prognosis, and can be accurately
quantified in more than 95% of samples. Also, the regents
with high sensitivity for testing these biomarkers are currently
available in the Chinese markets. Our objectives were to assess
the prognostic value of the candidate biomarkers from HF
pathophysiologic pathways for 2-year all-cause mortality in
patients with acute HFpEF; and establish multi-biomarker risk

prediction models based on machine learning for 2-year all-
cause death and cardiovascular (CV) death in patients with
acute HFpEF.

METHODS

Study Design and Patients
The current analysis included patients enrolled from the
China Patient-centered Evaluative Assessment of Cardiac Events
Prospective Heart Failure Study (China PEACE 5p-HF Study)
between August 1, 2016 and July 31, 2017, with LVEF >50%
according to echocardiography of the standard procedure. The
design of China PEACE 5p-HF Study has been described
previously (16). In brief, it is a large multi-center prospective
study that consecutively recruited patients hospitalized for HF
between August 2016 andMay 2018 from 52 hospitals (48 tertiary
and 4 secondary hospitals) across China. One of the specific aims
of the prospective cohort study was to identify the predictors
of adverse outcomes. Patients were eligible if they were ≥18-
years of age, local residents, and hospitalized with a primary
diagnosis of new-onset HF or decompensation of chronic HF.
Enrolled patients were interviewed during index hospitalization
and followed-up at 1, 6, 12 months after discharge, and annually.

The central ethics committee at Fuwai Hospital and local
internal ethics committees at study hospitals have approved
the China PEACE prospective HF study. All participants
provided written informed consents. The study was registered on
clinicaltrials.gov (NCT 02878811).

Data Collection
Medical history, clinical characteristics on admission, and
treatments (during index hospitalization and at discharge) were
centrally abstracted from medical records, with a 2-level quality
control approach. In-person interviews with a standardized
questionnaire during index hospitalization and follow-up were
conducted to collect additional patient characteristics and
outcomes. Data were directly entered into laptop computers
equipped with customized electronic data collection system,
allowing real-time monitoring to verify the accuracy and
completeness of entered data.

Biomarker Measurement
Blood samples were required to be obtained within 48 h
after admission; and centrifuged, divided into aliquots and
frozen within 1 h following the collection. Blood samples
were centrifuged at 1,300 g for 10min. Circulating levels of
total cholesterol, low density lipoprotein cholesterol, high
density lipoprotein cholesterol, triglycerides, and high-sensitivity
C-reactive protein (hs-CRP) were measured in the serum
via standardized enzymatic methods using the Beckman
Coulter AU680 analyzers and Beckman AU reagent. NT-
proBNP and high-sensitivity cardiac troponin T (hs-cTnT)
were measured by a high-sensitivity electrochemiluminescence
immunoassay on a cobas e601 analyzer with EDTA plasma.
Hemoglobin A1c (HbA1c) was measured by high-performance
liquid chromatography on the Arkray ADAMS-A1C HA-
8180 analyzer. Circulating levels of other biomarkers were
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measured in the serum using a high-sensitivity Luminex
Bead-Based mltiplex assay (Millopore, Billerca, MA, USA)
according to the manufacturer’s manual, including Endoglin,
soluble tumor necrosis factor-receptor 1(sTNFRI), sTNFRII,
tissue inhibitor of metalloproteinases-1 (TIMP-1), TIMP-2,
matrix metalloproteinase-2 (MMP-2), MMP-8, MMP-9, galectin-
3, monocyte chemoattractant protein-1(MCP-1), tumor necrosis
factor (TNF)-a, GDF-15, Lipocanlin-2, Cystatin C, and sST2
(R&D Systems, Minneapolis, MN, USA).

All commercial kits were undergone internal validation prior
to sample analysis. Inter/intra coefficient variation of assays was
used to evaluate the assay performance. Notably, inter/intra
coefficient variation of assays showed NT-proBNP <3.90%,
Hs-TNT <3.40%, Hs-CRP <4.06%, GDF-15 <7.16%, MCP-
1 <5.35%, TNFα <5.33%, Stnfri <6.25%, sTNFRII <6.37%,
Endoglin <12.3%, TIMP-1 <6.37%, TIMP-2 <7.24%, MMP-
2 <9.22%, MMP-8 <15.38%, MMP-9 <7.69%, Galectin-3
<10.53%, sST2 <7.04%, Lipocanlin-2 <5.55%, and Cystatin-C
<6.62%. The assay range and inter/intra coefficient variation for
per analyte were shown in Supplementary Table 1.

Clinical Variables
Coronary heart disease (CHD), myocardial infarction (MI),
valvular heart disease (VHD), atrial fibrillation, hypertension,
chronic obstructive pulmonary disease (COPD), and ischemic
stroke during admission were defined according to the diagnosis
in medical records. Diabetes mellitus was defined according
to the diagnosis in medical records or positive laboratory test
results (HbA1c ≥6.5%). Reduced renal function was defined as
an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73
m2. The Acute Study of Clinical Effectiveness of Nesiritide in
Decompensated Heart Failure (ASCEND-HF) outcome model
was used as a reference model for predicting long-term mortality
risk in patients with acute decompensated HF. ASCEND-HF
outcome model is a simplified prediction model, which includes
5 commonly available clinical variables (age, dyspnea, blood
urea nitrogen, sodium, and systolic blood pressure), and has
a relatively good prognostic value for mortality within 30 and
180 days (17).

Clinical Outcome
The outcomes of this study were all-cause death and CV
death within 2-years after hospitalization. CV death included
sudden cardiac death, death due to HF, and other CV deaths
(cerebrovascular events, acute myocardial infarction, aortic
vascular disease, peripheral arterial disease, and pulmonary heart
disease). We ascertained outcome events with the approach
employed in international multi-center clinical trials (18). Local
site staffs sought information on pre-specified clinical events
during follow-up interviews. If in-person follow-up visits were
not feasible, information would be gathered through telephone
interviews with patients, their relatives, or physicians. We also
collected the information on death from the national cause-of-
death database. Outcome events were centrally adjudicated by
trained clinicians according to standard criteria.

Statistical Analysis
Continuous variables were summarized as median [interquartile
range (IQR)] and categorical variables as frequency (percentage).
Non-parametric tests (Man-whitney-U) and Chi-Square tests
were used to compare patients’ baseline characteristics grouped
by the 2-year survival status.

We first determined the high-risk threshold for each
biomarker to divide patients into high- and low-risk groups by
using the maximally selected rank statistics from the “maxstat” R
package (http://cran.r-project.org/web/packages/maxstat/index.
html), which is an outcome-oriented method providing a value
of a cutpoint that corresponds to the most significant relation
with outcome. We plotted Kaplan-Meier curves to identify the
differences of 2-year all-cause death in these binary biomarkers.
We used three Cox proportional hazards regression models
to evaluate the relationship between individual biomarkers as
binary variables and the 2-year risk of all-cause death (model 1:
unadjustedmodel; model 2: adjusting for ASCEND-HF score and
history of HF; and model 3: adjusting for ASCEND-HF score,
history of HF, and NT-proBNP level). The false discovery rate
(FDR) < 0.05 was used to identify the significant biomarkers.

We also developed a prediction model for the 2-year risk
of all-cause death with multiple biomarkers based on support
vector machine (SVM) (model 6), a supervised machine learning
approach. First, we randomly split the study samples into two
groups, training set and validation set, in the ratio of 3:2. In the
training set, with 2-year death as outcome, we trained a model
with 18 biomarkers (log-NT-proBNP, hs-TNT, hs-CRP, endoglin,
sTNFRI, sTNFRII, TIMP-1, TIMP-2, MMP-2, MMP-8, MMP-
9, galectin-3, MCP-1, TNFα, GDF-15, lipocanlin-2, Cystatin-C,
sST2), history of HF, and ASCEND-HF score, using 10-fold
cross-validation, classification “C-classification,” kernel “linear,”
and cost 1. We obtained each patient’s probability of 2-year death
based on the SVM model, which was defined as the SVM risk
score. In addition, another two Cox regression models (model 4
andmodel 5) were developed for comparing the predictive ability
with the SVM model (model 6). Model 4 was only adjusted for
ASCEND-HF score and history of HF. Model 5 was adjusted for
ASCEND-HF score, history of HF, and the NT-proBNP level.
We compared the area under receiver operating characteristic
(ROC) curves of model 6 with those of model 4 and model 5,
and calculated the net reclassification improvement (NRI) and
integrated discrimination improvement (IDI) by survIDINRI
from R package to quantify the added predictive value of 18
biomarkers in training set and validation set, respectively.

Similarly, an SVM model for 2-year risk of CV death
was developed and the value of adding 18 biomarkers
to the reference model was evaluated by c-statistics, NRI,
and IDI.

We conducted a sensitivity analysis by firstly dividing the
study samples into training set and validation set according to the
date of index admission in the ratio of 3:2, and then re-developing
an SVM model and two reference models for 2-year risk of all-
cause death and CV death with the same method previously
mentioned. We also evaluated whether the prediction models
have been improved by c-statistics, NRI, and IDI in both training
set and validation set.
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All calculations were performed using software SAS 9.4 and
R version 4.0.3 with packages “e1071” and “maxstat.” Statistical
significance was defined as a 2-tailed p < 0.05.

RESULTS

Baseline Characteristics
We included 380 patients hospitalized for HFpEF in this analysis,
whose median age was 71-years (IQR 63 to 78) and 192 of
whomwere female (50.5%) (Table 1). CHD (54%), VHD (28.2%),
cardiomyopathy (13.2%), atrial fibrillation (56.1%), hypertension
(61.1%), diabetes mellitus (34.2%), COPD (25.8%), reduced renal
function (38.7%), and ischemic stroke (20%) were common
comorbidities. Two-thirds of the patients had a history of HF.
Most patients were in New York Heart Association (NYHA) class
III/IV (87.4%) with a median (IQR) LVEF of 59% (53.4, 65.0%).
During the 2-year follow-up, 102 (26.8%) patients died, among
whom 84 died from CV disease. Compared with those surviving
during 2-year follow-up, the dead patients were older (74-years
vs. 70-years, P = 0.005), more likely to have COPD (p < 0.001),
and with a higher ASCEND-HF score (p < 0.001) and a higher
the SVM risk score (p < 0.001) (Table 1).

Baseline Biomarker Levels
Table 2 shows the high-risk threshold for each biomarker
and percentage of high-risk patients by individual markers at
baseline in death, and survival groups. We carried out multiple
comparisons with FDR analysis. The percentages of high-risk
patients in the death group were significantly higher than those
in the survival group for NT-proBNP (FDR < 0.001), hs-TNT
(FDR < 0.001), hs-CRP (FDR = 0.007), GDF-15 (FDR < 0.001),
MCP-1 (FDR= 0.042), sTNFRI (FDR= 0.013), sTNFRII (FDR=

0.013), endoglin (FDR= 0.013), TIMP-1 (FDR< 0.001), TIMP-2
(FDR < 0.027), MMP-2 (FDR = 0.006), MMP-9 (FDR = 0.013),
galectin-3 (FDR = 0.004), sST2 (FDR = 0.032) and Ascend-HF
score (FDR < 0.001) (Table 2).

All-Cause Death Within 2-Years of
Admission
In the Kaplan-Meier plots (Figure 1), patients in the high-risk
group had a higher mortality rate than those in the low-risk
group for the following biomarkers: log-NT-proBNP (p< 0.001),
hs-TnT (p < 0.001), GDF-15 (p < 0.001), sTNFRI (p = 0.006),
sTNFRII (p = 0.005), endoglin (p = 0.009), MMP2 (p = 0.001),
MMP9 (p = 0.073), TIMP1 (p < 0.001), TIMP2 (p = 0.022),
Galectin-3 (p= 0.001), and sST2 (p= 0.014).

Cox Proportional Hazards Model for 2-Year
All-Cause Death
Table 3 shows the association of the individual biomarkers with
the 2-year risk of all-cause death in 3 Cox proportional hazards
regression models. In model 3, patients in the high-risk group
had a significantly increased risk of all-cause mortality compared
with those in the low-risk group for multiple biomarkers,
including hs-TnT, 2 inflammation-related biomarkers (GDF-15
and TNF-α), a marker of endothelial function (endoglin), and

3 biomarkers related to extracellular matrix turnover (TIMP-
1, MMP-2, and MMP-9) (FDR < 0.05). In model 2, hs-CRPs,
TNFRII, and Galectin-3 predicted the risk of 2-year death (FDR
< 0.05); however, they were not significantly associated with the
outcome after additional adjustment for NT-proBNP in model
3. In addition, the patients with a higher SVM risk score were
associated with an increased 2-year risk of all-cause death (HR
1.80, 95% CI 1.58, 2.05), which means that the risk of mortality
increased 80% with each 0.1 unit increase in the SVM risk
score (Table 3).

Risk Prediction Model Based on Multiple
Marker Panels
We developed 3 prediction models (model 4, model 5, and model
6) for all-cause death and CV death using different marker panels
in the training set and validation set, respectively (Figure 2).
All markers were used as categorical variables in these models.
For all-cause death models, ROC analysis showed that model
6 (the SVM model) (AUC 0.834, 95% CI: 0.771–0.895) in the
training set had better predictive effect than model 4 (AUC
0.667, 95% CI: 0.588–0.747) and model 5 (AUC 0.709, 95% CI:
0.634–0.784) (Figure 2A). The prediction ability of model 6 was
improved significantly compared to model 4, with NRI 0.392
(95%CI: 0.115–0.528; p < 0.01) and IDI 0.157 (95%CI: 0.058–
0.234; p < 0.01). In the validation set (Figure 2B), we also found
a similar trend that model 6 (AUC 0.798, 95% CI: 0.719–0.877)
showed better predictive capacity compared with model 4 (AUC
0.580, 95% CI: 0.472–0.686) and model 5 (AUC 0.682, 95% CI:
0.585–0.779). The predicted ability of model 6 was also improved
significantly, with NRI 0.497 (95% CI: 0.151–0.582; p= 0.01) and
IDI 0.159 (95% CI: 0.050–0.240; p= 0.01).

For CV death models, ROC analysis showed that model 6
(AUC 0.853, 95% CI: 0.788–0.917) in the training set (Figure 2C)
had better predictive effect than model 4 (AUC 0.605, 95% CI:
0.513–0.698) and model 5 (AUC 0.725, 95% CI: 0.647–0.803).
The predicted ability was improved significantly, with NRI 0.563
(95% CI:0.226–0.694; p < 0.01) and IDI 0.228 (95%CI: 0.115–
0.311; p < 0.01). In the validation set (Figure 2D), ROC analysis
also showed that model 6 (AUC 0.725, 95% CI: 0.629–0.820) had
better predictive effect than model 4 (AUC 0.562, 95% CI: 0.446–
0.678) and model 5 (AUC 0.621, 95% CI: 0.512–0.730). The NRI
(0.275: 95% CI: −0.200 to 0.546; p = 0.229) and IDI (0.068: 95%
CI: −0.062 to 0.180; p = 0.229) suggested that the improvement
of the model was not statistically significant. Similar results were
found in sensitivity analysis (Supplementary Figure 1).

DISCUSSION

In the present study, we assessed the prognostic value of
circulating levels of multiple biomarkers for 2-year risk of all-
cause death and CV death in patients hospitalized for HFpEF.
In Cox proportional hazards models, we found that NT-
proBNP (cardiac stretch biomarkers), hs-TnT (cardiomyocyte
injury biomarker), 2 inflammation-related biomarkers (TNFα
and GDF-15), endoglin, an endothelial function biomarker, and
3 biomarkers of extracellular matrix turnover (TIMP-1, MMP2,
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TABLE 1 | Baseline characteristics stratified by survival status at 2-years after index admission.

Baseline characteristics Total (%) (N = 380) Death (N = 102) Survival (N = 278) p-value

Demographic

Age, yr (median, IQR) 71 (63, 78) 74 (67, 80) 70 (61, 77) 0.005

Age, group 0.125

<55 48 (12.6) 8 (7.8) 40 (14.4)

55 to 64 61 (16.1) 12 (11.8) 49 (17.6)

65–74 123 (32.4) 37 (36.3) 86 (30.9)

≥75 148 (39.0) 45 (44.1) 103 (37.1)

Female, n (%) 192 (50.5) 47 (46.1) 145 (52.2) 0.294

Comorbidities, n (%)

Coronary heart disease 205 (54.0) 52 (51.0) 153 (55.0) 0.482

Myocardial infarction 55 (14.5) 18 (17.7) 37 (13.3) 0.287

Valvular heart disease 107 (28.2) 35 (34.3) 72 (25.9) 0.106

Cardiomyopathy 50 (13.2) 9 (8.8) 41 (14.8) 0.130

Coronary revascularization 48 (12.6) 16 (15.7) 32 (11.5) 0.278

Atrial fibrillation 213 (56.1) 53 (52.0) 160 (57.6) 0.330

Hypertension 232 (61.1) 62 (60.8) 170 (61.2) 0.948

Diabetes mellitus 130 (34.2) 35 (34.3) 95 (34.2) 0.980

COPD 98 (25.8) 41 (40.2) 57 (20.5) <0.001

Reduced renal function‡ 147 (38.7) 44 (43.1) 103 (37.1) 0.280

Ischemic stroke 76 (20.0) 19 (18.6) 57 (20.5) 0.685

History of heart failure 252 (66.3) 70 (68.6) 182 (65.5) 0.564

Clinical characteristics at admission

SBP, mmHg, median (IQR) 133 (120, 153) 134 (115, 152) 132 (120, 153) 0.368

DBP, mmHg, median (IQR) 80 (70, 90) 79 (68, 90) 80 (70, 90) 0.093

HR, beats/min, median (IQR) 87 (74, 100) 88 (75, 101) 86 (72, 100) 0.713

NYHA functional class, n (%) 0.676

II 48 (12.6) 12 (11.8) 36 (13.0)

III 182 (47.9) 46 (45.1) 136 (48.9)

IV 150 (39.5) 44 (43.1) 106 (38.1)

LVEF (%) 59 (53,65) 59 (54,67) 58 (53,65) 0.343

Cardiovascular death 84 (22.1) 84 (22.1) NA

ASCEND-HF score 5 (4, 6) 5 (4, 6) 5 (4, 5) <0.001

SVM risk score*

Median (IQR) 0.20 (0.14, 0.29) 0.29 (0.22, 0.37) 0.18 (0.13, 0.23) <0.001

IQR, interquartile range; COPD, chronic obstructive pulmonary disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; NYHA, New York Heart Association; LVEF, left

ventricle ejection fraction; Hs-cTnT, high sensitivity cardiac troponin T; NT-proBNP, N-terminal brain natriuretic peptide precursor. ‡Reduced renal function was defined as an estimated

glomerular filtration rate (eGFR) <60 mL/min/1.73 m2; *SVM risk score: the score is a number from 0 to 1 calculated based on the model of Support Vector Machine (SVM). P value <

0.05 is shown in bold.

and MMP9) were independently associated with 2-year risk of
all-cause death. We also developed prediction models of 2-year
risk of all-cause death and CV death based on 18 biomarkers,
history of HF, and ASCEND-HF score by machine learning,
and found that the SVM model markedly improved prediction
power for 2-year risk of all-cause death in both training set and
validation set. It is a potentially effective approach to improve
risk prediction in HFpEF patients and provide insights into the
possible pathogenesis for the progression of HFpEF.

In this study, we identified an association between the
endothelial dysfunction marker endoglin and 2-year risk of all-
cause death, which was independent of ASCEND-HF score,
history of HF, and NT-proBNP. To the best of our knowledge,
our study is the first to report the independently predictive value
of the biomarker for long-term risk of death in patients with

HFpEF. Endoglin (also known as CD105) is a membrane co-
receptor for transforming growth factor-β, which is released into
the circulation in a soluble form and disrupts TGFβ1 signaling in
the endothelium, thereby promoting inflammation, endothelial
dysfunction, cardiac fibrosis, and vascular remodeling (19).
Circulating levels of soluble endoglin were reported to elevate
in patients with increased left heart filling pressures and
decrease in association with reduced cardiac filling pressure
after diuresis (20). Plasma endoglin has also been reported
as a predictor of cardiovascular events following percutaneous
coronary intervention in patients with chronic coronary artery
disease (21). The elevated level of endoglin during the acute
phase initially maintains cardiac output and hemodynamics in
the circulation; however, it may also reflect the severity of cardiac
impairment. Cardiac function deteriorates progressively when
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TABLE 2 | Percentage of high-risk patients by individual markers at baseline in the total population, death, and survival groups.

Markers Threshold (high risk) Percentage in death group n (%) Percentage in survival group n (%) p-value FDR

Cardiac stretch

NT-proBNP >8.0 pg/mL 50 (49.0) 46 (16.6) <0.001 <0.001

Cardiomyocyte injury

Hs-TnT, N (%) >13.3 ng/L 91 (89.2) 186 (66.9) <0.001 <0.001

Inflammation

Hs-CRP >3.7 mg/L 73 (71.6) 152 (54.7) 0.003 0.007

GDF-15 >6.9 ng/mL 29 (28.4) 28 (10.1) <0.001 <0.001

MCP-1 <445.6 pg/mL 47 (46.1) 95 (34.2) 0.034 0.042

TNFα >28.2 pg/mL 70 (68.6) 169 (60.8) 0.161 0.161

sTNFRI >2.17 ng/mL 53 (52.0) 102 (36.7) 0.007 0.013

sTNFRII >14.9 ng/mL 33 (32.4) 54 (19.4) 0.008 0.013

Endothelial function

Endoglin >3.21 ng/mL 46 (45.1) 85 (30.6) 0.008 0.013

Extracellular matrix turnover

TIMP-1 >72.0 ng/mL 99 (97.1) 229 (82.4) <0.001 <0.001

TIMP-2 >44.5 ng/mL 92 (90.2) 222 (79.9) 0.018 0.027

MMP-2 >290.7 ng/mL 39 (38.2) 63 (22.7) 0.002 0.006

MMP-8 <11.8 ng/mL 93 (91.2) 234 (84.2) 0.081 0.085

MMP-9 >133.5 ng/mL 81 (79.4) 180 (64.8) 0.006 0.013

Fibrosis

Galectin-3 >9.26 ng/mL 84 (82.4) 181 (65.1) 0.001 0.004

sST2 >39.1 ng/mL 21 (20.6) 32 (11.5) 0.025 0.032

Renal function

Lipocanlin-2 >289.9 ng/mL 58 (56.9) 126 (45.3) 0.046 0.055

Cystatin-C >1,953 ng/mL 55 (53.9) 121 (43.5) 0.072 0.08

Ascend_HF score >5.0 76 (74.5) 146 (52.5) <0.001 <0.001

NT-proBNP, N-terminal pro B-type brain-type natriuretic peptide; Hs-TNT, high-sensitivity cardiac troponin T; Hs-CRP, high-sensitivity C-reactive protein; GDF-15, growth differentiation

factor-15; MCP-1, monocyte chemoattractant protein-1; TNFα, tumor necrosis factor-α; sTNFR, soluble tumor necrosis factor-receptor; TIMP, tissue inhibitor of metalloproteinases;

MMP, matrix metalloproteinase; sST2, soluble suppression of tumorigenicity 2; P value < 0.05 and FDR < 0.05 are shown in bold.

these compensatory mechanisms eventually fail over time. This
may be a reason that the biomarker can predict long-term risk
of death.

We also identified multiple markers of extracellular matrix
turnover that were independently associated with the 2-year risk
of death, including TIMP-1, MMP-2, and MMP-9; especially,
TIMP1 showed the strongest association with the risk of death. In
a cross-sectional study of 275 hypertensive patients, HFpEF was
associated with an increased matrix turnover signal (MMP2 and
MMP9). Alterations in MMP9 and TIMP1 enzymes were found
to be significant indicators of greater degrees of asymptomatic
left ventricular diastolic dysfunction (22). Similarly, Zile et al.
reported a distinguishing role of a plasma multi-biomarker
panel consisting of increased MMP-2, TIMP-4, and PIIINP and
decreased MMP-8 in identifying patients with HFpEF vs. LV
hypertrophy (23). Our results extend the literature with showing
that abnormal extracellular matrix turnover, which plays a pivotal
role in structural and functional alterations, is associated with
long-term risk of death of HFpEF.

In our study, GDF-15, Gal-3, and sST2 were also found
to predict the 2-year risk of death in patients with HFpEF.
The results are consistent with previous studies, although the

associations were attenuated after adjusting for ASCEND-HF
score, history of HF, and NT-proBNP. GDF-15 is a member
of the transforming growth factor-β cytokine superfamily and
its expression is increased upon cell injury and inflammation.
Several studies reported that GDF-15 was an independent
predictor for long-term death (24) and the composite outcome
of death or HF re-hospitalization in patients with HFpEF (25).
Galectin-3 is a marker associated with inflammation and fibrosis.
Serum levels of galectin-3 have been found to be elevated in both
acute and chronic HFpEF, and they have been related to 1-year
and 5-year all-cause mortality (26). sST2 is a marker associated
with inflammation, myocyte hypertrophy, and fibrosis. Elevated
plasma levels of sST2 have been reported to be an independent
predictor of mortality and disease progression in both acute and
chronic HFpEF (27, 28). Our findings further confirmed that
these biomarkers could reflect disease progression and contribute
to more accurate risk stratification of HFpEF patients, especially
when used in combination.

Although several biomarkers have been reported to predict
the outcomes in patients with HFpEF, the predictive value
of individual biomarkers is limited. Machine learning has
great potential to improve predictive power by combining
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FIGURE 1 | Kaplan-Meier curves showing 2-year cumulative survival trends in patients with biomarker levels in high- and low-risk groups.

the information of multiple biomarkers from the main
pathophysiological domains of HF. Recently, Chirinos et al.
(12) evaluated the prognostic value in a supervised machine-
learning–derived model which combined 49 plasma biomarkers
in 379 patients with chronic HFpEF. In this case, the authors
found that the model was strongly predictive of the risk of
HF-related hospital admission and markedly improved the risk
prediction power when combined with the MAGGIC (Meta-
Analysis Global Group in Chronic Heart Failure Risk Score) risk
score. In addition, several studies applied unsupervised machine
learning methods to identify phenotype-based subpopulations in
patients with HFpEF based on clinical, laboratory and/or cardiac
ultrasound data, and assessed the differences in characteristics,
outcomes, as well as the levels of circulating biomarkers between
different phenogroups. Hedman et al. (13) applied model-based
clustering to 32 echocardiograms and 11 clinical and laboratory
variables collected in 320 HFpEF outpatients, and found that the
composite end point (all-cause mortality or HF hospitalization)
and 15 out of 86 plasma proteins significantly varied among 6
phenogroups. Cohen et al. (14) identified 3 HFpEF phenogroups

based on 8 clinical features, and observed important differences
in 10 circulating biomarkers (corrected P< 0.05), cardiac/arterial
characteristics, and prognosis (composite of cardiovascular
death, heart failure hospitalization, or aborted cardiac arrest)
across the clinical HFpEF phenogroups. Woolley et al. (15)
performed an unsupervised cluster analysis using 363 biomarkers
from 429 patients with HFpEF and identified four distinct
patient subgroups. The occurrence of death or HF hospitalization
during a median follow-up of 21 months had the highest
rate in cluster 4 (62.8%) and the lowest in cluster 3 (25.6%).
These studies provide evidence that circulating biomarkers,
combined with clinical information, can help accurately identify
different phenotypes in patients with HFpEF, which may reflect
different pathophysiological pathways and contribute to targeted
interventions for patients.

In this study, we developed a risk predictionmodel combining
ASCEND-HF score, history of HF, and 18 circulating biomarkers
based on SVM method. This model accurately predicted the
2-year risk of all-cause death in acute patients with HFpEF,
suggesting that multi-biomarker models based on machine
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TABLE 3 | Associations between biomarkers and the 2-year risk of all-cause death by univariate and multi-variate analysis.

Variable Model 1* HR (95% CI) p-value FDR Model 2* HR (95%CI) p-value FDR Model 3* HR (95%CI) p-value FDR

Cardiac stretch

NT-proBNP#, pg/mL 3.54 (2.40–5.22) <0.001 <0.001 3.15 (2.11–4.69) <0.001 <0.001 NA NA NA

Cardiomyocyte injury

Hs-TNT, ng/L 3.48 (1.86–6.50) <0.001 <0.001 3.15 (1.67–5.94) <0.001 0.002 2.42 (1.26–4.68) 0.008 0.029

Inflammation

Hs-CRP, mg/L 1.94 (1.26–2.98) 0.003 0.006 1.94 (1.26–3.00) 0.003 0.012 1.59 (1.02–2.49) 0.041 0.078

GDF-15, ng/mL 2.76 (1.80–4.25) <0.001 <0.001 2.78 (1.80–4.29) <0.001 <0.001 2.05 (1.26–3.33) 0.004 0.028

MCP-1, pg/mL 1.50 (1.02–2.22) 0.041 0.051 1.46 (0.99–2.15) 0.059 0.082 1.41 (0.95–2.09) 0.086 0.146

TNFα, pg/mL 1.32 (0.87–2.00) 0.195 0.195 1.40 (0.92–2.12) 0.120 0.135 1.91 (1.22–3.00) 0.005 0.028

sTNFRI, ng/mL 1.69 (1.15–2.50) 0.008 0.014 1.47 (0.99–2.17) 0.058 0.082 1.13 (0.74–1.73) 0.584 0.662

sTNFRII, ng/mL 1.78 (1.17–2.69) 0.007 0.013 1.61 (1.05–2.45) 0.028 0.049 1.08 (0.67–1.74) 0.760 0.781

Endothelial function

Endoglin, ng/mL 1.65 (1.12–2.44) 0.012 0.018 1.57 (1.06–2.34) 0.024 0.049 1.65 (1.11–2.46) 0.013 0.032

Extracellular matrix turnover

TIMP-1, ng/mL 6.00 (1.90–18.9) 0.002 0.006 5.30 (1.67–16.8) 0.005 0.016 4.70 (1.48–14.9) 0.009 0.029

TIMP-2, ng/mL 2.06 (1.07–3.97) 0.030 0.039 1.97 (1.03–3.80) 0.042 0.069 1.70 (0.88–3.29) 0.115 0.163

MMP-2, ng/mL 1.87 (1.25–2.78) 0.002 0.006 1.75 (1.17–2.61) 0.007 0.017 1.66 (1.11–2.48) 0.013 0.032

MMP-8, ng/mL 1.76 (0.89–3.49) 0.105 0.110 1.86 (0.94–3.71) 0.077 0.099 2.05 (1.03–4.09) 0.042 0.078

MMP-9, ng/mL 1.91 (1.18–3.09) 0.008 0.014 1.98 (1.22–3.19) 0.006 0.017 2.05 (1.26–3.32) 0.004 0.028

Fibrosis

Galectin-3, ng/mL 2.25 (1.35–3.75) 0.002 0.006 1.89 (1.12–3.18) 0.016 0.036 1.54 (0.91–2.62) 0.111 0.163

sST2, ng/mL 1.76 (1.09–2.85) 0.021 0.029 1.44 (0.88–2.36) 0.150 0.159 1.29 (0.78–2.12) 0.325 0.395

Renal function

Lipocanlin-2, ng/mL 1.45 (0.98–2.15) 0.062 0.073 1.40 (0.94–2.07) 0.094 0.113 1.23 (0.82–1.83) 0.310 0.395

Cystatin-C, ng/mL 1.40 (0.95–2.07) 0.089 0.099 1.22 (0.82–1.82) 0.324 0.324 0.94 (0.62–1.43) 0.780 0.780

ASCEND-HF score 2.31 (1.48–3.61) <0.001 <0.001 NA NA NA NA NA NA

SVM risk score
†

1.80 (1.58–2.05) <0.001 <0.001 NA NA NA NA NA NA

*Model 1: no adjustment; Model 2: adjusted for ASCEND-HF score and history of HF; Model 3: adjusted for ASCEND-HF score, history of HF and NT-proBNP level. #The results of

NT-proBNP were log-transformed for Cox proportional hazards regression models.
†
SVM (support vector machine) risk score was used as a continuous variable. HR = 1.80 means

that the risk of mortality increase 80% with each 0.1 unit increase in the SVM risk score. NT-proBNP, N-terminal pro B-type brain-type natriuretic peptide; Hs-TNT, high-sensitivity

cardiac troponin T; Hs-CRP, high-sensitivity C-reactive protein; GDF-15, growth differentiation factor-15; MCP-1, monocyte chemoattractant protein-1; TNFα, tumor necrosis factor-α;

sTNFR, soluble tumor necrosis factor-receptor; TIMP, tissue inhibitor of metalloproteinases; MMP, matrix metalloproteinase; sST2, soluble suppression of tumorigenicity 2,. FDR, false

discovery rate. P value < 0.05 and FDR < 0.05 are shown in bold.

learning is a promising strategy for improving risk stratification
in HFpEF. For the CV death prediction model, we found that
the addition of 18 markers significantly improved the predictive
value of the SVM model by ROC analysis, NRI, and IDI in
the training set. However, in the validation set, NRI and IDI
showed that the improvement of the model was not statistically
significant. One possible reason may be due to the small sample
size with fewer CV deaths in the validation set. In addition, given
that heart failure can cause systemic multi-organ ischemia and
dysfunction, theremay also be cardiac injury in patients who died
from non-cardiac causes, which may also affect the expression
levels of these markers, and thus may influence the predictive
power of the model.

Regarding its practical application, this multi-biomarker
prediction model is promising to be applied in future clinical
practice. There are currently several analytical platforms that
already can simultaneously quantify multiple protein biomarkers
using a very small volume of plasma samples. Besides, in

light of the rapid development and increasing accessibility of
analytical techniques, muti-biomarker tests would be affordable
for most patients.

Study Strengths and Limitations
This study has several strengths. First, our data is from a
prospective HFpEF cohort with clear diagnoses, comprehensive
baseline data, and 2-year follow-up information. Second, we used
machine learning to develop a model combining 18 biomarkers
with traditional clinical indicators, which could better predict the
risk of death than the models developed by traditional methods.
Our study also had some limitations. Firstly, cross-validation
of the developed risk model using external samples was not
performed in this study; a larger, independent cohort withHFpEF
is needed to verify the results. Secondly, the patients included
in this study are all Chinese, which limits the generalizability
of our findings. Thirdly, the ASCEND-HF outcome model with
good prognostic value for 30-day and 180-day mortality may
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FIGURE 2 | Receiver operating characteristic (ROC) curve of multi-marker models for predicting the 2-year risk of all-cause death (A,B) and cardiovascular death

(C,D). Model 4 included ASCEND-HF score and history of HF. Model 5 included ASCEND-HF score, history of HF, and NT-proBNP. Model 6 included ASCEND-HF

score, history of HF, and 18 candidate biomarkers (log-NT-proBNP, hs-TNT, hs-CRP, Endoglin, sTNFRI, sTNFRII, TIMP-1, TIMP-2, MMP-2, MMP-8, MMP-9,

Galectin-3, MCP-1, TNFα, GDF-15, Lipocanlin-2, Cystatin-C, sST2). NRI, net reclassification improvement; IDI, integrated discrimination improvement.
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not be the most appropriate reference model for this study
which looks at a 2-year follow-up. However, the established
models currently could not predict a longer-term risk of death
in patients with acute HF. Finally, due to the low sensitivity and
limited availability of detection reagents, we did not include some
interesting biomarkers in this study.

CONCLUSIONS

Multi-biomarker models based on an appropriate machine
learning method can be a powerful tool for predicting
long-term risk of death in patients hospitalized for HFpEF.
Our findings should be verified in future studies from
other ethnics.
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