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Atherosclerosis is a leading cause of cardiovascular disease, and atherosclerotic

cardiovascular disease accounts for one-third of global deaths. However, the mechanism

of atherosclerosis is not fully understood. It is well-known that the Rho GTPase family,

especially Rho A, plays a vital role in the development and progression of arteriosclerosis.

Rho guanine nucleotide exchange factors (Rho GEFs), which act upstream of Rho

GTPases, are also involved in the atheromatous pathological process. Despite some

research on the role of Rho GEFS in the regulation of atherosclerosis, the number of

studies is small relative to studies on the essential function of Rho GEFs. Some studies

have preliminarily revealed Rho GEF regulation of atherosclerosis by experiments in vivo

and in vitro. Herein, we review the advances in research on the relationship and interaction

between Rho GEFs and atheroma to provide a potential reference for further study

of atherosclerosis.
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INTRODUCTION

Atherosclerosis refers to the accumulation of cholesterol, and fatty, fibrous, and inflammatory
substances in the arteries intima. The term atherosclerosis comes from the Greek word for
“gruel” or “porridge,” reflecting the appearance and shape of the lipid material core of the
typical atherosclerotic lesion (1). Approximately one-third of global deaths are attributed to
atherosclerotic cardiovascular diseases (CVDs) (2). Atherosclerotic arteries lead to acute coronary
syndromes, ischemic strokes, aneurysms, intermittent claudication, ulceration, and gangrene (1).
Atherosclerosis is characterized by the development of lesions in the wall of the artery, and a
disorder in any of the arteries is likely to be a starting factor of atherogenesis. As a main barrier
of the artery, the endothelium plays a vital role in the development of atherosclerosis (3, 4).
Small GTPases activated by Rho guanine nucleotide exchange factors (GEFs) partly or completely
regulate endothelial cell migration and proliferation and adherens junctions of impermeable
surfaces. In addition to the endothelium, inflammatory, or anti-inflammatory macrophages
controlled by Rho GEFs, the small GTPase RhoA and its downstream effector, and Rho-associated
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coiled-coil containing kinases (ROCK) are also critical
components for the development, regression, or stabilization of
the atherosclerotic plaque (5). The mechanism of atherosclerosis
is not fully elucidated. It is well-known that the Rho GTPase
family, especially Rho A, has a vital function in the development
and progression of arteriosclerosis. Rho GEFs, the upstream
activators of Rho GTPase, are also involved in the atheromatous
pathological process. In this mini review, we will briefly discuss
the role of Rho GEFs and their potential target in atherosclerosis.

THE ESSENTIAL CHARACTERISTICS AND
ETIOLOGY OF ATHEROSCLEROSIS

During 2009 to 2019, CVD was the number one cause of
death (222.58 deaths per 1,00,000 in 2009; 239.9 death per
1,00,000 in 2019) (6). Atherosclerosis is the leading cause of
CVD worldwide (1). Globally, more than 75% of CVD deaths
occur in low- and middle-income countries (7). CVDs cause 10%
of disability-adjusted life years lost in low- and middle-income
countries and 18% of disability-adjusted life years lost in high-
income countries (8). These statistics indicate that atherosclerosis
places a heavy economic burden on developing countries.
Although the specific mechanism of atherosclerosis remains
unknown, a consensus is that multiple factors bring about
atherosclerosis (9). These factors can be divided into genetic
and acquired, and they work together to drive the development
and progression of atherosclerosis. From another perspective
and according to the progress in research, atherosclerosis
is also considered a chronic disease (10). Inflammation and
lipoprotein metabolism remain the focus of atherosclerosis
research (11).

Here, we provide a brief introduction to the etiology of
atherosclerosis. The artery wall provides the lining and multiple
factors that conspire to produce atherosclerosis (Figure 1).
In addition to traditional risk factors, novel risk factors
(e.g., exposure to air pollution and noise, sleep deprivation,
psychosocial stress, and intestinal microbiome) could be acquired
to promote and affect atherosclerosis at different stages (12).
Convincing evidence from genetic, epidemiologic, and clinical
studies suggests that low-density lipoprotein cholesterol (LDL-
C) causes atherosclerosis (13). LDL-C is a crucial factor in
the initial stage of atherosclerosis. In this stage, LDL-C fluxes
into the arterial wall and is kept within the intimal layer
to provoke atherosclerosis. The transendothelial movement
of LDL impairs the arterial wall and barrier function of
the endothelium (14). LDL particles gradually gather in the
subendothelial space and attach to intimal proteoglycans.
The smooth muscle cells and macrophages become engulfed
with lipid and contribute to foam cell formation and lesion
development (15). In the progression stage, smooth muscle
cells that migrate from the media into the intima as well as
monocyte-derived macrophages accumulate under the artery
lining, and foam cell numbers increase as the atherosclerotic
plaque grows (16, 17). Macrophages and smooth muscle cells
activate programmed cell death, which accumulates in the lipid-
enriched nidus or necrotic core (18). During the development

of atherosclerosis, calcification lesions form and accumulate
in many arterial regions (19). The mechanism of Rho GEF
involvement in atherosclerosis will be described in section The
Emerging Role and Interaction Mechanisms of Rho GEF in
Atherosclerosis.

MOLECULAR CHARACTER OF RHO GEFs

The current research shows that the human genome of the Rho
GEF family encodes 20 GTPase and 82 RhoGEFs (20). There
are two groups of Rho GEFs, dedicator of cytokinesis (DOCK)-
related proteins and diffuse B-cell lymphoma (Dbl)-like families
(21). In humans, Dbl-like families are the most prominent Rho
family GEFs, which comprise 71 members and can be structured
in 20 subfamilies (22). Sharing a 170–190 amino acid Dbl
homology (DH) domain is the common characteristic of Dbl-
like Rho GEFs. Most Dbl-like Rho GEFs have a conserved core
that is composed of DOCK-homology region (DHR)-1/C2 and
DOCK homology region 2 (DHR2) domains, either single or
connected with single SH3 or pleckstrin homology (PH) domains
(21). Other than the DH domain, Dbl-like Rho GEFs contain
domains that mediate interaction with membranes, proteins or
phosphorylated amino acids, PH domains, or diverse enzymatic
activities such as kinases, phosphatases, GEFs, or GAP. All known
DH domains of Rho GEFs have related C-terminal PH domains
involved in targeting and regulatory functions. The active site
of DH domains is located near the junction between the DH
domain and the PH domain (23). The DH and PH domains
work in tandem, which allows the catalysis of Rho proteins (24).
DOCK proteins are unrelated to the Dbl family in structure and
mechanical properties, affecting Cdc42 and Rac, but not Rho A.
The characteristics of DOCK proteins are a conserved catalytic
domain (DHR2) and a phospholipid-binding domain (DHR1),
which allow the GEFs to target the membrane (25).

RHO GTPases: THE MOLECULAR
FUNCTIONAL PERFORMERS OF RHO
GEFs

Rho GEFs activate Rho GTPases by catalyzing the exchange
of GDP for GTP (26). RhoGEFs, RhoGAPs, and RhoGDIs
work together to regulate Rho GTPases. During this course,
GTP-bound active conformation and GDP-bound inactive
conformation of Rho GTP form a cycle that coordinates the
activity of Rho GTP to activate effector proteins and elicit a
cellular response (27). In response to extracellular stimuli, many
Rho GEFs interact with specific proteins that Rho GTPases target
and coordinate the Rho GTPase signaling network at specific
sites in cells (28). The Rho GTPase regulation and Rho GTPase
function in different vascular cells are illustrated in Figure 2

(29–33). A noted example is a complex comprising the Rho
GEF β-PIX (RAC/CDC42-specific) with the RAC/CDC42 acting
on PAK, which conducts turnover of integrin-containing focal
adhesions (28).

Another example is the P-REX1, which brings RAC1 together
with its effector FLI1 to promote cell migration (34). Information
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FIGURE 1 | Pathology of atherosclerosis. (A) Atherogenesis stages. (B) Atherosclerosis is a dynamic process. Inflammation is associated with atherosclerosis in

different stages. Dysfunction of the endothelium is a primary event in atherogenesis, which can be caused by various risk factors, such as physical stress and

chemical stimulants. LDL particles accumulate and are absorbed by macrophages derived from monocytes of blood and smooth muscle cells that migrate from the

media to the intima. As another critical step in atherogenesis, leukocytes, such as T and B cells, are recruited to the arterial wall to produce cytokines and direct

monocytes to the atherosclerotic lesion.

regarding this aspect, however, is scarce. Rho GEF proteins
make up a complex interactive network that accurately activates
Rho GTPases in translational modifications (35). In the status
of the active conformation of Rho GTPases, the Rho GTPases
interact with a variety of effector proteins, including kinases,
adaptor proteins, and actin regulators, thereby activating cellular
responses and leading to changes at the cellular level, which
depend on the stimulus effectiveness and cell type (35).

EFFECTS OF RHO GEFs ON THE
CARDIOVASCULAR SYSTEM

A growing body of evidence suggests that the over-activation of
Rho proteins is the shared pathogenesis of several cardiovascular
disorders such as atherosclerosis, hypertension, and diabetes

(36). Rho GEFs can activate Rho proteins by catalyzing the
exchange of GDP for GTP and regulating Rho protein activity
(36). In addition, some Rho GEFs have been identified as
susceptibility genes for CVDs. Using next generation sequencing
(NGS), bioinformatics, and ARHGEF17-deficient zebrafish, our
research group found that ARHGEF17 is a candidate gene for
intracranial aneurysm (IA) (37). In the aforementioned study,
rs2298808 of ARHGEF17 was shown to be related to IA in the
Chinese cohort, but arhgef17 knockdown of zebrafish caused
bleeding and endothelial lesion in the brain region. Some Rho
GEFs are more expressed in rat aorta and mesenteric arteries
than in other arteries, such as PDZ-Rho GEF at mRNA and
protein levels (38, 39). Vascular smooth muscle cells (VSMCs)
and vascular endothelial cells are vital components of the artery,
and regulation of the functions of these two types of cells
by GEFs may be a participant in artery function. Angiotensin
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FIGURE 2 | Regulation of Rho GTPase in different main atherosclerosis-related cells. Rho GTPase acts as a molecular switch that cycles between an inactive and

active GTP-bound conformation interacting with ROCK. The activity of Rho GTPases is controlled by Rho GEFs that catalyze the exchange of GDP for GTP. In

contrast, GTPase-activating proteins stimulate the intrinsic GTPase activity and inactivate Rho GTPase. Guanine nucleotide dissociation inhibitors block spontaneous

Rho GTPase activation. The Rho GTPase/ROCK pathway plays important role in the main atherosclerosis-related cellular functions.

II (Ang II) regulates VSMC function by inducing tyrosine
phosphorylation of Vav. PSD95-discs large-ZO1 (PDZ)-Rho GEF
has been shown to be tyrosine-phosphorylated by temporary
stimulation with Ang II (40). However, whether Rho GEFs are
involved in the Ang II-regulated regulation of VSMCs remains
unknown. Tumor endothelial marker-4 (TEM4) can also be
called ARHGEF17 or p164-RhoGEF, and it regulates the integrity
of the intercellular junctions and endothelial cell function (41).
Rho GEF TEM4, which supports the persistence of cell migration
by adjusting actin fibers and cell adhesions in protruding
membranes, regulates the migration of endothelial cells.

THE EMERGING ROLE AND INTERACTION
MECHANISMS OF RHO GEF IN
ATHEROSCLEROSIS

Current Status of the Relationship
Between Rho GEFs and Atherosclerosis
The authors retrieved data from PubMed and Google Scholar
with “Rho GEFs,” “guanine nucleotide exchange factor,” and/or
“atherosclerosis” as the search terms to look for direct evidence
of Rho GEF regulation of atherosclerosis after screening and
refining the data. The search revealed some research on the
role of Rho GEFs in atherosclerosis regulation; however, the

number of studies is small compared with the research on the
essential function of Rho GEF (Table 1). Based on experiments
in vivo/vitro, several studies indicated that Rho GEFs regulate
atherosclerosis. Samson et al. found that RhoG guanine
nucleotide exchange factor SGEF (Arhgef26) gave rise to the
formation of ICAM-1-induced endothelial docking structures,
which promote white blood cell transendothelial movement,
enter arterial walls, and advance atherosclerosis (42). In SGEF-
deficient mice crossed with ApoE null mice, which were fed a
Western diet, the level of aortic atherosclerosis of SGEF-deficient
mice was reduced. In this work, the authors demonstrated
that SGEF facilitates endothelial docking structures, and thus
leukocytes increase at athero-prone sites of inflammation-
associated high shear flow (42). In addition to SGEF, the
other Rho GEF protein, RhoA GEF Arhgef1 that is essential
for Ang II-induced inflammation, is also a key molecule for
atherosclerosis. Rebuilding Ldlr−/− mice with Arhgef1-deficient
bone marrow restrained high-fat diet-induced atherosclerosis,
whereas restriction of Ldlr−/− Arhgef1−/− with wild-type (WT)
bonemarrow (BW) exacerbated atherosclerotic lesion formation.
Among the reasons for this finding, Arhgef1 was activated, and
more leukocytes were recruited to the endothelium to accelerate
atherosclerosis (43). In another study, experiments in vivo and in
vitro found that the Arhgef7 (Rho guanine nucleotide exchange
factor 7, beta Pix) interacted with Scribble (Scrib) to produce
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TABLE 1 | Direct evidence of Rho GEF regulation of atherosclerosis.

Rho GEF name Rho GTPase effector Key features related to atherosclerosis

Experiments in vivo/vitro

SGEF (42) RhoG SGEF promotes endothelial docking structures and thereby retention of leukocytes at atherosclerosis-prone sites

of inflammation experiencing high shear flow.

Arhgef1 (43) Rho A Arhgef1 activation in leukocytes is causally associated with the development of atherosclerosis.

Vavs (44) Rac1 and Rho A Vavs act as critical molecular links coupling hyperlipidemia with proatherogenic monocyte/macrophage responses.

Arhgef7 (beta Pix) (45) Rac1 and Cdc42 Arhgef7 interacts with Scrib to maintain endothelial barrier function and normal vascular permeability.

DOCK4 (46) RAC1 DOCK4 promotes internalization of SR-B1 and transport of LDL by coupling the binding of LDL to SR-B1 with

activation of RAC1. The expression of DOCK4 is increased in atherosclerosis-prone regions of the mouse aorta

before lesion formation, and in human atherosclerotic arteries when compared with normal arteries.

CDGI (47) Rap1 CDGI contributes to platelet-leukocyte aggregate formation and leukocyte recruitment to the atherosclerotic lesion

area.

P-Rex1 (48) Rac1 P-Rex1 regulates Rac1 activation and chemotaxis in macrophages, and may be a regulator for atherosclerosis.

Genetic research

MCF2L (49) The rare functional variant [c.2066A4G p. (Asp689Gly)] in MCF2L, leading to impaired DH function, was identified in a small pedigree with

premature CVD. The presence of MCF2L in human atherosclerotic plaque specimen lends further support to its potential role in

atherosclerosis.

ARHGEF10 (50) Rs4376531 polymorphism in the ARHGEF10 gene is a risk factor for AS in the Han Chinese population.

KALRN (51, 52) Peakwide mapping on chromosome 3q13 identifies the KALRN as a novel candidate gene for coronary artery disease. The GG genotype

and the G allele of rs9289231 polymorphism of KALRN were found to be genetic risk factors for CAD in an Iranian population, especially

in early-stage atherosclerotic vascular disease.

DOCK7 (53) The DOCK7-ANGPTL3 SNPs and their haplotypes were associated with the angiographic severity to coronary artery atherosclerosis and

the risk of CAD and IS in the Southern Chinese Han population.

antiatherosclerotic functions by maintaining the endothelial
barrier function (45). Rho GEF dedicator of cytokinesis 4
(DOCK4) facilitated internalization of SR-B1 and transport of
LDL by coupling the binding of LDL to SR-B1 by activating
RAC1. SR-B1 drove LDL transcytosis of the endothelium by
DOCK4 to promote atherosclerosis (46). Double-null mice
ApoE/vav1, fed a Western diet, had a clear reduction in overall
aortic atherosclerotic lesion area and fewer macrophages and
foam cells in the aortic sinus. Rho GEF Vavs functioned as key
molecular links that integrated hyperlipidemia to proatherogenic
monocyte/macrophage responses (44). P-Rex1 is one of the
major Rho GEFs activating Rac1. Deficiency of P-Rex1 in mouse
macrophages was found to significantly decrease macrophage
chemotaxis, superoxide production (SOD), and Rac1 activation
in response to chemo-attractants, suggesting the regulatory role
of P-Rex1 in atherosclerosis (48). Recent work reported that
CDGI is essential for atherosclerotic plaque development because
it can lead to leukocyte recruitment to the lesion area (47).

In addition to experiments in vivo/vitro, several forms of
genetic research have shown the relationship between Rho
GEFs. A rare functional variant [c.2066A4G p. (Asp689Gly)]
in MCF2L was detected in a small pedigree with premature
CVD. The presence of the MCF2L protein was found in human
atherosclerotic coronary arterial tissue compared with healthy
tissue, and the variant led to impaired MCF2L-DH-domain-
dependent actin stress fiber formation, indicating that MCF2L
might play a role in premature atherosclerosis pathobiology (49).
A genetic finding suggested that the rs4376531 of ARHGEF10
is a risk factor for atherothrombotic stroke in the Chinese
Han people (50). Associations were found in SNPs in the
KALRN gene from the Rho GEF family and CDGAP and

MYLK from the Rho GTPase-signaling pathway, suggesting the
importance of Rho GEF KALRN in atherosclerotic pathogenesis
(51, 52). The DOCK-ANGPTL3 SNPs (rs12563308, rs12563308,
and rs1748195) and their haplotypes (rs1748195G-rs12563308T)
were found to be related to the severity of coronary artery
atherosclerosis in the Chinese Han population (53).

Mechanisms of Atherosclerosis Regulation
by Rho GEFs
Rho GEFs localize to the cell membrane where they cause
activation of the Rho-GTP (35). Pro-inflammatory and anti-
inflammatory macrophages are critical factors for the expansion,
progression, or steadying of atherosclerotic plaque (5). Rho-
GTP proteins, especially RhoA, control this process. Rho GEF
is upstream of Rho-GTP, and the specific mechanism by which
Rho GEFs regulate atherosclerosis by Rho-GTP remains unclear
and needs further study. However, some Rho GEF proteins may
be involved in the occurrence and progression of atherosclerosis,
and in the composition of atherosclerotic arteries, including the
endothelium, smooth muscle, and macrophages (36).

Regulation of RhoGEFs on Endothelial Cells
Endothelial cell dysfunction is essential to the pathobiology of
CVD (54) and some Rho GEFs are involved in this process.
Tiam1 is a specific Rho GEF for Rac1 and increased permeability
by damaging intercellular junctions between the endothelial
cells (55). The Rac-specific GEF P-Rex1 acted downstream of
TNFα to convey endothelial barrier disruption (56). Another
Rho GEF, Itsn2L, which is specific for Cdc42, displayed a
specific subcellular localization, regulated caveolae endocytosis,
and interacted with the actin network in endotheliocytes (57).
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Knockdown of RhoA GEF-H1 in vitro contributed to a rise in
the endothelial permeability and actin stress fiber formation,
suggesting that GEF-H1 is required to maintain the balance
between endothelial permeability and barrier integrity (58).
However, AGE and its major constituent, S1PC, inhibited
the phosphorylation and activation of GEF-H1 to protect the
endothelial barrier through the protection of junctional proteins
on plasma membranes (59). Klems et al. used zebrafish embryos
and endothelial cell models to show that Rho GEF Trio
controlled the formation of enlargement and extension of arterial
endothelium. It activated Rac1 and RhoG in the cell periphery,
bringing about F-actin cytoskeleton altering of myosin-based
tension at regions of cell junction focal adhesions (60). Recently,
it was reported that Rho GEF ITSN1 interacted with RhoJ to
promote endothelial cell sprouting (61). In the aforementioned
work, removing RhoGEF17 disrupted cell-cell and cell–substrate
interactions, preventing cell death and inhibiting cell growth
in the endothelial cell (62). All of the aforementioned works
indicate that Rho GEFs may be involved in the atherosclerotic
process; nevertheless, further experiments are needed to verify
this assumption.

Regulation of RhoGEFs on VSMCs
The proliferation and migration of VSMCs to the subendothelial
layer are some of the features of atherosclerosis (16). Several
Rho GEFs participate in arterial smooth muscle cell proliferation.

For instance, one work showed that the Rho GEF Kalirin,
which activates Rac-1 and RhoA, is raised in early atherogenesis
and promotes arterial SMC migration and proliferation in
vitro and in vivo (63). MicroRNA miR-27a-3p was found to
suppress ARHGEF26 (also known as SGEF) and inhibit SMC
proliferation (64). LARG, a RhoA-specific Rho GEF, regulated
SMC migration and stress fiber formation (65). One study found
that the downregulation of RAP1GDS1 (SmgGDS) gave rise
to deceased activated RhoA levels, higher cell spreading, and
reduction in the characteristic stretched morphology of VSMCs
(66). SmgGDS was also shown to be a regulator of myosin
arrangement and contraction for VSMCs (66). Another study
found that Rho GEF Vav3 regulated VSMC proliferation and
migration by motivating Rac1/PAK signaling, which appears
to be a new potential therapeutic target to inhibit vascular
proliferative diseases (67).

RhoGEF Regulation of Macrophages
Macrophages are a fundamental contributor to atherosclerosis
and can be affected by Rho GEFs (68). Studies show that
directly inhibiting Rho-GEFs can diversely affect M0, M1, and
M2 with Y16 (Rho GEF DH–PH domain blocker) and Rho
sin (Rho GEF-binding domain blocker) (69). This indicates
that CD36-mediated macrophage foam cell formation and
CD36-dependent uptake of oxLDL can be regulated by the Vav
family Rho GEF Vav-1,−2, and−3 (70). It also suggests that the

FIGURE 3 | Mechanism of Rho GEF regulation of atherosclerosis. Rho GEF proteins may be involved in the occurrence and progression of atherosclerosis, and the

composition of atherosclerotic arteries including the endothelium, smooth muscle, and macrophages. The Rho GEF/Rho GTPase/ROCK signaling pathway plays an

important role in the development of atherosclerotic disease. Rho GEFs, as activators and the most direct upstream molecules of Rho proteins, are expressed in

cardiovascular cells and are suitable candidate targets for the drug therapy of atherosclerotic disorders.
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CD36/Vav signaling pathway is required for the macrophage
foam cell formation (70). By methods of siRNA-mediated
silencing, pharmacological inhibition, genetic knockout, and
stable overexpression, one work elucidated critical roles for
Cdc42 and Vav in promoting actin polymerization during
the formation of the lysosomal synapse (71). The study
found that in the course of lysosomal synapse formation,
catabolism of aggregated LDL and foam cell formation, and
active macrophage F-actin reorganization were also regulated
by Vav (71). The macrophage inflammation responses could
be related by Rho GEF BIG1, and the downregulation of BIG1
induced by LPS mainly is related to TLR4 signaling in THP-
1-derived macrophages (72). These aforementioned studies
disclose that Rho GEFs can affect macrophages during the
atherosclerotic process.

Regulated Function of Rho GEF/Rho
GTPase/ROCK in Atherosclerosis
The Rho GEF/Rho GTPase/ROCK signaling pathway is vital
for the development of CVD (Figure 3). In the progression of
atherosclerosis, ROCK should be regarded as a pro-inflammatory
and proatherogenic molecule that promotes atherosclerosis (73).
In the Rho GTPases, Rho A and its primary effector, ROCK,
play a central role in the cardiovascular system (74). Studies
showed that disturbed blood flow, which causes endothelial
dysfunction by the Rho A/ROCK signaling pathway and
mechanotransduction mechanism, leads to the advancement
of atherosclerosis (75, 76). The distinguishing features of the
atherosclerotic artery are proliferation, phenotype modulation,
and the redox state of VSCMs (77, 78). Significantly, Rho-
kinase is extensively involved in this pathological process (29).
ROCK activity of leukocytes in atherosclerotic patients was
found to be increased (79), indicating that ROCK activity
may be a surrogate marker for patients with atherosclerosis.
The Rho A/ROCK signaling pathway could be inhibited by
endogenic nitric oxide, which might indicate key crosstalk
of ROCKs with the endothelial function (80). As essential
drugs, statins target the inhibition of the Rho/ROCK pathway
to reduce atherosclerosis and possibly CVD (81). However,
the effects of Rho GEF/Rho GTPase/ROCK on endothelial
cells, inflammatory cells, fibroblasts, and VSMCs can boost
atherosclerosis, which may be responsible for the pleiotropic
effects of statins (82).

PROSPECTS AND CONCLUSION

Without a doubt, Rho proteins have a significant effect on the
cardiovascular system (83, 84). Rho GEFs, as activators and the
most direct upstream molecules of Rho proteins, are expressed
in cardiovascular cells and are suitable candidate targets for the
drug therapy of atherosclerotic disorders (Figure 3).

Some drugs targeting Rho proteins require complex
approaches or processes to treat atherosclerosis, such as statins,

which require multiple steps to lower LDL (82). In this process,
the more steps and multiple effects that are involved can cause
more side effects. Currently, although statins have a very positive
effect, various statin-associated symptoms, including statin-
associated muscle symptoms, diabetes mellitus, and central
nervous system complaints, have been reported (85). Statins
competitively and reversibly inhibit HMG-CoA reductase by
their lactone ring and side chains that help them bind to the
enzyme’s active site (86), which contributes to the inhibition of
cholesterol synthesis and brings about decreasing cholesterol
production and upregulating LDL receptor (87). Statins can
reduce the ROCK activity of white cells independent of LDL
reduction (88). In human aortic endothelial cells, statins delay
tissue factor induction by thrombin in a Rho/ROCK-dependent
manner (89). Regulating the Rho/ROCK pathway with Rho
GEFs could achieve the same therapeutic effect as statins while
avoiding its many side effects. Hence, the authors suggest the
regulated target of Rho proteins by Rho GEFs as a potential
therapeutic target in atherosclerosis disease.

Compared with the current drugs targeting Rho proteins,
the use of Rho GEFs to directly regulate the Rho proteins will
be more effective and have fewer side effects. This progress
in cardiovascular medicine is a sterling example of how the
clinical application of scientific discoveries benefits patients. The
findings of current research open a door of understanding into
the development of atherosclerosis. The discovery of prosaposin
as a potential therapeutic target may lead to the development
of new therapeutics, which is precisely what precision medicine
advocates (90). Of course, more research on Rho GEF regulation
of atherosclerosis is needed.
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