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Atrial fibrillation (AF) is the most common arrhythmia worldwide and has a significant

impact on human health and substantial costs. Currently, there is a lack of accurate

biomarkers for the diagnosis and prognosis of AF. Moreover, the long-term efficacy of

the catheter ablation in the AF is unsatisfactory. Therefore, it is necessary to explore

new biomarkers and treatment strategies for the mechanism-based AF. Exosomes are

nano-sized biovesicles released by nearly all types of cells. Since the AF would be

linked to the changes of the atrial cells and their microenvironment, and the AF would

strictly influence the exosomal non-coding RNAs (exo-ncRNAs) expression, whichmakes

them as attractive diagnostic and prognostic biomarkers for the AF. Simultaneously,

the exo-ncRNAs have been found to play an important role in the mechanisms of the

AF and have potential therapeutic prospects. Although the role of the exo-ncRNAs

in the AF is being actively investigated, the evidence is still limited. Furthermore,

there is a lack of consensus regarding the most appropriate approach for exosome

isolation and characterization. In this article, we reviewed the new methodologies

available for exosomes biogenesis, isolation, and characterization, and then discussed

the mechanism of the AF and various levels and types of exosomes relevant to the AF,

with the special emphasis on the exo-ncRNAs in the diagnosis, prognosis, and treatment

of the mechanism-based AF.
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INTRODUCTION

Atrial fibrillation (AF) is a most common type of cardiac arrhythmia and a global burden with
significant morbidity, mortality, and socioeconomic problem (1, 2). The AF affects 1–1.5% of the
population worldwide, the frequency of the condition is closely related to advancing age, and its
prevalence is expected to more than double over the next 40 years (3, 4). Catheter ablation is an
established treatment for AF, especially for paroxysmal AF (PAF). However, the success rate for the
persistent AF (PsAF) is not ideal because the procedure is often accompanied by risks and other
pathological complications. Moreover, there is a lack of effective upstream management for the
AF (5–7).

Extracellular vesicles (EVs) include exosomes [diameter range (DR): 30–150 nm], microvesicles
(DR: 50–1,000 nm) and apoptosomes (DR: 50–5,000 nm) (8). Exosomes are found in almost
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all body fluids (9–11). They normally contain lipids, proteins,
and various RNAs, depending on the cells type and the cellular
microenvironment (12, 13). Initially, exosomes were believed
to be excretory vehicles to discard the metabolic waste but
are now regarded as intercellular communicators that shuttle
genetic information and proteins between cells (14, 15). The
exosomal cargoes not only reflect the disease state, but also the
physiological process of the receptor cells. Therefore, they can
serve as unique biomarkers of developmental processes and
prognostics/diagnostics of the disease states (16). Recently, the
role of exosomes in cardiovascular diseases has been extensively
studied, mainly in in the acute myocardial infarction (AMI),
congestive heart failure (CHF), and coronary atherosclerotic
disease (CAD), however, comprehensive elucidations on
arrhythmia, especially on the AF are limited (17, 18). This review
aimed to analyze the current knowledge regarding the exosomes’
formation, isolation, biological functions, and advancements
in the medical application, including potential diagnostic and
therapeutic use in the AF.

EXOSOME

Exosome Biogenesis
Exosome biogenesis and generation depend on the cell types or
cellular microenvironments (19, 20). The exosome biogenesis is
schematized in Figure 1.

Exosomes are formed by two invaginations of the plasma
membrane. The first invagination generates early endosomes in
the cytoplasm. The early endosomes mature into late endosomes,
whose secondary invagination forms intraluminal vesicles (ILVs).
Late endosomes and then finally form multivesicular bodies
(MVBs). However, not all ILVs are released as exosomes

FIGURE 1 | Schematic representation of exosome biogenesis, sorting, and release. The endosome membrane invaginates and sprouts to form intraluminal vesicle

(ILV), the early endosome, and then matures to form multivesicular body (MVB) via ESCRT-dependent and ESCRT-independent, the late endosome. Some MVBs

reach lysosome and the contents are degraded, others transported to the cell membrane to release exosomes via SNAREs and RabGTPase.

and some of them would fuse with lysosomes and undergo
degradation (21, 22). The exosome formation is tightly regulated
by the endosomal sorting complex required for transport
(ESCRT) and ESCRT-independent pathways. Exosome cargoes
include proteins, lipids, and nucleic acids (23). In addition,
nucleic acids especially non-coding RNAs (ncRNAs) serve as
important cargoes and mediate cells communication (24–26).
At present, the mechanisms underlying the cargoes sorting
remain unclear.

The detailed mechanism of the MVBs intravesicular
trafficking and fusion with the plasma membrane remains
elusive. The known proteins involved are SNAREs, Rabs family
(RAB27, RAB11, and RAB35), and Ras GTPase (27–30). The
intravesicular trafficking may be mediated by the calcium-
dependent Rabs family and the fusion process may be mediated
by the SNAREs proteins (20, 25, 31). Exosomes are released
into the extracellular space after fusion with the membrane. The
release of the MVBs occurs in a calcium-dependent manner.

Exosome Uptake
Possible consequences following the exosomes release include:
(1) capture by the neighboring cells or re-absorption by
their secretory cells; (2) remote relocation, recognition and
fusion with the recipient cells membrane; (3) entry into
the circulation and translocation to the other organs (32).
However, the underlying mechanisms of the exosome uptake
by the recipient cells remain debatable. As reported, there are
three suggested mechanisms of uptake: internalization, direct
fusion and receptor-ligand mediated uptake (33–40). Thereby,
although the precise mechanism of exosome uptake is unclear,
one fact remains obvious: the exosomes participate in cells
communication through a complex intercellular exchange of
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biologically active molecules, modulating the function and
behavior of the recipient cells. There is compelling evidence
of this process occurring in a variety of diseases including
cardiovascular diseases (11, 18, 20, 27, 32, 33, 41).

Exosome Isolation
The isolation of pure exosomes is a critical step to understand
their structures and physio-pathological roles in diseases.
Nevertheless, there are no currently reliable protocols to isolate
absolute pure exosomes. Although several methods have been
used to isolate exosomes, each approach exhibits advantages and
disadvantages (Table 1).

Ultracentrifugation
Ultracentrifugation is the most commonly used method
for exosome isolation. The process consists of a series of
centrifugation cycles at different centrifugal forces and durations
to separate exosomes from other components (42–45).

Density Gradient Centrifugation
Density gradient centrifugation exploits differences in vesicle
size and density through discontinuous density gradient layers
with progressively decreased density from the bottom to the
top (46–48).

Cushion Combined With Density Gradient
Ultracentrifugation
In this protocol, the exosomes are firstly concentrated using
a 60% iodixanol cushion to recover a maximum number
of exosomes with their property preserved. Then, the
concentrated exosomes are separated through the density
gradient ultracentrifugation to remove the non-exosomes
contaminants (22).

Size-Based Isolation Methods
Size-based isolation methods use filters (ultrafiltration) or
chromatography columns and merely depend on size or weight.
Size exclusion chromatography (SEC) is also a size-based
separation technique that uses a stationary phase consisting of
resin particles of known porous size to isolate exosomes (49–51).

Immune-Affinity Purification of Exosomes
Exosome membranes contain large quantities of proteins. These
proteins can be tagged by their specific corresponding antibodies
to identify and isolate exosomes (45, 52–54).

Polymer-Based Precipitation
Precipitation methods are easy and fast approaches for isolating
exosomes, which use commercial kits. The exosomes are
precipitated by altering their solubility in the solution (50, 55).

Microfluidics-Based Isolation Techniques
Recently, microfluidics-based technologies have been introduced
to identify and isolate exosomes. This technique exploits both
physical and biochemical properties of exosomes, such as
acoustic, electrophoretic, and electromagnetic characteristics
(56, 57).

Other Isolation Methods Using
Commercial Kits
An increasing number of commercial kits are presently available
for exosome isolation. Girijesh et al. analyzed these commercial
kits regarding yield, purity, and downstream applications. They
determined that the isolation kit by Invitrogen could isolate
more exosomes from the culture supernatant than the IZON gel-
filtration chromatography kit, 101-Bio PureExo kit, and affinity-
based MagCapure kit. However, exosomes extracted using the
Invitrogen kit contained cytotoxic chemicals, which may inhibit
cell growth (58).

Exosome Characterization
The characterization of exosomes has been a challenge due to
their nano-scale size. So far, several techniques were employed for
exosome characterization. The detail advantages, disadvantages
and procedure are summarized in Table 2 (12, 59–71).

MECHANISMS OF AF

The mechanisms of the AF are complex and multi-factorial,
and the pathophysiology includes three phases: initiation,
maintenance, and progression (3, 72). Conceptually, these
components link to the triggers and substrates. A trigger can act
as an initiator, and the maintenance and progression generally
require a substrate (73). Changes in substrate usually cause
electrical and structural remodeling (74–76). In addition, a
progression occurs over time from the trigger-driven disease,
through the progress of atrial substrate, to the structural
remodeling. These phases correspond to the clinical observation
that about 5% of the patients with pAF progress to the persistent
form each year, and 35–40% of PsAF patients may develop
permanent AF within < 1 year (77, 78).

Triggers for AF
Three main mechanisms causing focal triggers are: enhanced
atrial automaticity, early after-depolarization, and delayed
after-depolarization (77, 79). In this regard, cellular calcium
homeostasis may play an important role, which may cause
heterogeneous electrophysiological properties, and then induce
a vulnerable substrate formation (72, 74, 79, 80). These changes
causing electrophysiological heterogeneity can result in initiation
and sustenance of arrhythmia (72, 81).

Substrate Changes for AF
Many theories about electrical remodeling have been proposed,
and their common pathophysiological notion is reentry ormicro-
reentry (6). In myocardial AF, altered electrical property causes
a shortening of the refractory period or slower conduction
and thereby provides an anatomical substrate for reentry (5).
Moreover, the structural changes such as dilatation and fibrosis
of the atrium also affect the conduction and then maintain the
reentry circuits (81, 82). Further, the calcium current is reduced
by the inactivation and downregulation of the gene expression of
calcium channels, which may lead to a shortening of the action
potential (5, 83, 84).
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TABLE 1 | Current available exosomes isolation techniques.

Method Pros Cons Procedure and application

Ultracentrifugation (1) The most commonly

used method

(2) Suitable for large

sample capacity

(1) Time-consuming, costly

instrumentation

(2) Un-efficiently (3) Loss of large

amount and damage of

exosomes

(4) Unsuitable for small amounts

of samples or rare samples

It consists of a series of centrifugation cycles of

different centrifugal force and duration to

separate exosomes. Centrifugation is initially

performed at a low speed, followed by

ultracentrifugation at 100,000 to 120,000 × g.

Finally, the isolated exosomes are resuspended in

the appropriate medium. It is suitable for sample

such as urine, ascites, and supernatant culture

medium

Density gradient

centrifugation

(1) Two step method (1) High purity

(2) Structure and function integrity

(1) Low yield and time-consuming

(2) Unsuitable for large amounts

of sample

The sample is usually layered onto the top of the

density gradient medium and subjected to an

extended round of ultracentrifugation. The

vesicles travel through the gradient until they

reach the point at which their density matches

the one of the surrounding solution. The

separated exosomes are then conveniently

recovered by simple fraction collection. The

process is suitable for scale analysis of exosomes

(2) Single step method (1) Integrity

(2) Higher recovery yield

(1) Unsuitable for large amounts

of sample

The conditioned medium containing exosomes

was directly loaded on 30% sucrose gradient

and centrifuged at 100,000 × g, 4◦C for 90 min

(3) Cushion combined

with density gradient

ultracentrifugation

(1) High purity

(2) Preservation properties

(1) Time-consuming Firstly concentrated by using 60% iodixanol

cushion to maximize exosomes recovery. Then,

the concentrated exosomes are separated

through density gradient ultracentrifugation to

remove non-exosomes contaminates

Size-based isolation methods

[ultrafiltration, Size exclusion

chromatography (SEC)]

(1) Rapid

(2) No requiring

centrifuge equipment

(1) Isolation of exosomes larger

than the pore size of the

matrix of the stationary phase

used

(2) Low yield and the purified

sample is diluted

(3) Significant hands-on time for

column preparation, washing,

and equilibration

(4) Manual collection of fractions

may introduce

operator-dependent variability

It uses a stationary phase consisting of resin

particles with known porous size. Similarly to

density gradient centrifugation, SEC has been

shown to allow reduction of contaminant

proteins. The process is suitable for small scale

analysis of exosomes

Immune-affinity purification (1) High purity

(2) Highly efficient

(3) Maintaining exosomes specific

morphology, biological activity,

and molecular profiles

(1) Multiple steps in sample

preparation, making the

isolation prone to errors

(2) PH value and salt

concentration of the buffer

might affect the biological

activity of exosomes

Magnetic beads are widely used in this method

for capturing anti-CD9, anti-CD63, and

anti-CD81 antibodies and isolating exosomes

Polymer-based precipitation (1) Easy, does not require any

specialized equipment

(2) High recovery rate

(3) It is scalable for large

sample sizes

(1) It contains lots of

contaminating proteins

(2) Polymer present in the sample

may interfere with the

downstream analyses

The sample is mixed with water excluding

polymers, that tie up water molecules and force

less soluble components out of solution.

Generally, the biological fluid is incubated with a

precipitation solution and, after incubation, the

precipitate containing exosomes is isolated by

low speed centrifugation. It is scalable for large

sample sizes

Microfluidics based

isolation Techniques

(1) Microfluidic based

immunoaffinity capture

approach (ExoChip)

(1) Highly efficient (1) Not suitable for large volume,

lack of method validation

Microfluidic devices exploit sample-bead

interactions and subsequent separation of the

beads. The sample is incubated with capture

beads off-chip, and only downstream bead

separation step takes place on-chip.

(2) Microfluidics based

membrane filtration

approach

(1) Highly efficient and low cost (1) Not suitable for large volume,

lack of method validation

Devices use the micro-fluidics based membrane

filtration approach isolating exosomes by their

size.

(Continued)
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TABLE 1 | Continued

Method Pros Cons Procedure and application

(1) the first such device is a nanoporous

membrane with an adjustable pore size

that inserted in a microfluidic chip;

(2) a multiscale filtration device, which ciliated

nanowire-on-micropillar structure that traps

specifically sized liposomes (3) a type of

microfluidic device based on pillar-array that

can sort particles in a continuous flow through

nano-deterministic lateral displacement.

Commercial kits The Invitrogen isolation kit could isolate more and a broad size distribution of exosomes from

the culture supernatant than the iZON gel-filtration chromatography kit, 101Bio PureExo kit,

and affinity-based MagCapure kit. The quantity and quality of RNA isolated from exosomes

showed no significant differences among these isolation kits. However, exosomes extracted

using the Invitrogen kit appear to contain cytotoxic chemicals, which inhibit cell growth

TABLE 2 | Current exosomes characterization techniques.

Method Advantages Disadvantages Detectable size

range

TEM High resolution, discriminate exosomes from

other similar-size contaminants,

immunostaining

Sample preparation may change the morphology of

exosomes, potential damage by electron beam

>5 nm

NTA Easy sample preparation, fast analysis, high

resolution, vesicles are directly observed

Possible overlaying effect of larger vesicles, fail to distinguish

exosomes from other nano-contaminants

50–1,000 nm

AFM Minimal sample preparation without any

destructive procedure

Scan speed, temperature and state of the tip may influent the

analysis

>5 nm

DLS High resolution Fail to distinguish exosomes from other nano-contaminants >5 nm

FACS Able to identify specific EV subpopulations Low detection sensitivity for EV >300 nm

SEM High-resolution imaging Complex sample preparation

Requires fixation and drying

>5 nm

TRPS Information about surface charge of vesicles Pores may be easily blocked by particles, generate a signal

higher than the background noise of the system

>5 nm

Exoview platform Small volume, low purification biases Expensive instrumentation, time consuming >5 nm

Flow cytometry Fast analysis Relate low resolution Not available

TEM, transmission electron microscopy; NTA, nanoparticle tracking analysis; AFM, atomic force microscopy; DLS, dynamic light scattering; FACS, fluorescence-activated cell sorting;

SEM, scanning electron microscopy; TRPS, tunable resistive pulse sensing.

Atrial Fibrosis in AF
Extensive evidence shows that structural remodeling, particularly
interstitial fibrosis, critically contributes to the substrate
formation for the AF (6). Angiotensin-II mediates cardiac fibrosis
in a variety of cardiac pathologies (85–87). The angiotensin II
induces the TGF-β1 synthesis, which potently stimulates
fibroblast activity. Moreover, the platelet-derived growth factor
(PDGF) and connective tissue growth factor (CTGF) can also
stimulate fibroblast proliferation and differentiation (74, 88–90).

Atrial Apoptosis in AF
All cellular lineages undergo programmed cell death, but the
fibrillating atria are more prone to apoptotic activation (91).
It is likely that the apoptotic process begins relatively early
in the AF and causes tissue remodeling (88, 92). Evidence
from experimental models suggests that apoptosis, leukocyte
infiltration, and increased cell death occur early and precede the
arrhythmogenic structural remodeling (93).

Immune Response in AF
The relationship between immune response and the AF is
multiplex (94). Recently, several elucidations have shown that
higher levels of inflammatory mediators and immune cells
infiltration and are closely related to the AF (95). Inflammation
could regulate calcium homeostasis and connexin expression,
which in turn change the atrial substrates and cause AF
initiation, and maintenance (96). The TNF not only could induce
abnormal Ca2+ handling and arrhythmogenicity in pulmonary
vein and cardiomyocytes, but also could activate the TGF-β
signaling pathway in the myofibroblasts and increase the matrix
metalloproteinase (MMP)-2 andMMP-9 secretion (97). The IL-2
can change the amplitude of electrically stimulated and caffeine-
induced Ca2+ transients in myocytes. Inflammation also could
alter the atrial conduction properties and increase the conduction
heterogeneity by affecting the expression or distribution of the
gap junction protein connexin (Cx) (Cx40 and Cx43), thereby
inducing and maintaining AF (98). The leucocyte activation
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and increased levels of myeloperoxidase could increase the
MMP-2 and MMP-9 activity, which then mediate atrial fibrosis
and remodeling (99). Moreover, inflammatory mediators are
associated with atrial electrical properties. The CD36 levels are
positively correlated with the atrial voltage (100). Low levels of
the HSP27 or CRP are associated with low atrial voltage (101).

Atrial Myocardial Ischemia for AF
Acute myocardial infarction (AMI) is often accompanied by
AF (102). The incidence of new-onset AF among AMI events
varied from 4.5 to 10.9% in clinical settings (103). The
mechanism of new AF in AMI is multi-factorial, among
which acute atrial ischemia (AAI) caused by AMI plays an
important role (104). AMI would cause electrical instability of
ventricular cardiomyocytes, causing ventricular tachycardia or
ventricular fibrillation (105). Similarly, AAI can also easily cause
electrical conduction disorders in atrial cardiomyocytes, thereby
increasing the susceptibility to atrial fibrillation (106). Therefore,
increasing the blood supply after AAI may have a positive effect
on preventing and reducing the occurrence of atrial fibrillation in
these patients.

DIFFERENT EXPRESSION OF EXOSOME
IN AF

In the AF, the cardiomyocytes and their microenvironment in
the atria are in diverse pathological states. Because the biogenesis
and secretion of exosomes significantly depend on the cellular
conditions of the cardiomyocytes, the AF may cause changes in
the exosomes profile and their cargoes in the atrial tissue and
circulation (107).

Comparing the profile of circulating microparticles (MPs)
between the AF patients and individuals with normal sinus
rhythm (SR), Siwaponanan et al. found that the AF patients
had significantly higher levels of cMPs (92). In addition, the
EVs were measured in 836 patients with AF and in a cohort of
control individuals in a study by Thulin et al. They showed that
higher EVs were seen in anticoagulated patients with AF and a
higher risk of stroke than the control population, possibly due
to the high burden of AF (108). Moreover, Wang et al. found
that the PsAF patients had a significantly increasing number of
circulating microvesicles. Therefore, AF can cause different levels
of circulating exosomes, especially PsAF (109).

Therefore, patients with AF have significant differentially
expressed (DE)-exosomes, and the exosomes cargoes may be
related to pro-inflammation, pro-fibrosis and apoptosis, which
are important mechanisms of AF. Therefore, the exosomes may
play a role in facilitating AF.

CLINICAL AND BIOMEDICAL VALUES OF
EXOSOME IN AF

As stated previously, exosomes have been suggested as novel
vehicles for intercellular communication in the cardiovascular
system (71). Non-coding RNAs (ncRNAs) have emerged as
important regulators of cardiac functions and diseases (110). So,

the ncRNAs as important cargoes of exosomes, the exosomal
ncRNAs (Exo-ncRNAs) should play an important role in the AF
pathological process and can be used as diagnostic markers or in
the treatment approach (111).

NcRNAs in AF Progression
NcRNAs mainly include miRNAs, long non-coding RNAs
(lncRNAs) and circular RNAs ect. MiRNAs are small ncRNAs of
22–24 nucleotides that are capable of regulating gene expression
by interacting with the mRNA transcript 3’UTRs and promoting
mRNA degradation and/or protein translation blockage (112).
LncRNAs are a more diverse group of ncRNAs, providing
transcriptional and post-transcriptional roles and subclassified
according to their functional properties (113). CircRNAs are
a closed continuous loop, function as sponges for miRNAs to
regulate the expression of target genes and directly regulate
transcription with RNA Pol II or protein coding (110, 114). We
summarized current state-of-the-art knowledge on the functional
of ncRNAs and their regulatory mechanisms in AF.

miRNAs in AF
Many miRNAs are involved in cardiac remodeling, some of them
regulate the ion channels, connexins or other proteins involved
in the electrical remodeling, some regulate pro- or anti-fibrotic
signaling cascades leading to the structural remodeling.

MiR-1 was down-regulated in the PsAF patients, accompanied
by the up-regulation of KCNJ2 and IK1 density, which was
associated with the shortening of the action potential duration
(APD) and enabled the reentry and AF maintenance (115, 116).
MiR-26 was also down-regulated in the fibrillating atria, causing
an up-regulation of transient receptor potential cation 3 (TRPC3)
channels, which regulated the calcium influx, cell proliferation,
extracellular signal-regulated kinase phosphorylation in the
cardiac fibroblasts (117, 118). Recently, down-regulation of
miR-29b and miR-106b-25 cluster (miR-25, miR-93, and miR-
106b) was found in the AF patients atrial (119–121). MiR-30c
and miR-133 down-regulation were accompanied by increased
atrial fibrosis, and upregulation of their target gene CTGF,
a pro-fibrotic mediator (122, 123). Besides, the MiR-133 was
significantly down-regulated after the zinc finger homeobox 3
(ZFHX3) was knocked down, which increased the remodeling
by targeted pro-fibrosis signaling (124). Additionally, up-/down-
regulation of miR-133/miR-590 resulted in down-/ up-regulation
of their target gene TGF-β1/TGF-β R II collagen expression
(125). MiR-21 was up-regulated in the cardiac fibroblasts,
which aggravated the pro-fibrotic ERK-MAP kinase signaling
pathway (126–128). MiR-328 was also up-regulated in the AF
patients’ atrial tissue. The over-expression of miR-328 could
lead to L-type calcium current reduction and APD shortening,
increasing the AF vulnerability (129, 130). MiR-499 was elevated
in fibrillating atrial tissue. A relationship was found between
the miR-499 and KCNN3, which may have been involved in the
AF pathophysiology (131). Moreover, the miR-499 mediated
the AF by altering the mitochondrial fission and apoptosis
signaling (132). MiR-208 can target the gene GJA5 encoding
the cardiac Cx40, and therefore mediate the pro-arrhythmogenic
remodeling (133–136).
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Long Non-coding RNAs in AF
LncRNAs are involved in gene expression and cellular activity
through a variety of mechanisms. Dysregulation of lncRNAs may
be associated with cardiac diseases.

Based on competing endogenous RNAs’ (ceRNAs) hypothesis,
RP11-296O14.3 may participate in the AF pathological process
(137). The lncRNA TCONS_00106987 was found increased in
a rabbit AF model, which promoted the electrical remodeling
by sponging miR-26 to regulate the KCNJ2 (138). The lncRNA
MIAT/TCONS_00202959 had an increase/decrease in fibrillating
atrial tissues. The MIAT may target the miR-133a-3p to
regulate the atrial fibrosis, and TCONS_00202959 may elongate
the atrial effective refractory period (AERP) to decrease the
AF inducibility (139, 140). Xu et al. (141) found that the
lncRNA NONHSAT040387 and NONHSAT098586 were the
most DE-lncRNAs in the AF patient blood samples. In another
study, 19 DE-lncRNAs were identified from the AF patient
monocytes, and the lncRNA HNRNPU-AS1 was the highest
positive correlated one. Further, GO and KEGG analyses showed
that these DE-lncRNAs were mainly involved in the metabolic,
biosynthetic, RNA binding, NF-kappa B, and cytokine-cytokine
receptor interaction signaling pathways (142). Additionally, the
lncRNA GAS5 was found downregulated in the AF patients,
and the change of the GAS5 occurred prior to the left atrial
enlargement. Moreover, the GAS5 was negatively correlated
to the ALK5, which could enhance the AF progression (143,
144). Besides, the lncRNA VDAC2P2, PVT1, NEAT1, PCAT-
1, LICPAR, and NRON were increased in the AF patients,
which were positively correlated with the collagen production
and fibroblasts proliferation (145–151). However, the lncRNA
LINC00472 and HOTAIR were downregulated. The LINC00472
could regulate the AF progression via modulating the miR-
24/JP2/RyR2 signaling pathway, and HOTAIR could function
as a ceRNAs in the Cx43 expression by sponging MiR-613
(151–154). In addition, NRON could alleviate atrial fibrosis
through the suppression of M1 macrophages, promoting the
M2 macrophage polarization. The lncRNA TCONS_00075467
could modulate the electrical remodeling by sponging miR-
328 to regulate the CACNA1C expression (155). The lncRNA
AK055347 may accelerate the AF pathogenesis by dysregulating
the mitochondrial energy production via the regulation of
Cyp450, ATP synthase, and MSS51 (156). Microarray and RNAs
sequencing (RNA-seq) were employed in the lncRNAs analysis.
The lncRNAs microarray of cardiac fibroblasts cells showed that
the lncRNA AF159100, BC086588, and MRNR026574 were up-
regulated while the MRAK134679, NR024118, and AX765700
were down-regulated (157). Another analysis showed that the
lncRNA ENST00000559960/ uc004aef.3 was up-regulated/down-
regulated in the AF patients’ leukocytes (158). The RNA-
seq analysis of lncRNAs in the AF canine cardiac fat pads
showed that the TCONS_00032546 and TCONS_00026102 could
shorten the AERP and increase the AF inducibility (159). The
RNA-seq analysis in the AF patients showed that several DE-
lncRNAs were involved in the signaling pathways associated
with the PI3K/Akt, TGF-β, calcium, inflammation, oxidative
stress, autophagy, apoptosis, and collagen synthesis (160, 161).
Moreover, another RNA-seq data by Ke et al. identified that the

lncRNA RP11-99E15.2 and RP3-523K23.2 participated in the AF
pathogenesis via regulating the extracellular matrix binding and
the transcription of the HSF2 (162).

Circular RNAs in AF
Recently, studies showed a potential role of circRNAs in
myocardial fibrosis and thus initiation and progression of the AF.

The circRNA-miRNA networks showed extensive interaction
among DE-circRNAs and the AF-related miRNAs and mRNAs
(163). The circRNAs microarray found 120 DE-circRNAs in
the AF patients’ monocytes. The circRNA_7571, circRNA_4648,
circRNA_4631, and circRNA_2875 had the most binding nodes
in the circRNA-miRNA networks and were closely interacted
with the miRNAs (142). In addition, Gao et al. found that
in the PsAF blood samples, circ_0004104 promoted cardiac
fibrosis via the TGF-β pathway. Several other studies identified
DE-circRNAs in the atrial tissues of AF patients (164).
Zhang et al. identified 147 DE-circRNAs and GO and KEGG
analyses indicated that many DE-circRNAs transcribed from
the host genes were implicated in the regulation of sequence-
specific DNA binding transcription factor activity (165). Zhang
et al. (166) recognized 23 DE-circRNAs and circ_0000075
and_0082096 may participate in the AF pathogenesis via the
TGF-β pathway. Another RNA-seq analysis found 296 DE-
circRNAs and the circRNA-associated with the ceRNAs network
may induce the AF through the cardiac muscle contraction
alterations. Simultaneously, these DE-circRNAs may be involved
in regulating the miR-208b and miR-21 expression (167).
Another RNA-seq analysis in the patients with the PAF and PsAF
found an increase of circRNAs from PAF transition to PsAF,
accompanied by miRNAs down-regulation (168). According
to an analysis of DE-circRNAs and ceRNAs network in the
AF patients from the GEO database, 376 DE-circRNAs were
identified, which were enriched in the cytokine-cytokine receptor
interaction, and two ceRNAs pairs were identified (circRNA-
100053- miR-455-5p-TRPV1 and circRNA-005843- miR-188-5p-
SPON1) (169, 170).

Exosomal-NcRNAs in AF
Exo-NcRNAs as Pathogenic Factors for AF

Many studies have found that exo-ncRNAs are related to
the initiation and progression of Af. Myofibroblast-derived
exo-miR-21-3p could reduce Cav1.2 expression, by regulating
the AKAP/PKC signaling pathway, and then increase AF
susceptibility (87, 171). Lu et al. found that exo-miR-328 could
target the genes CACNA1C and CACNB1, which encode L-
type calcium channels, and then lead to atrial remodeling (172).
Shan et al. (125) showed that, in canines atrial fibroblasts,
the decreased expression of exo-miR-133 and miR-590 were
associated with atrial fibrosis, and then promoted AF. Epicardial
fat (eFat) contains amounts of exsomes rich in pro-inflammatory
and pro-fibrotic molecules, which can affect the neighboring
atria, and induce the initiation and maintenance of AF (173–
175). According to these researches, eFat tissues were collected
from AF patients and were grown as organ cultures by Shaihov-
Teper. eFat-EVs were isolated from the culture medium for
further analysis. Moreover, to establish a causal association
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between eFat-EVs and vulnerability to AF, the study generated
an in vitro AF model using induced pluripotent stem cell-
derived cardiomyocytes (iCMs). The cultured explants from
patients with AF secreted more EVs and harbored greater
amounts of pro-inflammatory and pro-fibrotic cytokines, as well
as pro-fibrotic miRNAs. Moreover, the eFat-EVs from patients
with AF impacted the proliferation and migration of human
mesenchymal stem cells (MSCs) and endothelial cells (ECs) and
induced sustained reentry in iCMs (1). Some other studies also
revealed that cardiomyocytes derived exo-miR-1, -miR-208a, -
miR-21, -miR-223, -miR-26, -miR-29b, -miR-328, and -miR-499
could target pathways which involved in myocardial metabolism
and remodeling (5, 172, 176). In short, these finding reveal the
connection between exo-ncRNAs and the pathogenesis of AF,
which may provide a promising alternative strategy to improving
AF prevention and treatment.

Exo-NcRNAs as Diagnostic Biomarkers for the AF

Circulating miRNAs hold great promise as new diagnostic
and prognostic biomarkers for cardiovascular diseases, but the
specificity and sensitivity of the miRNAs could be affected
by several factors. Due to the protection by the lipid bilayer
membrane, circulating exo-miRNAs would provide stable
miRNAs, and therefore, circulating exo-miRNAs may possess
higher sensitivity and specificity to use as potential biomarkers
for cardiovascular diseases (32). Nowadays, circulating exo-
miRNAs as biomarkers were mainly used in the AMI, CHF, and
CAD (exo-miR-150, -miR-320a, and -miR-208b ect.) (121, 177).
Some studies have also found circulating exo-miRNAs could
be used as diagnostic/prognostic biomarkers for AF. A study
comparing circulating the exo-miRNAs between the patients with
SR, PAF, and PsAF.

Wei et al. identified significant three DE-exo-miRNAs (miR-
92b-3p, miR-1306-5p, and miRlet-7b-3p), and these miRNAs
and target genes participated in AF pathogenesis, like as
energy metabolism, lipid metabolism, inflammation, and enzyme
activity (178). Wang et al. found that circulating exo-miRNAs:
miR-483-5p, miR-142-5p, miR-223-3p were correlated with the
AF and multivariate logistic analysis suggested that the miR-
483-5p was independently in correlation with the AF (179). A
study by Mun et al. also found that compared with patients
with supraventricular tachycardia, the expression level of 45
circulating exo-miRNAs in patients with perAF was significantly
increased (> 1.5 times). What’s more, the DE circulating exo-
miRNAs (miRNA-103a, miR-107, miR-320d, miR-486, and let-
7b) were increased by more than 4.5 times in the PsAF.
Moreover, these miRNAs and their target genes were involved
in the atrial structure and function, oxidative stress, and
fibrosis pathways (180). Further, Liu et al. isolated exosomes
from pericardial fluid (PF), and found that the miR-382-3p,
miR-450a-2-3p, and−3126-5p in the exosomes, and especially
the miR-382-3p seemed pivotal in the AF progression (181).
Therefore, circulating exo-miRNAs have the potential to serve
as biomarkers in assessing the AF severity or prognosis, but
more rigorous studies are necessary to confirm the supposition
(Table 3).

Exo-NcRNAs as Potential Therapeutics Approaches

in Pathogenic Mechanism of AF

There has been no research on the application of exosomes
to the treatment of AF patients. Even in terms of animal
experimental studies, direct data to prove the treatment of atrial
fibrillation by exosomes-NCRNA is very limited. However, as
mentioned previously, the mechanisms of the AF are closely
linked to fibrosis, remodeling, inflammation, and apoptosis. In
addition, acute atrial ischemia is always accompanied by AF.
Therefore, the intervention on these mechanisms may provide a
promising alternative new directions for AF treatment. Growing
evidence suggests the role of exo-ncRNAs on these mechanisms,
and therefore, the exo-ncRNAs may be used as the potential
therapeutic tool for AF (18) (Table 3).

Anti-fibrosis

Adipose-derived stem cells (ADSCs)-exo-miR-146 could inhibit
myocardial fibrosis by down-regulating the gene EGR1 (182).
The exo-Let-7c originating from the MSCs exhibits antifibrotic
property, through regulating the TGF-β/Smad (183). The exo-
miR-17 and miR-210 derived from the cardiac progenitor cells
(CPCs) could inhibit the TGF-β-induced fibrosis under oxidative
stress (184). Bone marrow-derived MSCs (BMMSCs)-exo-miR-
22 could target the Mecp2 to alleviate fibrosis (185). Moreover,
exosomes enriched with the miR-290, miR-294, and miR-295
derived from the embryonic stem cells (ESCs) could significantly
ameliorate fibrosis (186). Cardiomyocytes-exo-miR-378, miR-
29a, miR-29b, and miR-455 could exert an anti-fibrotic effect by
reducing the collagen and MMP9 via inhibiting the MAPK and
Smad pathways (187). Moreover, the exo-miR-320 derived from
diabetic cardiomyocytes could negatively affect the proliferation
and migration of ECs (188, 189). Furthermore, CD133+-exo-
miR-126 could reduce VCAM, SPRED-1, and MCP1, and
subsequently decrease the interstitial fibrosis (190). Activated
macrophage-exo-miR-155 has been shown to decrease fibroblast
proliferation by inhibiting the SOS-1 (191). The miR-126, miR-
425, and miR-744 enriched exosomes could inhibit fibrosis by
targeting the f TGF-β and collagen I (192–194). Further, exo-
miR-26a could blunt the FOXO1 activation and inhibit cardiac
fibrosis (195). However, several exo-miRNAs have controversial
properties. The exo-miR-21 and miR-181b could reduce or
accelerate cardiac fibrosis under different conditions (196, 197).
In RHD, the exo-miR-155-5p could reduce valvular fibrosis by
inhibiting the SOCS1/ STAT3 pathway (25, 198). Moreover,
lncRNA Mhrt was shown to inhibit cardiac fibrosis and cardiac
myocyte hypertrophy (199).

Aforementioned, atrial fibrosis plays an important in atrial
remodeling. A variety of exo-ncRNAs, especially derived from
stem cells, can inhibit and improve myocardial fibrosis through
a variety of pathways. Therefore, we believe that the treatment
based-on these exo-ncRNAs may be an important strategy to
prevent and treat AF by inhibiting fibrosis.

Anti-apoptosis

The exo-miR-320d from the ADSCs negatively regulated STAT3
expression, indirectly inhibited cardiomyocytes apoptosis in AF,
and increased survival, providing new insights into treatment
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TABLE 3 | Exo-ncRNAs as potential diagnostic biomarkers and therapeutics approaches in pathogenic mechanism of AF.

Exo-ncRNAs Origination Effect Mechanisms References

Exo-miR-92b-3p/Exo-miR-

1306-5p/Exo-miRlet-7b-3p

Plasma Diagnostic These miRNAs and target genes were involved in the process of AF through

affecting biological processes such as energy metabolism, lipid metabolism,

inflammation, and enzyme activity

(178)

Exo-miR-483-5p/Exo-miR-

142-5p/Exo-miR-223-3p

Plasma Diagnostic Some of the pathways are related with myocardial remodeling (PI3K-Akt

signaling pathway, adrenergic signaling in cardiomyocytes, focal adhesion,

Wnt signaling pathway, calcium signaling pathway) and oxidative stress

(MAPK signaling pathway, oxytocin signaling pathway)

(198)

Exo-miRNA-103a/

Exo-miR-107/Exo-miR-

320d/Exo-miR-486/Exo-

miR-let-7b

Serum Diagnostic These miRNAs were involved in atrial function and structure (e.g., gap

junction, adherens junction, adrenergic signaling), oxidative stress (e.g.,

MAPK, AMPK), fibrosis (e.g.,Wnt, hypoxia inducible factor-1), and other

pathways

(180)

Exo-miR-382-3p/Exo-miR-

450a-2-3p/Exo-miR-3126-

5p

Pericardial fluid Diagnostic Implicated in cardiac fibrosis-related pathways, including the

hypoxia-inducible factor-1 (HIF1), mitogen activated protein kinase (MAPK),

and adrenergic and insulin pathways

(181)

Exo-Let-7c MSCs Treatment Anti fibrosis, regulating the TGF-β/Smad (183)

Exo-miR-17 CPCs Treatment Anti fibrosis, inhibit the TGF-β-induced fibrosis under oxidative stress (184)

Exo-miR-19a MSCs Treatment 1) Anti-apoptosis, inhibit oxidative stress-induced apoptosis by targeting

three prime untranslated regions in cylindromatosis, subsequently achieving

the protective effect. 2) Anti-inflammation, decrease the expression of the

inflammatory cytokines, moreover, pro-inflammatory/anti-inflammatory

factors were down-regulated/up-regulated. 3) Anti fibrosis, downregulates

the expression of the target proteins in CMs, PTEN, and Bcl-2-like protein,

and activates the Akt and ERK signaling pathways

(71, 200)

Exo-miR-21 CPCs/

iPSCs/MSCs

Treatment 1) Anti-apoptosis, ameliorate the CMs apoptosis, which may relate to the

inhibition of caspase 3/7 mediated apoptosis by the miR-21/PDCD4

signal axis. 2) Angiogenesis, induce angiogenesis and improve the cardiac

cells’ survival via inhibiting the PTEN/Akt pathway

(196, 197, 209)

Exo-miR-22 BMMSCs Treatment Anti fibrosis and anti-apoptosis, target the Mecp2 to alleviate fibrosis and

inhibit apoptosis

(185)

Exo-miR-24-3p MSCs Treatment Anti-apoptosis, decrease apoptosis and promote the CMs proliferation (201)

Exo-miR-25-3p BMMSCs Treatment 1) Anti-inflammation, inhibit the inflammatory cytokines expression. 2)

Anti-apoptosis, inhibit apoptosis by Ezh2/Socs3

(22)

Exo-miR-26a Muscle Treatment Anti fibrosis, blunt the FOXO1 activation and inhibit cardiac fibrosis (195)

Exo-miR-125b BMMSCs Treatment 1) Anti-apoptosis and 2) anti-inflammation, had the ability of anti-apoptosis

and inhibit the inflammatory cytokines expression

(204)

Exo-miR-126 CD133+ cells/

CFs/ADSCs

Treatment 1) Anti fibrosis, reduce VCAM, SPRED-1, and MCP1, and subsequently

decrease the interstitial fibrosis. 2) Anti fibrosis, inhibit fibrosis by targeting

the f TGF-β and collagen I. Anti-apoptosis, reduce apoptosis in neonatal

rats cardiomyocytes and improve cell survival by targeting ERRFI1. 3)

Angiogenesis, promote the generation of microvascular cells and the

migration of endothelial progenitor cells, through enhancing the VEGF

pathway via the suppression of angiogenesis inhibitors SPRED1 and PI3KR2

(190, 192, 211)

Exo-miR-132 CDCs Treatment 1) Angiogenesis, inducing capillary-like tube formation and enhancing the

migration and proliferation of HUVEC, through suppressing the expression

of the Efna3 and RASA1

(221)

Exo-miR-133a NA Treatment 1) Anti-apoptosis, inhibits apoptosis in myocardial ischemic

postconditioning, prevents the expression of TAGLN2 and caspase-9, and

upregulates the expression of antiapoptotic protein Bcl-2

(201)

Exo-miR-144 MSCs Treatment Anti-apoptosis, target the PTEN/AKT pathway, and thus improve the

apoptosis of the CMs

(202)

Exo-miR-146a ADSCs/DCs/

CDCs

Treatment 1) Anti fibrosis, down regulating the gene EGR1. 2) Anti-inflammation,

regulated the inflammatory response by inhibiting the IRAK-1. 3)

Anti-apoptosis, targeting of Irak-1 and Traf6, both involved in the toll-like

receptor (TLR) signaling pathway

(182, 210, 215,

231)

Exo-miR-155 Macrophage/ECs Treatment 1) Anti fibrosis, decrease fibroblast proliferation by inhibiting the SOS-1. 2)

Anti-inflammation, can polarize macrophages to M2 cells, inhibit

inflammatory reactions (KLF2/miR-155)

(191, 232)

(Continued)
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TABLE 3 | Continued

Exo-ncRNAs Origination Effect Mechanisms References

Exo-miR-155-5p Serum Treatment 1) Anti fibrosis, enhances the S1PR1 and inhibits the SOCS1/STAT3

signaling pathway, thereby reducing the 2) Anti-inflammation, reduce the

IL-6 and IL-17 in the valve tissue and serum

(214)

Exo-miR-181a MSCs Treatment Anti-inflammation, create an anti-inflammatory environment and increase

the Tregs polarization

(213)

Exo-miR-185 BMMSCs Treatment Anti-apoptosis and anti-inflammation, had the ability of anti-apoptosis

targeting Socs2

(207)

Exo-miR-210 CPCs/MSCs Treatment 1) Anti fibrosis, inhibit the TGF-β-induced fibrosis under oxidative stress.

2) Anti-apoptosis, downregulated its known targets, ephrin A3 and PTP1b,

inhibiting apoptosis in cardiomyocytic cells. 3) Angiogenesis, inducing

capillary-like tube formation and enhancing the migration through

suppressing the expression of the Efna3 and RASA1

(184, 205, 219,

220)

Exo-miR-221 MSCs Treatment Anti-apoptotic by inhibiting the P53 and Bcl-2b and reducing the

methylation of CpG binding protein-2

(206)

Exo-miR-223 BMMSCs Treatment Anti-inflammation, induce the expression of ICAM-1 to inhibit the

inflammatory reaction

(218)

Exo-miR-320 CMs Treatment Anti fibrosis, negatively affect the proliferation and migration of ECs (188)

Exo-miR-320d ADSCs Treatment Anti-apoptosis, negatively regulated STAT3 expression, indirectly inhibited

CMs apoptosis in AF, and increased survival, providing new insights into

treatment strategies of AF

(17)

Exo-miR-423-3p CFs Treatment Anti-apoptosis, improve the viability of the H2C9 and reduce apoptosis by

targeting the RAP2C

(212, 213)

Exo-miR-290/Exo-miR-

294/Exo-miR-295

ESCs Treatment Anti fibrosis, anti-apoptosis and angiogenesis, increases neovascularization

improves cardiomyocyte survival and reduces fibrosis. Enhances cardiac

progenitor cell survival and proliferation, as well as cardiac commitment

(186)

Exo-miR-378/Exo-miR-

29a/Exo-miR-29b/Exo-miR-

455

CMs Treatment Anti fibrosis, reducing the collagen and MMP9 via inhibiting the MAPK and

Smad pathways

(187)

Exo-miR-425/Exo-miR-744 Serum Treatment Anti fibrosis, inhibit fibrosis by targeting the f TGF-β and collagen I (193, 194)

Exo-miR-181b/Exo-miR-

182

CDCs/MSCs Treatment Anti-inflammation, reduce PKCδ transcription. Promoted the polarization of

M2 macrophages and thereby alleviated the inflammatory response

(216, 217)

Exo-miR-150-5p/Exo-miR-

142-3p/Exo-Let-7d

Tregs Treatment Anti-inflammation, reduce the immune reactions, and suppress the Th1

proliferation and secretion of the pro-inflammatory cytokines

(209, 223)

Exo-lncRNA Mhrt ND Treatment Anti fibrosis, inhibit cardiac fibrosis and cardiac myocyte hypertrophy (199)

CMs, cardiomyocytes; ECs, Endothelial cells; CFs, Cardiac fibroblasts; CDCs, cardiosphere derived cells; MSCs, cardiac progenitor cells; ESCs, Embryonic stem cells; ADSCs,

adipose-derived stem cells; BMMSCs, bone marrow derived cardiac progenitor cells; CPCs, cardiac progenitor cells; iPSCs, induced pluripotent stem cells. ND, Not Determined.

strategies of AF (17). The MSCs-exo-miR-19a could inhibit
oxidative stress-induced apoptosis by targeting three prime
untranslated regions in cylindromatosis (CYLD), subsequently
achieving the protective effect (11, 200). Another exo-miRNA
derived from the MSCs (exo-miR-24-3p) was also found to
decrease apoptosis and promote the cardiomyocytes (CMs)
proliferation (201). Under hypoxia, the MSCs-exo-miR-144
could target the PTEN/AKT pathway, and thus improve the
apoptosis of the CMs (3, 202). Moreover, the exo-miR-210
and exo-miR-133a could inhibit apoptosis under hypoxia, by
preventing transgelin 2 (TAGLN2) and caspase-9, and up-
regulating the anti-apoptotic protein Bcl-2b. Simultaneously, it
improved the ability to resist oxidative stress and supported
the stem cells’ survival (203, 204). Exosome-derived miR-
210 downregulated its known targets, ephrin A3 and PTP1b,
inhibiting apoptosis in cardiomyocytic cells (205). The BMMSCs-
exo-miR-22 to reduce the methylation of CpG binding
protein-2 and reduce cardiomyocyte apoptosis (186), and
BMMSCs-exo-miR-221 could mediate the anti-apoptotic effect

by inhibiting the P53 and Bcl-2b (206). Moreover, the BMMSCs-
exo-miR-185 and exo-miR-125b had the ability of anti-apoptosis
(207, 208). The exo-miR-21 originating from the CPCs and iPSCs
was reported to ameliorate the CMs apoptosis, which may relate
to the inhibition of caspase 3/7 mediated apoptosis by the miR-
21/PDCD4 signal axis (183, 196, 209). The CDCs-exo-miR-146a
could reduce scar formation after myocardial infarction in rats,
inhibit cardiomyocyte apoptosis, and improve heart function
(210). In addition, Wang et al. showed that the exo-miR-126
could reduce apoptosis in neonatal rats cardiomyocytes and
improve cell survival (211). Cardiac fibroblasts-exo-miR-423-3p
was also found to improve the viability of the H2C9 and reduce
apoptosis by targeting the RAP2C (212).

Cardiomyocytes apoptosis can occur earlier than atrial
remodeling. AF can also aggravate the apoptosis. Cardiomyocytes
apoptosis and AF are a mutually deteriorating process. Early
intervention for apoptosis may prevent and inhibit the initiation
and progression of AF. Previous studies showed that exo-ncRNAs
have important significance in improving apoptosis. Therefore,

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 December 2021 | Volume 8 | Article 782451

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chen et al. Exosomal ncRNAs for AF

we believe that exo-ncRNAs with anti-apoptotic functions may
have potential prospects in the treatment of AF.

Anti-inflammation

The MSCs-exo-miR-19a could decrease the expression of the
inflammatory cytokines. In addition, the pro-inflammatory/anti-
inflammatory factors were down-regulated/up-regulated by the
treatment with the exo-miR-19a (71). The MSCs-exo-miR-181a
could create an anti-inflammatory environment and increase the
Tregs polarization (213). Moreover, the exosomes derived from
Tregs could transfer the miR-150-5p, miR-142-3p, and Let-7d to
dendritic cells (DCs) and T-helper 1 (Th1), reduce the immune
reactions, and suppress the Th1 proliferation and secretion of the
pro-inflammatory cytokines (214). The exo-miR-146a secreted
by the DCs regulated the inflammatory response by inhibiting the
IRAK-1 (215). Further, the CDCs-exo-miR-181b and BMMSCs-
exo-miR-182 promoted the polarization of the M2 macrophages
and thereby alleviated the inflammatory response (216, 217). The
BMMSC-exo-miR-25, -miR-185, -miR-125b, and ADSCs-exo-
miR-126 were also found to inhibit the inflammatory cytokines
expression (207). Moreover, the exo-miR-223 and miR-210 could
induce the expression of ICAM-1 to inhibit the inflammatory
reaction (25, 32, 218).

The immune response participates in the pathogenesis
of a variety of cardiovascular diseases, including AF. Anti-
inflammatory has been validated maybe useful for the treatment
of AF. EXo-ncRNA, as a new strategy for anti-inflammatory,
should have important significance in the treatment of AF, but
more researcsh are still needed.

Angiogenesis

The ADSCs-exo-miR-126 was found to promote the generation
of microvascular cells and the migration of endothelial
progenitor cells, through enhancing the VEGF pathway via the
suppression of angiogenesis inhibitors SPRED1 and PI3KR2
(192). The EMSCs-exo-miR-21 could induce angiogenesis and
improve the cardiac cells’ survival via inhibiting the PTEN/Akt
pathway (197). The BMSCs-exo-miR-210 and miR-132 could
promote angiogenesis, inducing capillary-like tube formation
and enhancing the migration and proliferation of HUVEC,
through suppressing the expression of the Efna3 and RASA1
(219–221).Moreover, severalMSCs-exo-miRNAs includingmiR-
30b, miR-30c, miR-424, and let-7 were identified to exert pro-
angiogenic properties (178).

Promoting angiogenesis in ischemic areas is one of the
important methods to improve MI. As previously stated, AAI
can increase the susceptibility to AF, so promoting angiogenesis
may be an important method for the treatment and prevention
of AF. The exosomes-ncRNA may have an irreplaceable role in
promoting angiogenesis.

EXOSOME ENGINNERING FOR AF
TREATMENT

Direct Exosome Engineering
In direct encapsulation of cargoes into exosomes by sucrose
gradient ultracentrifugation, Sun et al. used sucrose gradient

ultracentrifugation successfully to encapsulate curcumin (a
hydrophobic reagent) into the EL-4 cells-derived exosomes
(222). However, this protocol can only be used for hydrophobic
drugs. In order to address this, more active encapsulation
techniques were applied, such as loading of catalase along
with (1) incubation with and without saponin, (2) freeze-thaw
cycles, (3) sonication and extrusion (223). Other processes like
lipofection and electroporation have limited transfer efficiency
and exosome concentration. As an alternative approach, the
EVs-imitating structures were developed (173). Liposomes may
be the most promising EV-imitating structure (224). Exosome
delivery approaches mainly include intravenous injection or
direct injection into the target area. Study found that injection
of the liposomes into the infarct zone had significant anti-
inflammatory, anti-fibrotic, and pro-angiogenetic effects (223).

Indirect Exosome Engineering
Insufficient retainment in the myocardium is one of the major
challenges in using exosomes for clinical applications. Currently,
technologies for increasing exosomes retainment are being
developed. Many targeting molecules have been developed for
the exosome conjugation to enhance the retention and achieve
the target delivery to the cardiac tissue. For example, Alvarez-
Erviti et al. fused cardiomyocyte-specific binding peptide to
the exosomal N-terminus of murine transmembrane protein
Lamp2b to improve the cardiac tropism of the exosomes (225).
Vandergriff et al. designed the myocardium-targeting exosomes
with cardiac homing peptide (CHP) and found increased cells
viability and exosomal uptake in the cardiomyocytes (226).
The other example of indirect engineering is the manipulation
of the loading mechanism to selectively load cargoes into the
exosomes. Moreover, an attractive tool for protein delivery by
the exosomes, which was based on the integration of a reversible
protein interaction module was sensitive to blue light and led to
the protein loading into exosomes (227). In addition, through
transferring encoding genes to the parent cells, exosomes with
enhanced production efficiency, specific packaging ability, and
the delivery to target cells were developed, which comprised of
a production booster, an active packaging device, and a cytosolic
delivery helper (166, 228). The latest advances in biomaterials
such as heart patches and hydrogels have made them the new
favorites for endogenous repair treatments. Liu et al. loaded the
exo-miRNAs into hydrogels and exploited them in situ to the
rat hearts. This approach made the more sustainable exosomes
with higher bioavailability, improved cardiac functions, and
decreased CMs apoptosis (229). Studies by Vunjak-Novakovic
et al. and Chen et al. reported similar results (166). Moreover,
encapsulating the exosomes with the antioxidant peptides could
enhance exosome targeting effects. Nevertheless, the targeted
exosome delivery approaches with enhanced retention still need
to be further explored. Moreover, those delivery approaches can
be incorporated with aminimally invasive surgical approach such
as CT or ultrasound guide tube pericardiostomy to reduce the
risk associated with the treatment (Table 4).

Overall, exosomes prepared by exosome engineering may
have a wide spectrum of prospects for the treatment of diseases
including AF.
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TABLE 4 | Current exosomes engineering techniques for Af treatments.

Exosomes engineering technologies Pros Cons

Encapsulate cargoes by sucrose gradient

ultracentrifugation

Protect drugs from degradation, enhance drugs stability,

bioavailability and effect

This protocol can only be used for

hydrophobic drugs

Encapsulation cargoes through incubation, freeze-thaw

cycles, sonication, and extrusion

Allows loading of both hydrophilic and hydrophobic

drugs

Causes exosomal bilayer disruption

EV-imitating structure (liposomes) Targeting, stable structure and contents Physiochemical instability

Can form unwanted degradants

Fusing cardiomyocyte-specific binding peptide to the

exosomes (Cardiac homing peptide)

Enhance exosomes targeting Displays only protein loading

Manipulation of the loading mechanism to selectively

load cargoes into the exosomes (protein loading in

exosomes based on integration of light sensitive

reversible proteins interaction module)

Enhance exosomes targeting

Controllable mechanism of loading

Displays only protein loading

Transfection of a gene encoding exosome-targeting

proteins into parent cells.

Enhance production efficiency, specific packaging, and

delivery to target cells

Displays only protein loading

Heart patches and hydrogels Making exosomes release more sustained with higher

bioavailability; enhance exosomes effects with better

target

The delivery approaches with

enhanced retention is unsatisfactory

ADVANTAGES AND DISADVANTAGES OF
EXOSOME FOR AF

Since the discovery of exosomes, studies on cardiovascular
diseases (CVDs) have attracted extensive attention. In this
review, we focused on the potential application of exosomes as
diagnostic/prognostic and therapeutic tools in AF. Subsequently,
we discussed the pros and cons of the use of exosomes. The
application of exosomes has many advantages (32, 193, 230): (1)
Alterations in exo-cargoes profile secreted by cardiac cells during
AF would reflect the parental cells pathophysiological state with
extreme specificity and sensitivity, and therefore they may appear
as “fingerprint” of the AF pathogenetic processes; (2) Exosomes
can be isolated from nearly all obtainable biofluids such as blood
and urine; (3) Exosomes serve as a vehicle that protects cargoes
from degradation and targets the cargoes to the recipient cells,
with the less traumatic and abnormal modifications. (4) Well-
designed engineered exosomes may enhance their therapeutic
effects, making them promising tools for clinical application. (5)
Exosomes therapy has fewer ethical issues, compared with stem
cell therapy. Although the exosomes application for the AF has
significant benefits, it also has some limitations (31, 202, 228):
(1) Exo-RNAs in the circulating come from different tissues,
so the source of exosomes cannot be completely determined,
which may affect the specificity of the biomarkers for diagnosing
AF. (2) The extraction and purification of exosomes are very
complicated without a gold standard, and the efficiency is
limited, moreover, the specificity and contents of exosomes are
unstable. (3) The safety and toxicity of exosomes cannot be
fully established. Although lower immunogenicity was reported,
some cases may suffer fever or allergic and hemolytic reactions
ect. (4) The delivery methods of the exosomes to the heart
are sub-optimal. Moreover, even many techniques have been
applied to improve the exosome targeting, but there is still
the possibility of “off-target,” which may not only reduce
efficiency but also cause additional side effects. (5) The dosage

regimen of exosomes is not clear, and there are limitations
on their pharmacokinetic parameters. (6) The exact exosomes’
therapeutic effect is unclear, and how exosomes fulfill their
specificity is yet to be fully understood.

Nowadays, exosomes have been extensively investigated in
several pathological contexts such as ACS, MI, and HF diseases,
but barely in the AF. However, as mentioned previously, as
diagnostic biomarkers or treatment for AF, exosomes have many
potential benefits, even if there are some limitations. Therefore,
we need more elucidations to further clarify the exosomes’
clinical value and side effects.

CONCLUSION

In the past decade, research on exosomes biology,
pathophysiological function, and potential clinical application
has increased exponentially and provided novel knowledge in
mechanisms and cargoes of exosomes, thereby providing an
opportunity to use in the AF diagnosis and treatment. The review
of preclinical and clinical studies concluded that the circulating
exosomes containing cardiac-specific cargoes, especially
ncRNAs, have great potential for the AF diagnosis/prognosis.
Further, exo-ncRNAs have important therapeutic effects on AF
pathogenesis. Exosome engineering can improve the distribution
and selectivity to control the exosomal cargoes. Encapsulation
technology has generated a platform for the effective delivery of
synthetic and biopharmaceuticals. Therefore, the application of
the exo-ncRNAs in the AF may have a good prospect. However,
the exo-ncRNAs research related to the AF is still in its infancy,
and many aspects need to be improved: (1) The isolation,
characterization, and identification should be standardized and
simplified. (2) Nomenclature should be consistent. (3) Exosomes
should be quantified. (4) Further elaboration on the exosomes
mechanism, improvement of targeting, reducing degradation,
increasing retention needs to be elucidated in future research.
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In conclusion, this review summarized the current biogenesis,
isolation, biological functions, and future applications of
the exosomes relevant to AF. Exosomes hold unprecedented
opportunities for future applications for the AF either as
biomarkers for diagnosis/prognosis or as therapeutic tools.
Simultaneously, the challenges in the exosomes’ application are
also significant. Therefore, more prospective, large-scale, and
multi-centered trials are needed before the exosomes can be used
clinically in the AF. Undoubtedly, exosome-based application
will herald a new chapter in clinical diagnosis/prognosis and
treatment of AF.
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