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Objective: Congenital heart diseases (CHDs) are associated with an extremely heavy

global disease burden as the most common category of birth defects. Genetic and

environmental factors have been identified as risk factors of CHDs previously. However,

high volume clinical indicators have never been considered when predicting CHDs. This

study aimed to predict the occurrence of CHDs by considering thousands of variables

from self-reported questionnaires and routinely collected clinical laboratory data using

machine learning algorithms.

Methods: We conducted a birth cohort study at one of the largest cardiac centers in

China from 2011 to 2017. All fetuses were screened for CHDs using ultrasound and

cases were confirmed by at least two pediatric cardiologists using echocardiogram.

A total of 1,127 potential predictors were included to predict CHDs. We used the

Explainable BoostingMachine (EBM) for prediction and evaluated themodel performance

using area under the Receive Operating Characteristics (ROC) curves (AUC). The

top predictors were selected according to their contributions and predictive values.

Thresholds were calculated for the most significant predictors.

Results: Overall, 5,390 mother-child pairs were recruited. Our prediction model

achieved an AUC of 76% (69-83%) from out-of-sample predictions. Among the top

35 predictors of CHDs we identified, 34 were from clinical laboratory tests and only

one was from the questionnaire (abortion history). Total accuracy, sensitivity, and

specificity were 0.65, 0.74, and 0.65, respectively. Maternal serum uric acid (UA),

glucose, and coagulation levels were the most consistent and significant predictors

of CHDs. According to the thresholds of the predictors identified in our study, which

did not reach the current clinical diagnosis criteria, elevated UA (>4.38 mg/dl),

shortened activated partial thromboplastin time (<33.33 s), and elevated glucose

levels were the most important predictors and were associated with ranges of

1.17-1.54 relative risks of CHDs. We have developed an online predictive tool for

CHDs based on our findings that may help screening and prevention of CHDs.
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Conclusions: Maternal UA, glucose, and coagulation levels were the most consistent

and significant predictors of CHDs. Thresholds below the current clinical definition of

“abnormal” for these predictors could be used to help develop CHD screening and

prevention strategies.

Keywords: congenital heart disease, machine learning, prediction, laboratory tests, clinical indicators

INTRODUCTION

Congenital heart diseases (CHDs) rank first among birth defects
worldwide and are emerging as a global problem in child health
(1). According to the 2017 Global Burden of Disease Study,
more than 11 million individuals live with CHDs globally, and
CHDs have caused approximately 89 thousand years lived with
disability (1). This implies a tremendous economic burden for
both the affected families and the whole society. However, to
date, no public policies or interventions are specifically directed
at reducing the impact of CHDs. Over the past decades, there
have been breakthroughs in understanding the inherited causes
of CHDs, including identifying specific genetic abnormalities
for selected CHD phenotypes (2, 3). There is also a growing
body of epidemiological research identifying non-inherited risk
factors for CHDs, including maternal socioeconomic status
(SES), illness, therapeutic and non-therapeutic drug exposures,
environmental exposures, and paternal exposures (4). These risk
factors that previous studies identified explained the causes of
approximately 20-30% of CHD cases (5). Most CHDs, therefore,
remain unexplained and are presumed to be multi-factorial.

There are still several knowledge gaps in this area of
research, which implies new opportunities to predict and prevent
CHDs. First, most of the known predictors were derived
from case-control studies. Self-reported questionnaires obtained
information on parental exposures after the child was born,
which may suffer from recall or reporting biases. Second,
although previous epidemiological studies indicated dozens
of risk factors for CHDs (4), the role of maternal routine
laboratory test results during the critical window for fetal heart
development has seldom been studied. These indicators are
routinely collected in clinical practice and consume time and
money to be maintained yet have never been used in CHD
research before. Third, combining objective clinical indicators
with self-reported variables to develop a CHD predictive model
could provide unique opportunities to develop efficient screening
and prevention tools in clinical settings that deal with prenatal
care. Finally, high collinearities exist among some of these high-
volume variables. Under such conditions, traditional statistical
methods are not adequate to predict CHDs with a non-converge
model. Machine learning (ML) provides a potential way to solve
this issue.

Compared to traditional models, ML algorithms usually have
significantly higher predictive performance and are robust in
the presence of collinearity problems and outliers. An increasing
number of studies in the field of heart disease now use ML
algorithms (6). ML approaches have also been utilized to identify
and predict CHDs. Most of these studies tried to identify CHDs

based on heart sounds, images, ECG, and genetic makeup (7, 8).
Three previous studies predicted the occurrence of CHDs based
on a limited number of self-reported factors from questionnaires
(9–11). One was a hospital-based case-control study involving
15 significant self-reported variables from interviews conducted
with 119 CHD cases and 239 controls from central China (9).
The other two studies used the same dataset from a retrospective
cross-sectional study from northwest China that included nine
composite variables collected via questionnaire (n = 78 CHD
cases) (10, 11). Unfortunately, none of these studies considered
clinical laboratory indicators to predict CHDs.

To fill the knowledge gaps described above, we conducted a
birth cohort study to identify the most important predictors of
CHDs and their predictive characteristics, including area under
the Receiver Operating Characteristic (ROC) curves (AUC),
accuracy, sensitivity, specificity, and thresholds for a total of
1,127 variables using ML algorithms, specifically the Explainable
BoostingMachine (EBM). These variables were gathered through
self-reported questionnaires and routine clinical laboratory data
collected during early pregnancy.

MATERIALS AND METHODS

Study Design and Participants
This birth cohort study was conducted at a cardiac referral
center in Guangdong province, south China from 2011 to 2017.
All pregnant women accepting prenatal care in the Department
of Obstetrics and Gynecology, with informed consent, were
included at their first interview to create the profile of pregnancy
and delivery around the 16th gestational week. Our inclusion and
exclusion criteria were as follows. (1) Births with chromosomal
anomalies, gene mutations, or non-cardiac defects were excluded
as recommended by EUROCAT to focus on isolated CHDs (12).
(2) We also excluded twins and multiple births because they
might possess different etiology from singletons (13). Finally, (3)
if a mother was enrolled in the cohort multiple times during
different pregnancies, only the first record was included because
ML methods usually cannot control for clustering.

Health Outcomes and Data Sources
CHDs were the primary outcome of interest in our study. Fetuses
were screened for congenital abnormalities by basic ultrasound
at 11-13 and 15-20 gestational weeks. Fetuses suspected of having
a CHD underwent an echocardiogram. Every newborn was
clinically evaluated for congenital abnormalities before discharge
(usually within 72 h of birth). Each CHD case was confirmed
by at least two senior pediatric cardiologists using a post-natal
echocardiogram. A third senior pediatric cardiologist resolved
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any disagreements. Results of computed tomography, cardiac
catheterization, surgery, or autopsy were referenced to assist the
diagnosis. CHD diagnoses were coded with detailed phenotypes
according to the International Classification of Diseases version
10 (ICD-10) with codes Q20-Q28.

Predictors and Data Collection
We obtained a total of 1,127 variables from self-reported
questionnaires and routine clinical laboratory test results.
The timing of when different variables were collected for
each participant is illustrated in Supplementary Figure 1. We
collected self-reported variables through face-to-face interviews
at the time of enrollment conducted by two obstetric nurses
using a standard, structured questionnaire. These variables
included parental SES, disease status, medication use, behavior,
reproductive history, and environmental exposures during
periconceptional periods (from 6 months before pregnancy
to the time of interview). Meanwhile, we extracted the first-
time record of routine laboratory test results from medical
charts. The Department of Laboratory Medicine performed
all the clinical tests in our hospital according to the current
standardized protocol for systematically used testing in hospitals.
The enrolled women were followed for their entire pregnancy.
At the time of hospitalization for delivery or termination, the
second face-to-face interviewwas conducted to evaluatematernal
exposures between the first interview and the end of pregnancy.
In addition, outcomes and basic information regarding the
newborns were recorded.

Statistical Analysis
We first excluded variables with missing rates higher than
50% and some categorical variables, almost all with only one
category. Then, we used the chi-square test to evaluate the
difference in CHD incidence among groups of participants by
characteristics. In addition, the t-test was used to detect the
difference in distributions of maternal continuous laboratory test
results between CHD cases and non-CHDmother-infant pairs.

Second, we used a stratified approach to randomly split
the dataset into two parts: a training set (70%) and a testing
set (30%). The training set was used in the model training
process, and the testing set was used for the final validation.
To deal with the imbalance problem in the training set due to
the low incidence of CHDs, we applied the AllKNN method
from SMOTE approaches to balance the data (14). The AllKNN
approach first builds a KNNmodel and computes several nearest
neighbor centers. Then, it under samples the majority class (non-
CHD in this study) by removing samples with different classes
from their nearest neighbor centers. This approach dramatically
reduces the unbalanced ratio represented in the sample. We
then incorporated a continuous random term and a categorical
random term into the EBM to identify the importance score
as the thresholds to select significant variables. Variables with
importance scores greater than their corresponding random
terms were included in the final EBM to predict CHDs in the
training set. Afterward, we trained the final model by only
including the selected significant variables using cross-validation

to select the best hyperparameters. Finally, the performance of
this final model was evaluated in the testing set.

In this study, we used EBM to predict the occurrence of CHDs.
EBM is derived from the generalized additive model (GAM) and
uses techniques from Random Forest and Boosted Tree models.
The basic form of EBM is:

g
(

E
[

y
])

= β0 +

∑

fj(xj)

Where g is the link function for classification and f is the
feature function. The major differences between EBM and
traditional GAMs include: (1) Each feature function fj in
EBM is determined using modern ML techniques, such as
bagging and gradient boosting, with round-robin cycles; (2)
EBM can automatically detect and include pairwise interaction
terms and improves accuracy; (3) EBM plots the f feature
function to examine the association between each variable
and the outcome. Previous studies suggest that EBM performs
better on health datasets than other established ML models,
including the light gradient boosting model, regularized logistic
regression, random forest, and xgboost (15). To verify EBM’s
performance using our data, we conducted additional analyses
using six other ML models, including random forest, gradient
boosting, Xgboost, logistic regression, ANN, and Naïve Bayesian
(Supplementary Table 1). We also built a Vote Classifier by
combining all these seven models (EBM, random forest,
gradient boosting, Xgboost, logistic regression, ANN, and Naïve
Bayesian). EBM outperformed all other approaches and the
combined Voting classifier on our data.

Finally, we evaluated model performance within the testing
set using the ROC curves. Commonly used performance
indicators including AUC, accuracy, sensitivity and specificity
were calculated. We also considered F-score and the Precision-
Recall curve when assessing the performance of our model. F-
score is a harmonic indicator considering both precision and
recall as:

F − score = (1+ β2)
Precision · Recall

β2 · Precision+ Recall

Where precision and recall are two indexes commonly
used to assess the performance of ML models: Precision =

True positive
True positive+False positive

; Recall =
True positive

True positive+False negtive
. If β = 1,

we get an F1-score, and at this time, the precision and recall are
equally important and equally weighted. When β = 2, we get
F2 score and recall has a higher weight and is more important
at this point. We compared the predictive performance of the
predictors by calculating AUC. We ranked the top 35 predictors
of CHDs according to their contributions in themodel. An online
predictive tool for CHDs was established based on our model
to assist in developing prevention and screening strategies. For
the top predictors, their associations with CHDs were assessed
individually after controlling for the other predictors. For
continuous predictors, their linear and non-linear associations
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TABLE 1 | Predictive values of maternal uric acid, glucose, and coagulation levels during early pregnancy for congenital heart diseases.

Variables Thresholds* Sensitivity Specificity Accuracy AUC

EBM model 0.03 0.74 0.65 0.65 0.76 (0.69, 0.83)

Maternal serum UA 261.13 umol/L 0.52 0.71 0.70 0.63 (0.58,0.67)

Maternal fasting plasma glucose 4.35 mmol/L 0.85 0.32 0.34 0.55 (0.51,0.59)

Maternal 1-h plasma glucose 6.14 mmol/L 0.78 0.32 0.33 0.53 (0.49,0.56)

Maternal 2-h plasma glucose 7.01 mmol/L 0.86 0.28 0.30 0.53 (0.50,0.57)

Maternal APTT 33.33 s 0.64 0.52 0.53 0.57 (0.53,0.62)

Maternal INR 1.01 0.95 0.10 0.12 0.51 (0.47,0.56)

Maternal TT 14.64 s 0.32 0.75 0.74 0.52 (0.48,0.57)

Maternal PT-A 98.67 0.94 0.11 0.14 0.51 (0.47,0.56)

AUC, area under the curve.
*Thresholds with optimal Youden index to predict CHDs.

with CHDs were simulated by fitting loess models, and the
thresholds were defined by optimizing the Youden index. We
categorized the study participants into low-risk and high-risk
groups according to the thresholds. We then calculated the risk
ratios (RRs) of CHDs in the high-risk groups compared to
low-risk groups using normal distribution approximation (16,
17). Predictive values, including AUC, accuracy, sensitivity, and
specificity were also calculated for each of the most significant
predictors. A two-side P-value< 0.05 was considered statistically
significant. We accomplished all analyses using Python 3.7 and R
3.6.1 (R Core Team, 2019).

RESULTS

Basic Characteristics of Study Participants
Overall, we included 5,390 mother-child pairs, and among
them, 157 (2.9%) babies with CHDs were identified
(Supplementary Figure 2). Detailed phenotypes of CHDs
we diagnosed were presented in Supplementary Table 2. Our
study participants’ birth outcomes and maternal characteristics
are presented in Supplementary Tables 3, 4, respectively.
Maternal clinical laboratory indicators were tested at gestational
week 16 (median) (range: 7-28). In total, we included 1,127
variables in the ML models (Supplementary Table 5). Among
them, 379 were obtained from the self-reported questionnaire,
699 from routine clinical laboratory test data, and 49 were
extracted from infants’ medical charts.

Prediction of CHDs Occurrence
Using the data derived from above, an EBM was trained to
predict CHD occurrence. The model achieved an AUC of 76%
(69-83%) in the testing sample (Supplementary Figure 3). The
F1, F2 score, and Precision-Recall curve of our model were
shown in Supplementary Figures 4-6. By using 0.05 as the cut-
off value, our model could obtain a total accuracy, sensitivity,
and specificity of 0.94, 0.26 and 0.96, respectively. The F1
and F2 score was about 0.2 and 0.25, respectively. However,
for CHDs with a high disease burden, sensitivity is the most

important indicator when selecting the cutoff value of our model.
Thus, we defined 0.03 with the relative high sensitivity as the
cutoff value and got a total accuracy, sensitivity, and specificity
of 0.65, 0.74, and 0.65, respectively (Table 1). Meanwhile, we
obtained a F1 score of 0.1, F2 score of 0.22, and the area under
the Precision-Recall curve of 0.15 (Supplementary Figures 4-6).
The sensitivity (0.72) and specificity (0.61) from the combined
Voting classifier did not improve those of our EBM. The top
35 predictors of CHDs identified in our study are shown in
Figure 1. Detailed information regarding predictor scores and
definitions are presented in Supplementary Table 6. All the top
35 predictors of CHDs were obtained from laboratory tests
except for self-reported abortion history, which ranked 24th
among predictors. Among the top predictors of CHDs, maternal
coagulation function indicators [APTT, international normalized
ratio (INR), thrombin time (TT), and prothrombin activity (PT-
A)], glucose levels [fasting plasma glucose (FPG), 1-h plasma
glucose (PG), and 2-h PG] and maternal serum UA levels were
the most consistently important.

Associations Between Clinical Indicators
and CHDs
We further fitted the relationships between maternal UA,
glucose, and coagulation levels with CHDs by controlling
for the other predictors of CHDs. The results are presented
in Figures 2–4. As shown in Figure 2, the risk of CHDs
increased almost monotonically with elevated UA levels in early
pregnancy. There were consistent inverse U-shaped relationships
between FPG, 1-h PG, and 2-h PG levels and CHD risks
(Figure 3). There was an unexpected decreased risk of CHDs
(RR<1) when maternal 2-h plasma glucose PG ≥ 9 mmol/L.
This might be due to lower precision or inadequate study
power as a result of the limited number of mothers with
2-h PG levels higher than 9 mmol/L (N = 372, 6.9%),
especially in CHD cases (N = 4). For the relationships between
maternal coagulation indexes and CHDs, we observed that
the risk of CHDs increased with shortened APTT, lower
INR (Figures 4A,B), and elevated PT-A (Figure 4D). There
was no apparent relationship between TT and CHD risk
(Figure 4C).
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FIGURE 1 | Top 35 predictors of congenital heart diseases derived from the Explainable Boosting Machine. APTT, activated partial thromboplastin time; GLUC,

fasting plasma blood glucose; EO%, eosinocyte ratio; MONO#, monocyte counts; 2HGLUC, 2-h plasma blood glucose; 1HGLUC, 1-h plasma blood glucose; UOP#,

uric other particles counts; UA, serum uric acid; LYMPH%, lymphocyte ratio; PDW, platelet distribution width; BASO#, basophilic granulocyte count; LYMPH#,

lymphocyte count; HbA2, hemoglobin A2; WBC, white blood cells; INR, international normalized ratio; MCV, mean corpuscular volume; TT, thrombin time; UTP#, uric

total particles counts; NEUT%, neutrocyte ratio; GGT, γ-glutamyl transpeptidase; HbA1c, hemoglobin A1c; UREA, serum urea; EO#, eosinocyte count; UEC, urine

epithelial cells; MONO%, monocyte ratio; PT-A, prothrombin time activity percentage; TBA, total bile acid; PT, prothrombin time; Co2CP, carbon dioxide combining

power; MPV, mean platelet volume; NEUT#, neutrocyte count; Non-Lysed RBC%, percentage of non-lysed red blood cell; ENEUT, elevated neutrocyte.

Thresholds of Clinical Indicators to Predict
CHDs
In Figures 2-4, we marked the thresholds of maternal UA,
glucose, and coagulation levels with optimal Youden indexes to
predict CHDs using dashed lines. The threshold of UA to predict
CHDs was 261.13 umol/L (4.38 mg/dl). For glucose levels, the
threshold of FPG, 1-h PG, and 2-h PG levels to predict CHDs
was 4.35, 6.14, and 7.01 mmol/L, respectively. The thresholds of
APTT, INR, TT, and PT-A to predict CHDs were 33.33, 1.01,
14.64, and 98.67 s, respectively.

Detailed thresholds and predictive values for UA, glucose,
and coagulation levels are shown in Table 1. UA, followed by
APTT, was the most valuable predictor with the highest AUC
and acceptable accuracy, sensitivity, and specificity. Predictive
values of the three indicators of glucose (FPG, 1-h PG, and
2-h PG) for CHDs were consistent with high sensitivity and
acceptable AUC, but low specificity. Although INR and PT-A
obtained the highest sensitivity (0.94-0.95), they also brought
the highest false-positive risk with the lowest specificity (0.10-
0.11).

Risks of CHDs Associated With Abnormal
Clinical Indicators
We defined abnormal UA, glucose, and coagulation levels
according to the thresholds above and evaluated the associated
RRs of CHDs (Table 2). We found that FPG > 4.35 mmol/L was
associated with the highest risk of CHDs (aRR = 1.54, 95%CI:
1.49-1.59), followed by APTT < 33.33 s (aRR = 1.42, 95%CI:
1.39-1.46), 2-h PG > 7.01 mmol/L (aRR = 1.29, 95%CI: 1.25-
1.33), UA > 261.13 umol/L (aRR= 1.27, 95%CI: 1.24-1.31), INR
< 1.01 (aRR = 1.19, 95%CI: 1.17-1.22), 1-h PG > 6.14 mmol/L
(aRR = 1.18, 95%CI: 1.15-1.20), and PT-A > 98.67 (aRR = 1.17,
95%CI: 1.15-1.19), respectively.

DISCUSSION

Predictors of CHDs
Our results indicated that maternal routine laboratory test results
during early pregnancy might be more important for predicting
CHDs than self-reported variables from questionnaires. We
included more than 1,000 variables from both questionnaires
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FIGURE 2 | Associations between maternal serum uric acid levels and risk of

congenital heart diseases in offspring. The dashed line indicates the threshold

with the optimal Youden index to predict CHDs.

and laboratory test results. However, only one predictor obtained
from the questionnaire (abortion history) was selected into
the top 35 significant predictors of CHDs. For laboratory test
results, we found that maternal UA, glucose levels, coagulation
functions, infectious indicators, and other hematuria test results
contributed the most. In the current study, we focused on the
predicted value of UA, glucose, and coagulation levels for CHDs
because the associations between each indicator in these three
categories and CHDs were consistently significant. Infection is
another composite index that contributes significantly to CHDs.
However, it is difficult to define the composition of infection
without detailed bacterial or viral isolation results. Thus, we
will systematically present the results of infections separately in
the future.

None of the previous studies predicting CHD occurrence
using ML algorithms considered maternal laboratory test results
predictors of CHDs (9, 10). The first hospital-based case-control
study involved 119 CHD cases and 239 controls from central
China (9). The authors collected 36 variables through face-
to-face interviews using questionnaires and used univariate
logistic regression analyses to select significant predictors
of CHDs. They then developed a standard feed-forward
BPNN prediction model for CHDs by involving 15 significant
predictors from the univariate logistic regression (gravidity,
parity, history of abnormal reproduction, family history of
CHD, maternal chronic disease, maternal upper respiratory tract
infection, environmental pollution around maternal dwelling
place, maternal exposure to occupational hazards, maternal
mental stress, paternal chronic disease, and paternal exposure to
occupational hazards as risk factors; and high education level,
intake of vegetables/fruits, intake of fish/shrimp/meat/egg, and

intake of milk/soymilk as protective factors) (9). The other
cross-sectional study included 78 CHD cases among 33,831 live
births. They compared the accuracy of three classification models
[ML algorithms Weighted Support Vector Machine (WSVM),
Weighted Random Forest (WRF), and logistic regression (Logit)]
in predicting CHDs. Only nine composite variables collected by
questionnaires were included in themodels (maternal age, annual
per capita income, family history, maternal history of illness,
nutrition and folic acid deficiency, maternal illness in pregnancy,
medication use in pregnancy, environmental risk factors in
pregnancy, and unhealthy maternal lifestyle in pregnancy) (10).

Pregnant women are required to undergo several routine
laboratory tests during early pregnancy. These laboratory test
results are crucial for diagnosing, screening, and monitoring
maternal conditions during pregnancy. Combining these
objective indicators with self-reported variables to predict CHD
occurrence may provide novel opportunities to identify high-risk
populations and develop efficient prevention strategies to reduce
CHDs. In addition, no additional resources would be required to
obtain these test results.

Maternal Elevated UA Levels and
Increased Risk of CHDs
We found that the risk of CHDs increased monotonically
with higher UA levels during early pregnancy. The optimal
UA threshold to predict CHDs was 261 umol/L (4.38 mg/dl).
Compared with mothers with UA ≤ 4.38 mg/dl, those with
elevated UA levels (UA > 4.38 mg/dl) suffered a 27% higher risk
of having a baby with a CHD.

Consistent with our results, hyperuricemia has been observed
as a clinical risk factor for CHDs (18). Ke et al. further studied
the role of UA in the process of cardiac differentiation based
on their clinical observation that maternal hyperuricemia might
be a risk factor for CHDs (18). They confirmed that UA
promotes cardiac differentiation of hPSCs and suggested that
UA abnormalities might be a risk factor for abnormal fetal heart
development in the early stages of embryogenesis. Meanwhile,
CHD patients, both cyanotic and non-cyanotic, have higher
serum UA levels than patients in the general population (19, 20).
In addition, previous epidemiological, experimental, and clinical
studies found that hyperuricemia was associated with increased
incidence of and mortality related to adult cardiovascular
disease (CVD), including hypertension, atherosclerosis, atrial
fibrillation, and heart failure (20–22). Hyperuricemia promotes
the occurrence and development of CVD by regulating
molecular signals, such as inflammatory response, oxidative
stress, insulin resistance, endoplasmic reticulum stress, and
endothelial dysfunction (21). The associations between elevated
UA and CHDs may share similar mechanisms to hyperuricemia
and other cardiac diseases.

The threshold of UA to predict CHDs in our study
(4.38 mg/dl) was lower than the current clinical criteria
defining hyperuricemia in women (6 mg/dl) (22). Another
study defined hyperuricemia as female UA levels exceeding
5.7 mg/Dl (23). However, consistent with our study, a recent
study confirmed that the threshold of UA levels to increase
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FIGURE 3 | Associations between maternal plasma fasting plasma glucose (A), 1-h plasma glucose (B) and 2-h plasma glucose levels (C) and risk of congenital

heart diseases in offspring. Dashed lines indicate the thresholds with optimal Youden index to predict CHDs.

total mortality (4.7 mg/dl) and cardiovascular mortality (5.6
mg/dl) risk were also significantly lower than the current
clinical diagnostic criteria (24). Considering the free transfer
of UA via the placenta (25), higher UA exposure, even
below the hyperuricemia diagnostic criteria, during fetal
cardiac development may also increase the risk of CHDs
in offspring.

Maternal Elevated Glucose Levels and
CHD Risk
We observed that maternal elevated FPG (>4.35 mmol/L), 1-h
PG (>6.14 mmol/L), and 2-h PG (>7.01 mmol/L) levels during
early pregnancy were associated with an 18-54% increased risk
of CHDs. The thresholds of glucose levels to predict CHDs in
our study were lower than the clinical definition of gestational
diabetes mellitus (DM) recommended by the World Health
Organization as one or more of the following criteria are met:
FPG 5.1–6.9 mmol/L, 1-h PG≥ 10.0 mmol/L or 2-h PG 8.5–11.0
mmol/L (26, 27).

It is well-known that women with diabetes are at a
significantly increased risk of having offspring with CHDs.
Maternal hyperglycemia is the most common medical condition
experienced by pregnant women and is associated with a 2-
5-fold increase in CHDs independent of genetic contributors

(28–30). A nationwide cohort study conducted in Denmark
found that the association between maternal pregestational

DM and increased CHD risk neither changed over time
nor differed by diabetes subtype (31). All CHD phenotypes

were associated with maternal pregestational DM (RRs ranged

from 2.74 to 13.8). The association between CHDs and acute
pregestational diabetes complications was robust, suggesting
a role for glucose in the causal pathway of CHDs. Clinical
data suggest that glucose metabolism during preconception,

first trimester, and second trimester is strongly correlated (32).
Thus, our results regarding the associations between CHDs
and glucose imbalance during early pregnancy are comparable
with previous studies. In addition, recent research has shown
that pregnant women with elevated blood glucose levels, even
those below the threshold of diagnosable diabetes, were more
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FIGURE 4 | Associations between maternal coagulation indexes and risk of congenital heart diseases in offspring. Dashed lines indicate the thresholds with optimal

Youden index to predict CHDs.

likely to have babies with CHDs (33). This retrospective study
included 19,171 mother-child dyads and found that plasma
glucose levels during early pregnancy were associated with an
increased risk of CHDs in expectant mothers without diabetes
(aOR = 1.08, 95%CI: 1.02-1.13 per 10 mg/dl increase in random
first trimester plasma glucose values). The consistency of our
results with this study indicates that glucose levels during early
pregnancy may be a modifiable risk factor for CHDs in non-
DMmothers.

The pathways through which maternal elevated glucose levels
induce CHDs are unclear. Previous animal studies suggested
that potential mechanisms may include increased oxidative stress
levels in the fetal heart (34, 35), apoptosis of heart tissue
(36, 37), abnormal regulation of critical pathways in cardiac
development (38, 39), and biological behavior variation of cardiac
neural crest cell during development under the context of higher
glucose levels (40). If the results from animal studies can be
generalized to humans, transient elevations in glucose values
during critical periods of cardiac development might disturb
the cardiac neural crest migration even in embryos of mothers
without diabetes and thereby contribute to the risk of CHD in
the fetuses (33).

Effect of Maternal Hypercoagulation on the
Risk of CHDs
Decreased INR and APTT and increased PT-A were associated
with increased risk of CHDs in the current study. Although the
thresholds of INR, APTT, and PT-A were within the current
clinical reference intervals, maternal higher coagulation was
associated with a 1.17-1.42 times higher risk of having a baby with
a CHD.

Although hypercoagulation is a well-known significant
risk factor for adult CVD, the potential association between
hypercoagulation and CHDs has seldom been noticed in
previous studies (41, 42). A recent study found that self-reported
maternal clotting disorders (aOR=8.55, 95%CI: 1.51-48.44) and
prescriptions for the anticoagulant enoxaparin (aOR = 3.22,
95%CI: 1.01-10.22) were significantly associated with elevated
CHD risk (43). Our study suggests that hypercoagulation,
instead of anticoagulant use, might be the real risk factor
of CHDs. Pregnancy is a hypercoagulable state, or at least
a factor in hypercoagulability, due to the physiologically
adaptive mechanism in the coagulation and fibrinolytic
systems to prevent postpartum bleeding (44). However, when
combined with an additional hypercoagulation, the risk of
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TABLE 2 | Risk ratios of congenital heart diseases with exposure to abnormal uric acid, glucose and coagulation levels.

Variables Abnormal condition* Current clinical reference

criteria for normal

aRRs (95%CI)

Maternal serum UA >261.13 umol/L (4.38 mg/dl) <360 umol/L

(6 mg/dl)

1.27 (1.24,1.31)

Maternal fasting blood glucose >4.35 mmol/L <5.1 mmol/L 1.54 (1.49,1.59)

Maternal 1-hour glucose >6.14 mmol/L <10.0 mmol/L 1.18 (1.15,1.20)

Maternal 2-hour glucose >7.01 mmol/L <8.5 mmol/L 1.29 (1.25,1.33)

Maternal APTT <33.33 s 20-40 s 1.42 (1.39,1.46)

Maternal INR <1.01 0.8-1.5 1.19 (1.17,1.22)

Maternal TT >14.64 s 11-14 s 1.02 (1.00,1.04)

Maternal PT-A >98.67 75-100% 1.17 (1.15,1.19)

Adjusted for all the variables in the model.

UA, uric acid; APTT, activated partial thromboplastin time; INR, international normalized ratio; TT, thrombin time; PT-A, prothrombin time activity percentage.

*According to the thresholds with optimal Youden index to predict CHDs in the current study.

thrombosis or embolism may become substantial due to
potential interaction between pregnancy and an acquired or
heritable thrombophilia, which may cause adverse experiences
(44). Maternal thrombophilia was associated with pre-eclampsia,
intrauterine growth restriction, and abruption in previous
studies (45). Thus, maternal hypercoagulation may increase
CHD risk via thrombosis.

Application of ML in Clinical Data
Although predictive models using ML algorithms have been
developed and used for a great variety of diseases, including
CVD, such predictive models were seldom used to predict
CHDs or other birth defects. In the current study, we adopted
EBM to predict CHDs based on 1,127 variables, including both
laboratory test results during early pregnancy and self-reported
information from questionnaires, to obtain an overall AUC,
accuracy, sensitivity, and specificity of 76% (69-83%), 0.65, 0.74,
and 0.65, respectively. Three previous studies tried to predict
CHD occurrence using the ML algorithms mentioned above (9–
11). The previous hospital-based, case-control study achieved a
sensitivity of 0.78, specificity of 0.90, accuracy of 0.86, Yuden
Index of 0.68, and AUC of 0.87 (9). The other retrospective cross-
sectional study obtained an AUC of 0.82 (0.78-0.84), 0.81 (0.78-
0.84), and 0.80 (0.77-0.83) for WSVM, Logit, and WRF models,
respectively (10).

The predictive values of the models used in previous
studies are comparable to ours. However, our study has several
advantages and impacts over previous work. First, we conducted
a birth cohort study, which is better at determining causal
inference than previous studies using a case-control (9) or
cross-sectional design (10, 11). All predictors in our study were
collected prior to diagnosing any CHD and, therefore, recall
bias was minimized accordingly. The cohort study design also
illustrates the temporal sequence from predictor to CHD more
clearly. Second, our study is the first study to include maternal
laboratory test results as predictors of CHDs together with other
self-reported variables from questionnaires. These laboratory
indicators were routinely collected in clinical settings or hospitals

to assist in diagnosis and treatment. However, they have never
been considered in any previous studies to predict CHDs. The
leverage and effective utilization of routinely collected data in
predicting CHDs will be highly cost-effective. Our findings
have a high potential for direct clinical application. Third, our
prediction of CHD risk factors was based on EBM, which
performs better than other ML approaches that were used in
many previous studies.

Clinical Implications
Our results will have several important clinical implications.
First, routine laboratory test results may be more important
predictors of CHDs than self-reported risk factors from
questionnaires. Second, among the multiple routine laboratory
test results, maternal UA, glucose, and coagulation function
indicators were the most important and consistent predictors
of CHDs. Third, elevated UA, glucose, and coagulation levels,
even those below the current clinical definition of abnormal, were
consistently associated with increased CHDs.

To implement our results in clinical practice, (1) we developed
an online predictive tool for CHDs (https://xdeng3.shinyapps.
io/CHD_model/). On this website, probabilities of CHDs will
be calculated after inputting/importing the values of the top
predictors of CHDs. For example, pregnant women with a >50%
probability of having a baby with a CHD could be identified
and referred for echocardiogram screening. (2) Screening factors
with high sensitivity (INR and PT-A) could be used first to
identify most potential CHDs cases but would also bring a
high false positive rate. (3) More reliable factors, such as UA,
APTT, fasting, 1-h, and 2-h PG levels, should be used to
make comprehensive medical judgments. Finally, (4) pregnant
women with elevated UA, glucose, and coagulation levels,
especially those clinically diagnosed, are strongly encouraged
to undergo fetal echocardiogram screening to detect CHDs
earlier. Early diagnosis of fetal CHDs enables early referral,
even prior to delivery of critical CHD patients, to centers
with substantial expertise in managing CHDs and can improve
newborn outcomes accordingly. In addition, emerging in utero
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therapies provide additional intervention options in the case of
early CHD diagnosis.

Strengths and Limitations
Our study contains several strengths. First, this is a birth
cohort study. All predictors were collected before CHD diagnosis
and made the association assessment more reliable. This
time sequence from exposure to CHDs allowed us to infer
the causal associations between the predictors and CHDs in
offspring. Second, we are the first study to consider maternal
laboratory test results as predictors of CHDs together with
other self-reported variables from questionnaires. In addition,
we focused on the clinical indicators during early pregnancy,
which covers the critical window of fetal heart development.
According to our results, these clinical indicators during early
pregnancy are essential predictors of CHDs and should not
be neglected. Third, we adopted an advanced ML algorithm,
EBM, to predict CHDs based on thousands of variables.
This algorithm enabled us to detect never-before-considered
predictors of CHDs.

Several limitations should also be considered when
interpreting our results. First, the incidence of CHDs in
our study (2.9%) is higher than the expected incidence in
the general population (1%). Because our study population
was enrolled in one of China’s largest cardiac referral centers,
selection bias may be a concern. Therefore, the generalizability
of our study may be limited to more severe cases. However,
our study enabled the accumulation of an adequate sample
size, which increased study power for severe and critical CHDs.
In addition, a sensitivity study was conducted by excluding
the referral participants, and the results were similar to our
original findings. Furthermore, the generalizability of our
findings could be verified by a large prospective multicenter
study to confirm the roles of the significant clinical predictors
on CHDs. Second, genetic variables were not available in
our study because they were not routinely collected unless
specially prescribed by physicians. However, we included
family history of CHDs in the model. Meanwhile, only a small
number of susceptible pregnant women accept genetic tests,
which are expensive and not covered by insurance in China.
In addition, only a tiny fraction of CHDs was attributed to
known genetic factors (<20%). Third, attrition is always a
concern for cohort studies. However, we achieved a follow-up
rate of 100% in the current study. Forth, reporting bias in the
questionnaire is another potential concern. We reduced the
reporting bias through several strategies, which were introduced
in our previous work (13). Fifth, we checked and ensured
that the diagnostic criteria, laboratory tests standards, and
reporting system did not change during the entire study period
for quality assurance and quality control concerns. Finally,
our results for selected variables (e.g., maternal 2-h plasma
glucose level) were unstable due to the limited number of
cases who were exposed to extreme levels. Therefore, these
results should be validated in other cohort studies with larger
sample sizes.

CONCLUSIONS

We identified the top 35 predictors of CHDs out of 1,127
variables during early pregnancy using ML approaches. The
AUC, accuracy, sensitivity, and specificity of our model ranged
from 0.65 to 0.76. Maternal UA, glucose, and coagulation levels
were the most consistent and significant predictors of CHDs.
Thus, their thresholds, even those below the current clinical
definition of abnormal for these three predictors, could be used
to help develop CHD screening and prevention strategies.
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