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Built on the foundation of the randomized controlled trial (RCT), Evidence BasedMedicine

(EBM) is at its best when optimizing outcomes for homogeneous cohorts of patients like

those participating in an RCT. Its weakness is a failure to resolve a clinical quandary:

patients appear for care individually, each may differ in important ways from an RCT

cohort, and the physician will wonder each time if following EBM will provide best

guidance for this unique patient. In an effort to overcome this weakness, and promote

higher quality care through a more personalized approach, a new framework has

been proposed: Medicine-Based Evidence (MBE). In this approach, big data and deep

learning techniques are embraced to interrogate treatment responses among patients in

real-world clinical practice. Such statistical models are then integrated with mechanistic

disease models to construct a “digital twin,” which serves as the real-time digital

counterpart of a patient. MBE is thereby capable of dynamically modeling the effects

of various treatment decisions in the context of an individual’s specific characteristics. In

this article, we discuss how MBE could benefit patients with congenital heart disease,

a field where RCTs are difficult to conduct and often fail to provide definitive solutions

because of a small number of subjects, their clinical complexity, and heterogeneity. We

will also highlight the challenges that must be addressed before MBE can be embraced

in clinical practice and its full potential can be realized.

Keywords: artificial intelligence, congenital heart disease, deep learning, evidence-based medicine, personalized

medicine, randomized controlled trial

INTRODUCTION

Medicine remains both art and a science. It is the art of selecting a plan for care of individual
patients, informed by what science reveals through clinical trials and observational studies on
groups of patients who share their condition. The art and the science are congruent to the extent
that the individual patient resembles the average subject in the scientific studies. For decades, the
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incongruities have been suppressed by a decision framework
for patient management dominated by Evidence-Based Medicine
(EBM) (1). Randomized controlled trials (RCT) are widely
regarded as the best available method for accumulating medical
evidence and proving treatment efficacy, and is responsible
for much progress throughout cardiovascular medicine, but
may lack the nuance required to successfully address complex
questions. For example, in congenital heart disease (CHD),
the Single Ventricle Reconstruction (SVR) trial has been a
major achievement (2). Its primary publication carried the
message that the right ventricle to pulmonary artery shunt
(RVPAS) during the Norwood procedure resulted in better
transplantation-free survival at 12 months when compared
to the modified Blalock-Taussig shunt (MBTS). However,
later reports made new hemodynamic observations, described
neurodevelopmental outcomes more completely, and provided
a deeper understanding of risk factors (3). Arguably the most
important observation of the SVR trial stemmed from secondary
analyses showing that depending on specific characteristics, some
patients would likely benefit from the MBTS rather than the
RVPAS (4). Reflecting on the broad heterogeneity of the study
population, perhaps this should not be surprising.

THE LIMITATIONS OF EVIDENCE-BASED
MEDICINE

Direct applicability of EBM to patients in the real world is limited
because there is never a perfect match for the RCT cohorts
upon which the EBM is based (Table 1). The RCT generates
evidence about “average treatment effects” that would apply for
an “average patient in the trial population,” thereby potentially
obfuscating important differences (5). However, as exemplified
by the secondary analyses of the SVR trial, a “one-size-fits-
all” approach driven by RCT results is far from ideal and can
place some patients at risk for receiving suboptimal care. While
RCTs study single diseases in many patients, physicians typically
encounter single patients with many medical conditions. This
is problematic, as Boyd et al. (6) estimated that if guidelines
were to be followed in a 70 year-old woman with 3 chronic
diseases and 2 risk factors, she would be prescribed 19 different
doses of 12 different medicines, with 10 possible significant drug
interactions. The EBM approach does not address the physician’s
most crucial question: “How to treat the unique patient in
front of me?”

To be clear, EBM does propose that care should be
individualized considering the best available evidence and
patient-specific characteristics and values. In reality, however,
integrating all of these factors is difficult, with two possible
poor results: (1) patients with the same condition receiving the
same treatments, regardless of individual characteristics which
significantly alter risks and benefits, or (2) clinicians ignoring
guidelines altogether and managing patients case-by-case based
on poorly informed guesses.

Several other limitations which explain the lack of direct
clinical applicability of findings from RCTs are listed in the
Table 1. In addition, there are well-documented RCT design

challenges specific to CHD (7). First, given that the lifetime
prevalence of CHD is 13 per 1,000 children and 6 per 1,000
adults (8) and there is a wide range of CHD, the pool of
participants for certain trials is limited. Even within a certain
type of CHD, patients might present with different degrees
of anatomical and physiological complexity. This issue is
further compounded by the wide age spectrum in pediatrics,
which may affect treatment options and responses. In the
setting of pharmacological trials, variable pharmacokinetics and
pharmacodynamics might complicate the picture (9), while
differences in center and surgeon volumes and practices are a
common issue in interventional trials (10). As a result, reducing
heterogeneity while at the same time ensuring adequate patient
recruitment is a central concern in any RCT design in congenital
cardiology. At the same time, high costs and logistical challenges
are often involved, such that conducting trials for every possible
set of patient characteristics and management decisions seems
inefficient and even unfeasible.

THE PROMISES OF MEDICINE-BASED
EVIDENCE

As alluded to above, the evidence generated by EBM only takes
into account a relatively limited set of clinical characteristics.
However, a person’s health or illness can be influence by a wide
variety of factors. Beyond clinical information, these include
the environmentome, microbiome, physiology, cell biology,
proteome and metabolome, epigenome and transcriptome, and
the genome (11). While genetic contributions as the cause of
CHD have been the subject of many investigations, a growing
body of literature has shown that copy number variations,
mutations, and gene-environment interactions continue to play
an active role later in the life of these patients, modifying
their risk of adverse outcomes and response to interventions
(12). Similarly, other “omics” have been correlated with clinical
phenotype (13–15). It is suggested that these sources of
information may help to further refine diagnostic precision and
to establish targeted therapies that may optimize quality of life
and minimize future complications in patients with CHD.

In response to mounting concern about the value of EBM
for decision-making, Medicine-Based Evidence (MBE) has been
proposed as a means of synthetizing all available information
and applying it to the individual patient (Figure 1) (16). Within
this framework, big data and deep learning techniques are
embraced to interrogate treatment responses among patients in
real-world clinical practice. With MBE, a comprehensive profile
is produced for each patient, including biological, clinical, social,
behavioral, and environmental data collected over a lifetime.
Whenever a physician needs to decide about a patient’s treatment
plan, a library of patient profiles can be interrogated. A nearest
neighbor algorithm will then find approximate matches, a group
of patients who share the greatest similarity with the index case.
Some of these matches will and others will not have received
the treatment under consideration, so the effect of treatment
can be estimated. If a substantial majority of approximate
matches has a positive response to treatment, this is evidence
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TABLE 1 | Opportunities and challenges when transitioning from evidence-based medicine to medicine-based evidence.

Evidence-based medicine Medicine-based evidence

Characteristics Opportunities Challenges

Addresses the average patient in the trial population, a

group of patients who share a common disease or risk

factor but can be very heterogeneous in other potentially

important characteristics.

Makes use of approximate matches, a group

of patients who share the highest possible

similarity with the index patient on various

characteristics.

• How to define approximate matches, given the depth

and high dimensionality of health data that can be

collected?

• What margin of variability may be tolerated for fair

comparisons to be made?

Discloses average treatment effect, the net effect in a

heterogeneous group of patients, while individual

responses to treatment might differ considerably.

Individualized prediction of optimal

decisions that take into account prior data and

interactions.

• Performance and reliability of predictions might differ

according to setting, and may change over time.

• Models that consider many complex interactions tend

to be opaque and difficult to interpret (“black box”).

• Risks associated with inaccurate predictions:

healthcare providers and patients must remain

the final authorities for establishing acceptable risks.

• Need to account for sources of bias in real-life data.

Superficial information including some basic

demographical characteristics of the study population.

Large depth of information: biological,

clinical, social, behavioral, and environmental

data collected over a lifetime, representing the

narrative of a patient’s health pathway (“digital

twin”).

• Electronical health records are generally limited and can

be of poor quality; obtaining the complete picture of

a patient’s health required for effective AI will require

structural changes in the ways such information is

collected.

• Privacy issues associated with personally identifiable

information.

• Ethical considerations regarding incidental findings

encountered in the course of comprehensive

data collection.

Limited comparisons to other effective

medications; sometimes placebo is the only control.

Furthermore, often only helpful in guiding the choice

of initial treatment.

Variety of treatment options and decisions

can be compared against one another among

a pool of approximate matches, including

therapeutic modification.

• Rare treatments might be disproportionally penalized

just because of a lack of data or because they have not

yet been applied for indications in patients who might

optimally benefit from them.

• For some decisions, available data will be scarce

(especially initially), resulting in predictive uncertainty

for therapeutic efficacy and safety.

AI, artificial intelligence.

in favor of the treatment. Competing treatment options could
be compared to see which one has the largest favorable effect.
Treatment decisions may entail starting/stopping/modifying
a certain medication, adding/subtracting another medication,
or performing an interventional procedure. An illustrative
practical example is provided in a case study of systemic lupus
erythematosus by Wivel et al. (17). If large numbers of matches
are unavailable, patient-level predictions using deep learning
techniques could be added (18).

Rather than relying on statistical models only, a recent
position paper published in the European Heart Journal
suggested integrating this platform with mechanistic disease
models to construct a “digital twin,” which serves as the
real-time digital counterpart of a patient (19). Mechanistic
models are already being widely applied for electrophysiologic
and hemodynamic simulation in cardiology, including CHD
(20). It is proposed that mechanistic models, harnessing
our knowledge of physiology, physics, and chemistry, can
complement the statistical models to enhance detection of
meaningful patterns in experimental and clinical datasets.
Integrating information from both types of models offers
opportunities to address challenges traditionally encountered in
RCTs (Table 1).

MEDICINE-BASED EVIDENCE IN
CONGENITAL HEART DISEASE

In CHD, RCTs are both difficult to conduct and commonly not
definitive, so this field could potentially benefit greatly from
MBE. The complexity of disease, clinical heterogeneity within
lesions, and the small number of patients with specific forms
of CHD severely degrade the precision and value of estimates
of average treatment effects in the average patient provided
by RCTs. Reflecting this, all but four recommendations in the
current ESC adult CHD (ACHD) guidelines carry only a level
of evidence C (21), meaning that for the large majority, no
RCTs are available. Instead, the guidelines are mostly based on
expert consensus and/or small studies, retrospective studies, and
analyses of registries. This illustrates that currently in CHD, the
idiosyncrasies of individual patients’ clinical and hemodynamic
characteristics are central to decision making.

MBE could have many applications in CHD. For example,
prediction of late complications such as arrhythmias and
congestive heart failure is difficult. Artificial intelligence (AI),
especially when integrated with mechanistic models, is a very
powerful means for detecting patterns and modeling the
complex interactions among variables that might influence

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 December 2021 | Volume 8 | Article 798215

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Van den Eynde et al. Medicine-Based Evidence in Congenital Cardiology

FIGURE 1 | Graphical summary of the concept of Medicine-Based Evidence. Comprehensive profiling of each patient is performed based on data collected over a

lifetime. Several tools are available to facilitate individualized decision-making based on these data. First, a library of “approximate matches,” consisting of a group of

patients who share greatest similarity with the index case, can be interrogated to estimate the effects of various treatments within the context of the individual patient’s

specific characteristics. Second, deep learning techniques can detect patterns in experimental and clinical datasets from different sources. Third, a “digital twin” which

incorporates mechanistic models can generate patient-level predictions according to the laws of physiology, physics, and chemistry.

outcomes (22). Such technologies, potentially integrated with
wearable monitoring devices, could provide early warning
that risk of complications is increasing, alert the patient to
see a physician, and suggest effective strategies to reduce risk
proactively. A number of promising steps toward realizing
this idea in the setting of CHD have been reported in the
literature (23–26). For example, Rusin et al. (23) demonstrated
that cardiorespiratory deterioration during hospitalization
in patients with single ventricle could be predicted based on
data from electrocardiogram and photoplethysmography.
Diller et al. (24) developed an automatic deep-learning
imaging algorithm that predicted death/aborted cardiac
arrest or documented ventricular tachycardia in patients with
tetralogy of Fallot, and in another publication (25) showed
that an automatically derived disease severity score based
on clinical and demographic data as well as results from
electrocardiogram, cardiopulmonary exercise testing and
laboratory markers could accurately predict survival in adults
with CHD and effectively augment decision-making. As some
have proposed, such algorithms could embrace a lifespan
perspective as part of the development and implementation
strategy, incorporating longitudinal data and evidence
from all stages of life (27). Other potential applications
include individualized prediction of the effect of drugs and/or
interventions in complex hemodynamic settings (20), prediction
of the feasibility of and risk associated with surgical or catheter-
mediated interventions (28–32), and incorporation of “soft”
outcomes such as exercise capacity and quality of life into the
decision-making process (13).

THE WAY FORWARD

This article has focused on the comparisons and contrasts
between EBM and MBE, but this does not imply that the
foundations of clinical practice must be based solely on one or
the other. Certainly, MBE does not diminish the importance of
the RCT. Instead, MBE incorporates it within a larger framework
that makes use of all available evidence, whether its origins
are from RCTs, observational studies, or mechanistic models.
As a result, individualization of treatment would shift from
today’s intrinsically subjective human-driven assessment toward
a more objective, data- and model-driven process that is more
descriptive, integrative, and predictive (33).

While MBE has its merits and seems attractive, many
hurdles to reaching its full potential lie ahead (Table 1), and
it will take considerable time before MBE becomes a reality
(34). First, capturing extensive data about individual patients
is a major challenge. Psychological, social, and environmental
factors affect health but are not always collected and organized
in a useful way within a single information system. Natural
language processing is being developed to extract meaningful
information from electronic health records but is still in its
infancy and is prone to various in the written report of a
patient’s health; automatically voice-captured information might
present an alternative. Second, vast computational power and
secure data storage and access mechanisms will be required to
process the evidential database of patient profiles required for
MBE. Accumulation of data will take time, but eventually, the
evidence base library ofMBEwill grow as themedical community
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gathers more of the necessary data from patients across the
spectrum of conditions they treat. Finally, implementation in
clinical practice has been challenging, due to both data quality
and privacy issues. To assure that prediction models are valid
and remain so over time, AI applications should be evaluated as
healthcare interventions and should continue to be monitored
after approval. Collaboration between healthcare and experts in
AI will be required to ensure these novel technologies can benefit
our patients.

It is anticipated that the low prevalence of certain types
of CHD and heterogeneity of the condition will continue to
pose a challenge toward creating a substantial evidence base
in congenital cardiology, at least in the initial phase. A report
by the Congenital Heart Public Health Consortium (CHPHC)
from 2016 mapped a complex constellation of databases with
CHD data that are managed by hospitals, specialty organizations,
partnerships, and public health and other governmental entities
(35). Clearly, a considerable amount of infrastructure is already
in place, yet issues related to accessibility, accuracy, completeness,
depth, and timeliness of the collected data remain an issue. Since
the publication of this report, several data collection networks for
CHD have been established, including among others Advanced
Cardiac Therapies Improving Outcomes Network (ACTION)
(36), Fontan Outcomes Network (FON) (37), PartneRships
in cOngeniTal hEart disease (PROTEA) (38), and BELgian
COngenital Heart Disease Database combining Administrative
and Clinical data (BELCODAC) (39). Continued efforts to
establish multicenter clinical registries with in-depth and up-to-
date information collection as well as meaning integration of

information from various sources will be instrumental in paving
the way for the full potential of MBE to be realized.

In conclusion, MBE represents a fundamental change in the
way medical decisions are made. No longer seeking to identify
and apply a single best approach based on the average result in
an average patient, it is a major step toward true personalized
medicine. This approach appears to have great potential,
especially in CHD. It would, however, require professional
and societal acceptance of AI as a foundation for individual
medical decisions, and the support of a medical informatics and
computational infrastructure which has yet to be built.
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