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Background: To discover novel metabolic biomarkers of ischemic stroke (IS), we

carried out a two-stage metabolomic profiling of IS patients and healthy controls using

untargeted and targeted metabolomic approaches.

Methods: We applied untargeted liquid chromatography-mass spectrometry (LC-MS)

to detect the plasma metabolomic profiles of 150 acute IS patients and 50 healthy

controls. The candidate differential microbiota-derived metabolite phenylacetylglutamine

(PAGln) was validated in 751 patients with IS and 200 healthy controls. We evaluated

the associations between PAGln levels and the severity and functional outcomes of

patients with IS. Clinical mild stroke was defined as the National Institutes of Health

Stroke Scale (NIHSS) score 0–5, and moderate-severe stroke as NIHSS score >5. A

favorable outcome at 3 months after IS was defined as the modified Rankin Scale (mRS)

score 0–2, and unfavorable outcome as mRS score 3–6.

Results: In untargeted metabolomic analysis, we detected 120 differential metabolites

between patients with IS and healthy controls. Significantly altered metabolic pathways

were purine metabolism, TCA cycle, steroid hormone biosynthesis, and pantothenate

and CoA biosynthesis. Elevated plasma PAGln levels in IS patients, compared with

healthy controls, were observed in untargeted LC-MS analysis and confirmed by targeted

quantification (median 2.0 vs. 1.0 µmol/L; p < 0.001). Patients with moderate-severe

stroke symptoms and unfavorable short-term outcomes also had higher levels of PAGln

both in discovery and validation stage. After adjusting for potential confounders, high

PAGln levels were independently associated with IS (OR = 3.183, 95% CI 1.671–6.066

for the middle tertile and OR = 9.362, 95% CI 3.797–23.083 for the highest tertile,

compared with the lowest tertile) and the risk of unfavorable short-term outcomes (OR

= 2.286, 95% CI 1.188–4.401 for the highest tertile).

Conclusions: IS patients had higher plasma levels of PAGln than healthy controls. PAGln

might be a potential biomarker for IS and unfavorable functional outcomes in patients

with IS.
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INTRODUCTION

Stroke is a great threat to public health globally, especially in
developing countries. The China Stroke Statistics published in
2020 showed that stroke ranked third among the leading causes
of death in China, and 81.9% of stroke inpatients had ischemic
strokes (IS) (1). Despite decades of substantial basic and clinical
studies, the etiology of IS has not been fully elucidated, and only
a few effective treatments are available. Therefore, it is essential
to discover new circulating biomarkers to help understand the
pathogenesis of IS.

Unlike well-studied genomics and proteomics, metabolomics
technologies have only made a major shift in the last two
decades. Metabolomics profiling can provide high-throughput
data and can identify small metabolites (<1,500 Da) that may
offer novel insight into biological events (2). Metabolomics
has emerged as a promising approach for identifying potential
biomarkers of cerebrovascular disease. Metabolites derived from
gut-microbiota, such as trimethylamine N-oxide (TMAO), which
is the most studied gut microbiota-dependent metabolite, has
been reported to be associated with IS and atherosclerosis (3–6).
Unfortunately, most studies have limited sample sizes and lack
independent validation.

In this study, we initially conducted an untargeted
metabolomic analysis to uncover plasma metabolites that were
most strongly distinguished between IS patients and controls.
We found that levels of PAGln, another microbiota-derived
metabolite associated with cardiovascular disease (CVD) (7),
were elevated in patients with IS. These results were confirmed in
a validation sample set using absolute quantitation. Additionally,
we investigated the associations between PAGln levels and the
severity and functional outcomes of patients with IS.

MATERIALS AND METHODS

Study Participants
From October 2017 to September 2020, 150 IS patients and 50
healthy controls for untargeted metabolomic discovery and 751
IS patients and 200 controls for targeted validation were recruited
from Xiangya Hospital, Central South University. The flowchart
of this study is shown in Figure 1. The specific inclusion criteria
of patients with IS included (1) admission within 7 days of
onset, (2) age ≥18 years, (3) confirmed infarction assessed
diffusion-weighted imaging (DWI), and (4) complete clinical
examination and imaging data. The exclusion criteria were as
follows: (1) pre-onset modified Rankin Scale (mRS) score >2,
(2) impaired hepatic or renal function, (3) infectious diseases
(pulmonary infection, urinary system infection, gastrointestinal
tract infection, etc.) and the usage of antibiotics, probiotics
within 30 days before admission; (4) other autoimmune diseases,
and (5) malignancy. Healthy controls were selected from the
Health Management Center of Xiangya Hospital during the
same period. These participants were in good general health.
The inclusion criteria of controls were the absence of stroke.
The exclusion criteria for control group were identical to the
exclusion criteria in IS patients. The study protocol was approved
by the National Clinical Research Center for Geriatric Disorders

of Xiangya Hospital and the Ethics Committee of Xiangya
Hospital. All participants or their families provided written,
signed informed consent.

Neuroimaging
All patients completed brain 1.5T or 3.0T MRI or CT scans, as
well as angiographic examinations. Healthy controls were also
assessed using cranial MRI and angiography to ensure that they
did not have infarcts or artery stenosis. Two neurologists (Xi Li
and Xianjing Feng) independently evaluated the images.

Clinical Examination
At the time of enrollment, we interviewed all participants face-
to-face to collect information on age, sex, admission blood
pressure and vascular risk factors. Vascular risk factors such as
hypertension, diabetes mellitus, hyperlipidemia, coronary heart
disease (CAD), smoking and drinking status were defined as
described previously (8). Clinical biochemical data were obtained
from the Department of Clinical Laboratory of our hospital. The
estimated glomerular filtration rate (eGFR) was calculated by the
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)
equation (9).

Stroke Severity and Short-Term Outcomes
Measures
The neurological deficits, including consciousness, facial and
limb paralysis, language, and other aspects of IS patients are
assessed by the National Institutes of Health Stroke Scale
(NIHSS) score (15 items, range 0–42 points) (10). The mRS score
(range 0–6 points) which shows the disability in daily life (11) is
often used for the evaluation of primary outcomes after stroke
onset. The NIHSS score on admission and the mRS score at 3
months after stroke onset are used to measure the severity and
short-term outcomes of acute IS, respectively. Upon admission,
the NIHSS scores were evaluated by certified neurologists at
the clinical examination. We defined mild stroke as an NIHSS
score 0–5, and moderate to severe stroke as an NIHSS score >5
(12). We evaluated the mRS scores of patients at 3 months after
stroke onset via telephone follow-up or outpatient visits. The
mRS score of 0–2 indicated favorable functional outcomes, while
3–6 indicated unfavorable outcomes (11).

Sample Collection and Preparation
Blood samples (3mL) were drawn after overnight fasting. The
collected samples were centrifuged at 3,000 rpm for 15min
at 4◦C. We stored these plasma samples in refrigerators at
−80◦C. Multiple freeze-thaw cycles were avoided in all samples
until analysis.

Untargeted Metabolomic Profiling of
Plasma Using High-Resolution Liquid
Chromatography-Mass Spectrometry
(LC-MS)
First, a 100 µL plasma sample was deproteinized with 400
µL acetonitrile and methanol mixture (1:1, v/v), vortexed for
30 s, sonicated for 10min, and centrifuged at 12,000 rpm for
15min at 4◦C; then, the supernatants of the plasma sample were
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FIGURE 1 | The flowchart of the study design. IS, ischemic stroke; LC-MS, liquid chromatography-mass spectrometry; PAGln, phenylacetylglutamine; NIHSS, NIH

Stroke Scale; mRS, modified Rankin Scale.

collected and transferred to a new 1.5mL centrifuge tube and
dried with nitrogen. The sample was then dissolved in 100 µL
of acetonitrile and water (1:1, v/v), vortexed for 30 s, sonicated
for 5min, and centrifuged at 12,000 rpm for 15min at 4◦C.
Finally, the supernatant was transferred to an autosampler vial.
LC-MS analysis was performed using an AB SCIEX TripleTOF
5600 system (AB SCIEX, Foster City, CA, USA). Separations
were conducted on a Waters ACQUITY UPLC T3 column (2.1
× 100mm; 1.8µm). Mobile phase A consisted of 0.1% aqueous
formic acid, and phase B consisted of acetonitrile containing
0.1% formic acid. The injection volume was 2 µL for the positive
electrospray ionization (ESI) mode and negative ESI mode. The
elution program was as follows: 0–2min, 5% B; 2–5min, 5–
70% B; 5–14min, 70–90% B; 14–16min, 90–100 % B; 16–22min,
100 % B; 22–22.1min, 100–5% B; 22.1–25min, 5% B. The flow
rate was 0.3 mL/min. MS and MS/MS data were analyzed in
the information-dependent acquisition (IDA) mode. The mass
ranged from 50 to 1,000 m/z. The curtain gas (CUR) = 35
psi, ion spray voltage floating (ISVF) = 5,500/−4,500 (+/–) V,
declustering potential (DP) = 80V, collision energy (CE) = 40
± 20V, ion source gas1 (GS1) = 55 psi, ion source gas2 (GS2) =

55 psi, and temperature (TEM) = 550◦C. To fulfill the criteria
of IDA and avoid the omission of small metabolites, dynamic
background subtraction (DBS) was chosen to screen the profile.

Targeted LC-MS Analysis of PAGln
Plasma levels of PAGln were quantified in positive mode
with multiple reaction monitoring (MRM) mode, as previously
described (7). Briefly, 2 µL of 1 ppm D5-PAGln (CDN Isotopes,
Cat # D-6900) and 150 µL of ice-cold methanol were added
to 48 µL of diluted plasma (5 µL plasma and 43 µL ddH2O),
vortexed for 1min, and then centrifuged at 21,000 × g at 4◦C
for 15min. The supernatant was transferred to a clean vial for
testing. LC-MS analysis was performed using the AB SCIEX
Qtrap 6500 system (AB SCIEX, Foster City, CA, USA). The
separation was conducted on an Acquity UPLC BEHC18 column
(50 × 2.1mm, 1.7µm). Mobile phase A was 0.1% acetic acid in
water and mobile phase B was 0.1% acetic acid in acetonitrile.
The elution program was as follows: 0–2.5min, 5% B; 2.5–3min,
5–95% B; 3–3.1min, 95–5% B; 3.1–4min, 5% B. The injection
volume was 1 µL and the flow rate was 0.3 mL/min. The ion
source parameters were as follows: CUR, 40 psi; ISVF, 5,500V;
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GS1, 60 psi; GS2, 55 psi; and TEM, 550◦C. The quality control
(QC) samples with low, medium, and high concentrations (5,
50, 400 ng/ml) of PAGln (Santa Cruz Biotechnology, Cat #
SC-212551A) were measured every twenty samples. The intra-
day coefficients of variation ranged from 0.8 to 1.4% and the
inter-day coefficients of variation ranged from 4.0 to 6.0%. The
extracted ion chromatograms of PAGln and the isotope standard
(D5-PAGln) were shown in Supplementary Figure S5A. The
calibration curve (Supplementary Figure S5B) exhibited good
linearity (r2 = 0.99913) with concentrations ranging from 1 to
500 ng/ml.

Data Processing and Metabolomics Data
Analysis
Untargeted LC-MS raw data were converted into mzXML
files using ProteoWizard and then imported into XCMSplus
software for mzMatch, peak alignment, calibration, and peak
retention time (13). Differential metabolites were identified by
database matching using the HR MS/MS library (AB Sciex,
Forster City, CA, USA) and MetDNA (http://metdna.zhulab.cn/)
(14). We used MetaboAnalyst 5.0 (https://www.metaboanalyst.
ca) for metabolite data analysis. First, the metabolite intensity
values were log-transformed and autoscaled (mean-centered and
divided by the standard deviation of each variable). Partial
least squares discriminant analysis (PLS-DA) was performed
to inspect group disparity. Variable influence on projection
(VIP) values for each variable were obtained from the PLS-
DA model. The differences of normalized peak intensities of
metabolites between two groups were analyzed by Student’s
t test, followed by false discovery rate (FDR) adjustment for
multiple comparisons. Metabolites with VIP >1, p < 0.05
after FDR adjustment were regarded as differential biomarkers.
Metabolic pathway analysis was carried out using the Pathway
Analysis module of MetaboAnalyst 5.0, and the pathway library
of Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://
www.kegg.jp). The multivariable ROC (Receiver operating
characteristic curve) analyses were used to identify the abilities of
the candidate metabolites in discriminating IS from controls and
the area under the ROC curves (AUC) was calculated (Biomarker
Analysis module of the MetaboAnalyst 5.0). Monte-Carlo cross
validation was used for the generation of multivariable ROC
curves. Important metabolites (top 5, 10, 15, 25, 50, 100) were
evaluated by 2/3 of all samples and validated in the remaining
1/3 samples. Performance was calculated after the procedures
were repeated many times. The SCIEX OS-Q 2.0 (https://sciex.
com/products/software/analyst-software) was used for targeted
metabolomics data analysis.

Statistical Analysis
We used SPSS version 22.0 (IBM SPSS, Chicago, IL, USA) for
clinical data analysis. We first tested whether the data were
normally distributed using the Kolmogorov-Smirnov test. Non-
normal distributed continuous data were reported as median
(interquartile range) in this study and were assessed using
the Mann-Whitney U test. Categorical data were presented as
numbers (n) and percentages (%) and were tested using the
χ2 test. Binary logistic regression analyses were performed to

TABLE 1 | General characteristics of ischemic stroke patients and healthy

controls in discovery stage.

IS (n = 150) Control (n = 50) p

Age (years) 60 (53–68) 57 (55–66) 0.696

Sex (male, N, %) 100 (66.7%) 31 (62.0%) 0.548

HBP (N, %) 100 (66.7%) 20 (40.0%) <0.001

DM (N, %) 47 (31.3%) 4 (8.0%) 0.001

Hyperlipidemia (N, %) 24 (16.0%) 24 (48.0%) <0.001

CAD (N, %) 28 (18.7%) 9 (18.0%) 0.916

Smoking (N, %) 74 (49.3%) 14 (28.0%) 0.008

Drinking (N, %) 59 (39.3%) 10 (20.0%) 0.013

Admission NIHSS 4 (2–7) NA NA

mRS at 3 months 2 (1–3) NA NA

SBP (mmHg) 142 (127–154) 130 (120–139) <0.001

DBP (mmHg) 83 (74–91) 80 (72–85) 0.074

WBC (×109/L) 6.6 (5.4–8.2) 5.8 (4.9–6.9) 0.016

Platelet (×109/L) 192.0 (148.0–225.8) 205.0 (164.2–233.5) 0.126

BUN (mmol/L) 5.0 (4.2–6.0) 4.6 (4.0–6.2) 0.784

UA (µmol/L) 337.0 (279.0–394.6) 354.0 (289.4–434.4) 0.191

Creatinine (µmol/L) 79.9 (68.0–89.0) 74.2 (67.2–83.8) 0.172

eGFR (ml/min per 1.73 m2 ) 84.9 (70.2–95.6) 91.0 (76.8–98.7) 0.231

TG (mmol/L) 1.6 (1.1–2.0) 1.6 (1.3–2.4) 0.374

TC (mmol/L) 4.1 (3.4–4.8) 4.9 (4.2–5.5) <0.001

HDLC (mmol/L) 1.02 (0.83–1.18) 1.23 (0.99–1.40) <0.001

LDLC (mmol/L) 2.4 (1.9–2.9) 3.1 (2.6–3.6) <0.001

FBG (mmol/L) 6.0 (5.1–7.8) 5.1 (4.7–5.8) 0.01

HbA1c (%) 6.0 (5.6–7.2) 5.8 (5.5–6.0) 0.114

Homocysteine (µmol/L) 13.4 (11.2–17.4) 12.8 (10.5–13.6) 0.042

IS, ischemic stroke; HBP, hypertension; DM, Diabetes mellitus; CAD, coronary artery

disease; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale;

SBP, systolic blood pressure, DBP, diastolic blood pressure; WBC, white blood cell;

BUN, blood urea nitrogen; UA, uric acid; eGFR, estimated glomerular filtration rate;

TG, triglyceride; TC, total cholesterol; HDLC, high density lipoprotein cholesterol; LDLC,

low density lipoprotein cholesterol; FBG, fasting blood glucose; HbA1c, glycosylated

hemoglobin A1c.

identify independent factors associated with the onset, severity
and outcomes of IS. To better interpret the results, PAGln
levels were divided into tertiles and logistic analyses were
performed in three models (Model 1: adjusted for age and
sex; Model 2: adjusted for age, sex, hypertension, diabetes
mellitus, hyperlipidemia, CAD, smoking and drinking status;
Model 3: adjusted for the variables in Model 2 and other
variables that were statistically significant in Table 2). Results of
logistic regression analyses were expressed as adjusted odds ratios
(ORs) and 95% confidence intervals (CIs). We used Spearman
correlation analysis to evaluate the relationship between the
top 20 metabolites detected in untargeted metabolomics and
PAGln levels quantified in targeted metabolomics and other
clinical parameters. ROC analyses were generated usingMedCalc
19.4.1 (MedCalc Inc., Mariakerke, Belgium) to evaluate the
abilities of PAGln in discriminating IS from controls, moderate-
severe stroke from mild stroke and unfavorable stroke outcome
from favorable outcome. A two-tailed p <0.05 was considered
statistically significant. Correlation heatmaps were performed on
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TABLE 2 | Baseline characteristics of ischemic stroke patients and healthy controls in validation stage.

Disease status Stroke severity Short–term outcome

Variables Control

(n = 200)

IS

(n = 751)

p Mild

(n = 484)

Moderate to

severe

(n = 267)

p Favorable

(n = 557)

Unfavorable

(n = 194)

p

Age (years) 61 (52–67) 61 (52–69) 0.620 60 (51–68) 61 (53–70) 0.088 59 (51–67) 65 (56–72) <0.001

Sex (male, N, %) 129 (64.8%) 516 (68.7%) 0.297 342 (70.7%) 174 (65.2%) 0.120 398 (71.5%) 118 (60.8%) 0.006

HBP (N, %) 83 (41.7%) 530 (70.6%) <0.001 326 (67.4%) 204 (76.4%) 0.009 380 (68.2%) 150 (77.3%) 0.017

DM (N, %) 32 (16.1%) 217 (28.9%) <0.001 129 (26.7%) 88 (33.0%) 0.068 142 (25.5%) 75 (38.7%) <0.001

Hyperlipidemia

(N, %)

79 (39.5%) 200 (26.6%) <0.001 131 (27.1%) 69 (25.8%) 0.717 147 (26.4%) 53 (27.3%) 0.801

CAD (N, %) 16 (8.0%) 137 (18.2%) <0.001 87 (18.0%) 50 (18.7%) 0.799 86 (15.4%) 51 (26.3%) <0.001

Smoking (N, %) 79 (39.7%) 363 (48.3%) 0.030 245 (50.6%) 118 (44.2%) 0.326 283 (50.8%) 80 (41.2%) 0.022

Drinking (N, %) 71 (35.5%) 274 (36.5%) 0.797 176 (36.4%) 98 (36.7%) 0.092 211 (37.9%) 63 (32.5%) 0.178

Admission NIHSS NA 4 (1–7) NA 2 (1–4) 9 (7–11) <0.001 3 (1–5) 8 (5–11) <0.001

mRS at 3 months NA 2 (1–3) NA 1 (1–2) 3 (2–3) <0.001 1 (1–2) 3 (3–4) <0.001

SBP (mmHg) 132 (120–148) 142 (129–156) <0.001 141 (128–154) 143 (130–159) 0.022 142 (128–155) 143 (129–159) 0.241

DBP (mmHg) 83 (78–90) 82 (74–92) 0.237 82.0

(73.0–92.0)

83.0

(75.0–92.0)

0.231 82 (74–92) 82 (74–91) 0.855

PAGln (µmol/L) 1.0 (0.5–1.9) 2.0 (1.2–3.3) <0.001 1.9 (1.0–3.2) 2.3 (1.3–3.5) 0.007 1.9 (1.1–2.9) 2.5 (1.6–4.0) <0.001

WBC (×109/L) 6.0 (5.1–7.4) 6.7 (5.6–8.1) 0.001 6.5 (5.4–7.7) 7.2 (5.8–8.9) <0.001 6.6 (5.5–7.9) 7.2 (5.7–8.9) 0.002

Platelet (×109/L) 213.0

(188.2–246.0)

203.0

(164.0–242.8)

0.026 202.0

(164.0–239.0)

205.0

(167.8–254.8)

0.249 204.0

(164.8–241.2)

199.0

(162.0–247.5)

0.536

BUN (mmol/L) 4.8 (3.9–5.8) 5.0 (4.1–6.1) 0.015 5.0 (4.0–6.1) 5.1 (4.2–6.4) 0.209 4.9 (4.0–6.0) 5.2 (4.2–6.6) 0.015

UA (µmol/L) 334.3

(282.6–392.9)

321.5

(268.2–386.9)

0.048 329.5

(276.6–393.5)

305.0

(238.7–377.0)

<0.001 326.9

(272.8–389.8)

307.0

(250.5–381.8)

0.016

Creatinine

(µmol/L)

82.0

(69.8–95.6)

83.0

(71.8–94.0)

0.650 83.9

(73.0–95.0)

81.0

(69.9–90.8)

0.016 83.0

(72.0–95.0)

82.0

(70.4–92.9)

0.393

eGFR (ml/min

per1.73 m2)

83.9

(69.8–95.1)

84.2

(70.0–94.7)

0.745 83.2

(69.8–94.2)

85.6

(71.1–95.6)

0.251 85.3

(70.8–95.9)

80.9

(65.9–92.1)

0.004

TG (mmol/L) 1.6 (1.2–2.3) 1.5 (1.1–2.1) 0.029 1.5 (1.1–2.0) 1.4 (1.1–2.2) 0.516 1.5 (1.1–2.1) 1.5 (1.1–2.2) 0.652

TC (mmol/L) 5.1 (4.3–5.9) 4.1 (3.4–5.0) <0.001 4.0 (3.4–4.9) 4.3 (3.4–5.2) 0.047 4.1 (3.4–5.0) 4.2 (3.4–4.9) 0.686

HDLC (mmol/L) 1.21

(1.05–1.41)

0.99

(0.84–1.17)

<0.001 0.97

(0.84–1.15)

1.02

(0.87–1.21)

0.028 0.97

(0.84–1.16)

1.02

(0.87–1.21)

0.133

LDLC (mmol/L) 3.2 (2.6–3.7) 2.5 (2.0–3.2) <0.001 2.5 (2.0–3.1) 2.6 (2.0–3.4) 0.084 2.5 (2.0–3.2) 2.6 (2.0–3.1) 0.770

FBG (mmol/L) 5.5 (5.1–6.1) 5.6 (4.9–7.1) 0.162 5.4 (4.8–6.6) 6.0 (5.1–8.1) <0.001 5.5 (4.9–6.8) 5.9 (5.1–7.9) 0.002

HbA1c (%) 5.9 (5.5–6.5) 5.9 (5.5–6.8) 0.431 5.8 (5.5–6.4) 5.9 (5.5–7.4) 0.037 5.8 (5.5–6.6) 6.1 (5.6–7.3) 0.007

Homocysteine

(µmol/L)

13.0

(10.9–15.2)

13.3

(11.2–16.6)

0.059 13.8

(11.4–17.1)

12.7

(10.8–15.5)

0.005 13.5

(11.3–16.7)

12.9

(10.8–16.4)

0.157

IS, ischemic stroke; HBP, hypertension; DM, Diabetes mellitus; CAD, coronary artery disease; NIHSS, NIH Stroke Scale; SBP, systolic blood pressure, DBP, diastolic blood pressure;

PAGln, phenylacetylglutamine; WBC, white blood cell; BUN, blood urea nitrogen; UA, uric acid; eGFR, estimated glomerular filtration rate; TC, total cholesterol; TG, triglyceride; HDLC,

high density lipoprotein cholesterol; LDLC, low density lipoprotein cholesterol; FBG, fasting blood glucose; HbA1c, glycosylated hemoglobin A1c.

an R-based online platform (https://www.omicstudio.cn/tool/)
and other data were plotted using GraphPad Prism version 8.0.

RESULTS

Characteristics of all Participants
In this study, 150 patients with IS and 50 healthy controls were
included in the discovery stage. In the validation stage, there were
751 patients with IS and 200 healthy controls. The clinical and
demographic information of these participants are presented in
Tables 1, 2. Patients with IS and healthy controls were frequency
matched for age and sex.

Untargeted Metabolomics Profiling
Detected PAGln Accumulation in IS
Patients
Representative LC-MS total ion current (TIC)
chromatograms of the QC plasma samples were shown in
Supplementary Figure S1. A total of 571 metabolites were
detected in all plasma samples and used in the subsequent
multivariable analysis.

The PLS-DA model suggested that metabolome profiles
differed between patients with IS and healthy controls
(Figure 2A). Based on VIP and P values after FDR adjustment
(VIP >1, p FDR < 0.05), we detected 120 differential metabolites

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 December 2021 | Volume 8 | Article 798765

https://www.omicstudio.cn/tool/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Yu et al. PAGln and IS

(shown in Supplementary Table S1). Figure 2B shows the
heatmap of the top 20 differential metabolites based on VIP
values. Pathway analysis showed that purine metabolism, TCA
cycle, steroid hormone biosynthesis, and pantothenate and
CoA biosynthesis were significantly altered (Figure 2C and
Supplementary Table S2). The multivariable ROC analyses were
showed in Figure 2D, and the legend included feature numbers,
AUCs and the 95% CIs of the six models. The maximum
value of AUC was 0.963 (95% CI: 0.941–0.981) when top 100
metabolites were selected. The most important metabolites of
selected Model 1 (5 features), Model 2 (10 features), Model 3 (15
features), and Model 4 (25 features) of the multivariable
ROC curves were shown in Supplementary Figure S3.
Among differential metabolites, the gut microbiota-derived
metabolite, phenylacetylglutamine (PAGln) (HMDB0006344,
Supplementary Figure S4) in the positive ion mode, exhibited
an increase in IS patients (p < 0.001, VIP = 1.923, fold change
= 1.968, AUC = 0.700), suggesting its potential as a biomarker
for IS patients (Supplementary Table S1 and Figures 3A,B).
What’s more, the normalized peak intensities of PAGln were
higher in patients with moderate-severe stroke severity and
unfavorable outcome at 3 months after stroke (p <0.05)
(Supplementary Figure S2). The correlation between peak
intensities of the top 20 metabolites ranked by VIP values and
clinical variables were shown in Figure 3C. PAGln levels showed
a significant positive correlation of 0.260 (p = 0.001, Spearman
correlation analysis) with mRS scores.

Targeted Metabolomic Analysis Confirmed
the Elevation of PAGln Levels in IS Patients
Untargeted metabolomic profiling is semiquantitative and
requires quantitative analysis. To validate our results of
untargeted metabolomics, we analyzed PAGln in an independent
cohort of 751 patients with IS and 200 healthy controls. The
elevation of PAGln levels in IS patients compared with healthy
controls (2.0 [1.2–3.3] µmol/L vs. 1.0 [0.5–1.9] µmol/L, p
< 0.001; Figure 4A) was confirmed by targeted metabolomics
analysis. This significance still existed after adjustments with
three models (Table 3). In Model 3, after adjusted for age,
sex, hypertension, diabetes mellitus (DM), CAD, hyperlipidemia,
smoking, drinking, systolic blood pressure (SBP), white blood
cell (WBC) and platelet counts, serum levels of urea nitrogen,
uric acid, triglyceride (TG), high-density lipoprotein cholesterol
(HDLC), and low-density lipoprotein cholesterol (LDLC), higher
levels of PAGln were associated with IS (OR = 3.183, 95%
CI 1.671–6.066 for tertile 2 and OR = 9.362, 95% CI 3.797–
23.083 for tertile 3, compared with tertile 1, Table 3). The
diagnostic value of PAGln in distinguishing patients with IS
from healthy controls was evaluated using ROC analysis. The
area under the ROC was 0.698 (Figure 4B). The optimal
PAGln level cut-off value was 1.067 µmol/L, which yielded
a sensitivity of 77.5% and a specificity of 55.0%. We used
Spearman correlation analysis to identify the relevance of PAGln
levels and clinical parameters (Figure 5A) and found that the
admission NIHSS scores, mRS scores at 3 months after stroke

onset, age, WBC counts, serum creatinine levels were positively
correlated with PAGln levels (Supplementary Table S3 and
Supplementary Figure S6), while eGFR levels showed a negative
correlation (Supplementary Figure S6).

Relationship Between Plasma PAGln
Levels and Stroke Severity of IS Patients
A total of 484 patients (64.4%) had mild stroke and 267 (35.6%)
had moderate to severe stroke. The plasma PAGln levels in
patients with moderate and severe stroke were higher than in
mild stroke patients (2.3 [1.5–3.5] µmol/L vs. 1.9 [1.0–3.2]
µmol/L, p = 0.007; Figure 4A). This significance still existed
after adjusting for age and sex (OR = 1.489, 95% CI 1.017–
2.180 for tertile 2 and OR = 1.505, 95% CI 1.009–2.246 for
tertile 3, compared with tertile 1, Table 3). After adjusting for
other confounding factors in Model 2 and Model 3, plasma
PAGln levels were not independently associated with stroke
severity (Table 3). When adjusted for age, sex and vascular
risk factors (hypertension, DM, hyperlipidemia, CAD, smoking,
drinking, one by one), we found that DM was the parameter that
resulted in the OR to become not significant. Hypertension and
higher baseline WBC counts were significantly associated with
moderate-severe stroke.

Prognostic Value for PAGln in Predicting
Unfavorable Outcome of IS Patients
Clinical short-term outcomes of stroke patients were evaluated
at 3 months after stroke onset. One hundred and ninety-
four patients (25.8%) including 57 (11.8%) patients with mild
stroke and 137 (51.3%) patients with moderate-severe stroke
eventually developed unfavorable short-term outcomes. The
median admission PAGln levels of patients with unfavorable
outcomes was higher than in patients with favorable outcomes
(2.5 µmol/L vs. 1.9 µmol/L, p <0.001; Figure 4A). Furthermore,
in the logistic regression analyses with three models, the
highest levels of PAGln were independently associated with
unfavorable outcome. In Model 3, after adjusting for age, sex,
hypertension, DM, hyperlipidemia, CAD, current smoking and
drinking, admission HIHSS scores, WBC counts, serum levels
of urea nitrogen, uric acid, eGFR, FBG, and HbA1c, the highest
tertile of PAGln showed an OR of 2.286, 95% CI 1.188–4.401,
compared with the lowest tertile of PAGln (Table 3). ROC
analysis showed that the optimal PAGln level cut-off value for
predicting an unfavorable outcome was 2.102 µmol/L, with a
sensitivity of 63.7%, specificity of 58.4%, and AUC of 0.632
(Figure 4C).

Subgroup Analyses of the Association
Between PAGln and Vascular Risk Factors
Figure 5B shows the plasma PAGln levels in patients with
or without vascular risk factors. The Mann–Whitney U tests
indicated that IS patients with hypertension had higher PAGln
levels than patients without hypertension, the same tendencies
were also shown in patients with DM vs. without DM, and
patients with CAD vs. without CAD. The logistic regression
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FIGURE 2 | Multivariable statistical analysis and pathway analysis between IS patients and controls. (A) PLS-DA plots shows clear separation of healthy controls (red)

and ischemic stroke (IS) patients (green). (B) Heatmap of top 20 differential metabolites (ranked by VIP values) between IS patients and healthy controls. (C) Metabolic

pathways for IS patients relative to healthy controls. The X-axis represents pathway impact, and the Y-axis represents -log10 (p). (D) The multivariable ROC curves for

sets of metabolites. Monte-Carlo cross validation was used for the generation of multivariable ROC curves. Important metabolites (top 5, 10, 15, 25, 50, 100) were

evaluated by 2/3 of all samples and validated in the remaining 1/3 samples. The metabolites numbers and AUC (95% CI) of six models are presented. Classification

method (Random Forests) and feature ranking method (Univariable AUC) were used. IS, ischemic stroke; PLS-DA, partial least squares discriminant analysis; VIP,

Variable influence on projection; ROC, receiver operating characteristic curve; AUC, area under the curve.

analyses adjusted by three models in different subgroups were
presented in Supplementary Table S4. Higher levels of PAGln
were associated with IS with DM in three models (OR = 2.093,
95% CI 1.274–3.437 for tertile 2 and OR = 2.394, 95% CI
1.425–4.023 for tertile 3, compared with tertile 1, Model 3,
Supplementary Table S4).

DISCUSSION

In this study, we implemented a two-stage metabolomic
analysis to expand the discovery of metabolites associated

with IS. We detected 120 plasma differential metabolites
and four metabolic pathways associated with IS. The gut
microbiota-dependent metabolite PAGln was significantly
higher in patients with IS than in healthy controls in both
the discovery and validation stages. Moreover, elevated
plasma PAGln levels were shown to be an independent
predictor of unfavorable outcomes at 3 months after
stroke onset.

With the development of “omics” sciences, many novel
biomarkers to bolster the therapeutic targets for IS have been
found (15). Metabolomics has emerged as a promising approach
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FIGURE 3 | Phenylacetylglutamine (PAGln) levels in discovery stage. (A) The original peak intensity and normalized peak intensity of plasma phenylacetylglutamine in

IS patients (n = 150) and the healthy controls (n = 50) (p <0.001) (Student’s T test). (B) The ROC analysis of plasma relative phenylacetylglutamine levels to

differentiated patients with IS from healthy controls. (C) Correlation heatmap of the top 20 metabolites ranked by VIP values and clinical parameters. IS, ischemic

stroke; ROC, receiver operating characteristic curve; VIP, Variable influence on projection.

to identify potential biomarkers of cerebrovascular disease (2).
Many studies have identified differential metabolic biomarkers
and pathways associated with stroke risk prediction, early
diagnosis, prognosis, and post-stroke depression or cognitive
impairment (3, 4, 16). The differential metabolites in our study
are shown in Supplementary Table S1; we found that (9Z)-
12,13-dihydroxyoctadec-9-enoic acid (12,13-DHOME) reached
an AUC of 0.820 to discriminate IS from controls. 12,13-
DHOME is a bacterially produced lipid metabolite that serves
as a peroxisome proliferator-activated receptor (PPAR) ligand

and a potential leukotoxin which can inhibit mitochondrial
function (17) and increase oxidative stress in mammals (18).
Oxidative stress is one of the most crucial mechanisms induced
by ischemia and reperfusion in acute cerebral ischemia phase
and might be related to elevated levels of 12,13-DHOME.
Taurine, which has antioxidant activity and can combat oxidative
stress by regulating the production of reactive oxygen species
in mitochondria (19), was shown to be decreased in patients
with IS. As seen in Figure 1C, the most markedly affected
metabolic pathways in the IS group mainly focused on purine
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FIGURE 4 | Comparison of plasma PAGln levels between different subject groups. (A) PAGln levels in different groups: PAGln levels are higher in IS patients, IS

patients with moderate-severe neurological function deficit, and patients with unfavorable short-term outcome (**p < 0.01, ***p < 0.001, Mann–Whitney U test). (B,C)

ROC curves of PAGln levels in predicting IS patients from healthy controls and IS patients with unfavorable outcome from favorable outcome. PAGln,

phenylacetylglutamine; IS, ischemic stroke; PAGln, phenylacetylglutamine; ROC, receiver operating characteristic curve; AUC, area under the curve.

metabolism, TCA cycle, steroid hormone biosynthesis, and
pantothenate and CoA biosynthesis. As evidenced by previous
studies, purine metabolism is disturbed in patients with IS (20).
In our study, levels of inosine and hypoxanthine belonging
to purine metabolism were found to be increased in IS
patients. Studies have hypothesized that purine metabolism
may be related to oxidative stress and that it occurs after
ischemic injury (16). Cerebral energy disturbance is an important
pathophysiological cascade after IS, and dysregulation of the
TCA cycle after stroke is in line with previous studies (21,
22). The pantothenate and CoA biosynthesis pathways play
an essential role in energy metabolism and the TCA cycle,
which could contribute to ischemic pathophysiology (23). Steroid
hormone biosynthesis pathway disturbance was also found in
hypoxic-ischemic encephalopathy, which might be due to the
response to stress (24).

Several studies have elucidated the role of microbial
metabolites in CVD and stroke, such as TMAO and
lipopolysaccharide (25, 26). These toxic substances could

elicit cardio-cerebrovascular diseases by influencing thrombosis,
inflammation, and oxidative stress (27). Among 120 differential
metabolites, another gut microbiota-derived metabolite, PAGln,
attracted our attention. In comparison with healthy controls,
patients with IS showed upregulation of PAGln levels. The
normalized peak intensities of PAGln were also higher in patients
with severer stroke symptoms and unfavorable outcomes. PAGln,
which originates from essential amino acid phenylalanine (28),
has been well studied as a uremic toxin in chronic kidney
disease (CKD). Recently, one study integrated untargeted
and targeted metabolomics with functional metabolomic
analysis and identified a novel biomarker associated with CVD
risk. They also found that PAGln plays a crucial regulatory
role in platelet reactivity and thrombosis via adrenergic
receptors in in vitro and in vivo experiments (7). However, the
relationship between PAGln and IS has not been well studied.
We then selected PAGln for the subsequent validation study
and identified its role in IS. Targeted metabolomics analysis
confirmed the elevated levels of PAGln in patients with IS,
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TABLE 3 | Logistic regression analyses of plasma PAGln levels for the occurrence, severity, and function outcome of ischemic stroke.

PAGln levels

µmol/L

Model 1 Model 2 Model 3

p OR 95% CI p OR 95% CI p OR 95% CI

IS vs. healthy controls

Tertiles

Tertile 1 (< 1.192) Reference Reference Reference

Tertile 2 (1.192–2.491) <0.001 3.086 2.104–4.525 <0.001 3.141 2.088–4.724 <0.001 3.183 1.671–6.066

Tertile 3 (> 2.491) <0.001 6.430 4.030–10.259 <0.001 7.032 4.230–11.689 <0.001 9.362 3.797–23.083

Moderate–severe vs. mild stroke

Tertiles

Tertile 1 (< 1.421) Reference Reference Reference

Tertile 2 (1.421–2.711) 0.041 1.489 1.017–2.180 0.078 1.415 0.962–2.083 0.686 1.114 0.661–1.878

Tertile 3 (> 2.711) 0.045 1.505 1.009–2.246 0.072 1.452 0.967–2.180 0.374 1.284 0.740–2.228

Unfavorable vs. favorable outcome

Tertiles

Tertile 1 (< 1.421) Reference Reference Reference

Tertile 2 (1.421–2.711) 0.126 1.428 0.905–2.251 0.251 1.312 0.826–2.084 0.688 1.146 0.590–2.225

Tertile 3 (> 2.711) 0.001 2.190 1.392–3.444 0.003 2.027 1.281–3.209 0.013 2.286 1.188–4.401

Adjusted model 1: Adjusted for age and sex (males vs. females).

Adjusted model 2: Adjusted for age, sex (males vs. females), HBP, DM, hyperlipidaemia, CAD, smoking and drinking status.

Adjusted model 3: IS vs. controls: adjusted for age, sex, HBP, DM, hyperlipidaemia, CAD, smoking, drinking status, SBP, WBC and platelet counts, serum levels of BUN, UA, TG,

HDLC, and LDLC.

Moderate-severe vs. mild stroke: adjusted for age, sex, HBP, DM, hyperlipidaemia, CAD, smoking, drinking status, SBP, WBC, serum levels of UA, creatinine, TC, HDLC, FBG, HbA1c,

and homocysteine.

Unfavorable vs. favorable outcome: adjusted for age, sex, HBP, DM, hyperlipidaemia, CAD, smoking, drinking status, admission NIHSS scores, WBC, serum levels of BUN, UA, eGFR,

FBG, and HbA1c.

PAGln, phenylacetylglutamine; HBP, hypertension; DM, Diabetes mellitus; CAD, coronary artery disease; NIHSS, NIH Stroke Scale; SBP, systolic blood pressure; WBC, white blood cell;

BUN: blood urea nitrogen; UA, uric acid; eGFR, estimated glomerular filtration rate; TG, triglyceride; TC, total cholesterol; HDLC, high density lipoprotein cholesterol; LDLC, low density

lipoprotein cholesterol; FBG, fasting blood glucose; HbA1c, glycosylated hemoglobin A1c.

even after adjusting for potential confounders. Moreover,
elevated PAGln levels were observed in patients with more
severe IS symptoms. However, this difference was lost after
accounting for multiple risk factors. Additionally, our data
suggest that higher PAGln levels upon admission may be an
independent biomarker of unfavorable short-term outcomes in
patients with IS. When just adjusted for age and sex, levels of
PAGln were still higher among patients with moderate-severe
stroke, comparing to patients with mild stroke. However, after
adjusting for clinical confounders, the association was no longer
statistically significant, which may be influenced by the presence
of DM.

The present study provides new information regarding PAGln
levels and IS. Recent untargeted and target metabolomics
studies showed that PAGln was associated with an increased
risk of CAD and degree of coronary atherosclerotic severity
(29, 30). Another targeted metabolomics study demonstrated
that high serum PAGln levels are a strong risk factor for
future CVD in patients with CKD (31). Circulating PAGln
levels were also strongly associated with pulse-wave velocity
(an indicator of arterial stiffness) in women (32). Other studies
have reported an association between elevated urinary levels
of PAGln and obesity (33) and diabetes (34). Accordingly, it
is postulated that the association between PAGln and IS could

be driven by these risk factors of atherosclerosis. The role
of PAGln in regulating platelets and thrombosis may lead to
poor outcomes in patients with IS. Notably, our correlation
analysis showed that the concentration of PAGln in plasma
was positively correlated with age, WBC counts, and serum
levels of creatinine, while negatively correlated with eGFR.
In line with a previous study, circulating PAGln levels were
associated with age and eGFR (calculated using the CKD-EPI
formula) (31). Higher plasma PAGln levels among IS patients
with diabetes mellitus were also in agreement with a previous
study (7). The positive correlation between PAGln and WBC
counts indicated that PAGln might be involved in inflammation,
thus contributing to the physiological and pathological processes
of IS.

There are some limitations to our study. First, the
observational nature of the study design cannot prove a
causal relationship between PAGln and IS; a functional
metabolomics strategy is needed to characterize the underlying
mechanisms. Second, the participants in this study belonged
to the Chinese Han population, thus, validation of these
findings in other populations is required. Third, our study
was a single-center study and had a patient selection bias;
multi-center validation is necessary in the future. Fourth,
PAGln can be influenced by diet and gut microbiota, and
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FIGURE 5 | Correlation between PAGln levels and clinical variables in validation stage and PAGln levels in subgroups of vascular risk factors. (A) Admission NIHSS

scores, mRS scores at 3 months after stroke onset, age, WBC counts, and serum creatinine levels were positively correlated with PAGln levels, eGFR levels showed a

negative correlation (Spearman correlation analysis). (B) Plasma PAGln levels in patients with or without vascular risk factors. IS patients with HBP had higher PAGln

levels than patients without HBP, the same tendencies were also found in patients with DM vs. without DM, and patients with CAD vs. without CAD (**p < 0.01, ***p <

0.001, Mann–Whitney U test). IS, ischemic stroke; NIHSS, NIH Stroke Scale; mRS, modified Rankin Scale; WBC: white blood cell; HbA1C, glycosylated hemoglobin

A1c; eGFR, estimated glomerular filtration rate; HBP, hypertension; DM, Diabetes mellitus; CAD, coronary artery disease.

information on dietary habits and investigations of the
gut microbiome are lacking. Lastly, due to research fund
limitations, quantitative analyses of other differential metabolites
were not performed; these metabolites will be validated in
future studies.

CONCLUSIONS

In summary, our study demonstrated that plasma PAGln levels at
admission were elevated in patients with IS and associated with
unfavorable short-term outcomes, supporting the hypothesis that
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PAGln may play a critical role in IS pathogenesis and providing
new insight into the interventional target of IS.
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