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Vascular Dementia (VaD) is a neurocognitive disorder caused by reduced blood flow to

the brain tissue, resulting in infarction, and is the secondmost common type of dementia.

The complement and coagulation systems are evolutionary host defence mechanisms

activated by acute tissue injury to induce inflammation, clot formation and lysis; recent

studies have revealed that these systems are closely interlinked. Overactivation of these

systems has been recognised to play a key role in the pathogenesis of neurological

disorders such as Alzheimer’s disease and multiple sclerosis, however their role in VaD

has not yet been extensively reviewed. This review aims to bridge the gap in knowledge

by collating current understanding of VaD to enable identification of complement and

coagulation components involved in the pathogenesis of this disorder that may have their

effects amplified or supressed by crosstalk. Exploration of these mechanisms may unveil

novel therapeutic targets or biomarkers that would improve current treatment strategies

for VaD.
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INTRODUCTION

Vascular Dementia (VaD) is a progressive neurocognitive disorder with classic cerebrovascular
and cardiovascular risk factors. Crosstalk between the coagulation and complement systems has
gathered increasing scientific attention in recent years, however there is still much to uncover
especially regarding the impact of these systems on different disease states such as VaD. The
understanding of the interaction between coagulation and complement in VaD is lacking and there
are currently no reviews available that discuss them side-by-side. This review aims to bridge the gap
in knowledge by collating current understanding of VaD to enable identification of complement
and coagulation components involved in the pathogenesis of this disorder, that may have their
effects amplified or supressed by crosstalk. Improved understanding of underlying mechanisms
may ultimately aid in improving treatment options available for VaD.

VaD is caused by reduced blood flow to the brain, and can present with behavioural symptoms,
locomotor problems, and loss of executive function (1, 2) (Figure 1). VaD is the second most
common type of dementia, accounting for roughly 15% to 20% of dementia cases in North
America and Europe (3). Subtypes of this condition are defined by the cause and nature of vascular
pathology, number of intracranial vessels involved, anatomical location of tissue changes, and the
time after the initial vascular event (2). These subtypes include post-stroke dementia, multi-infarct
dementia, subcortical dementia, mixed dementia, and CADASIL (Cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopathy) (1). There are currently no specific
medications approved for the treatment of VaD (4). Underdiagnosis of VaD, lack of treatment
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FIGURE 1 | Summary of the risk factors and clinical characteristics for vascular dementia. Risk factors such as diabetes, hypertension, metabolic syndrome, age,

stroke, and genetic factors have been linked to vascular dementia. The clinical presentations of vascular dementia range from behavioural and locomotor symptoms

to loss of executive function (created with BioRender.com).

options and an increase in the population suffering from
VaD risk factors emphasise the necessity for research and
treatment development for this disease. Clinical trials of the

acetylcholinesterase inhibitor Donepezil, currently indicated for

Alzheimer’s disease were not promising in VaD, with the drug
found to bemuch less effective in VaD than in Alzheimer’s disease
(5), with patients attaining small improvements in cognitive

function, but no improvement in global functioning that helps

day-to-day life. Moreover, since definitive confirmation of VaD
is only possible post-mortem, it has been difficult to ascertain
the exact prevalence of VaD worldwide due to varying diagnostic
criteria and very few population-based cohort studies available on
the subject (6, 7).

For neuropathological diagnosis of VaD, key cerebrovascular
lesions need to be present such as ischaemic infarcts (necrosis
due to blood vessel blockage), haemorrhagic infarcts (bleeding
in or around the brain), lacunar infarcts (small infarcts
in the deep tissues of the brain from penetrating artery
occlusion), and microinfarcts (microscopic lesions <1mm in
diameter) (8–10). Lacunar infarcts and microinfarcts are the
most common type of infarct found in VaD (11). However,
regardless of the type, accumulation of infarcts increases
the likelihood of dementia (12). Other key neuropathological
changes include atherosclerosis seen in medium to large sized
arteries at the base of the brain with plaques containing
lymphocytes and macrophages that have begun to destroy
the vessel wall (later stage plaques may have necrotic cores,
cholesterol clefts and calcification), arteriosclerosis seen in
small arteries and arterioles (very common and early change),
and other microangiopathies (2, 12–14). However, a robust
internationally accepted set of neuropathological criteria for VaD
is still needed.

Cerebral small vessel disease (SVD) is not only associated with
an increased risk of stroke (15–17), but data from 13 different
studies on 12,931 patients across Western Europe and the USA
found SVD as the most common cerebrovascular pathology in
clinically diagnosed VaD followed by large-vessel disease (2, 18–
30). SVD is the most common and important vascular cause of
VaD, also referred to as subcortical VaD (31, 32). SVD causes
slow progressive changes to the brain due to diseased arterioles
and micro-vessels but can also affect larger vessels and veins
(33). SVD often coexists with atherosclerosis of the extracranial
vessels and cardioembolic disease, which all associate with VaD
(34). In SVD, vessels undergo progressive age-related changes
such as fibrinoid necrosis (necrosis of vessel wall), hyalinization
(thickening of vessel wall), intima thickening, arteriosclerosis,
astrocytic gliosis, and expansion of perivascular spaces, which
cumulatively all decrease perfusion and result in lacunar infarcts
and microinfarcts (2, 33, 35, 36). These lesions arise from a loss
of blood flow response, since the thickened and less elastic vessel
walls cannot respond to fluctuations in blood pressure by dilating
or constricting to maintain constant tissue perfusion (33, 37, 38).
This leaves brain tissue vulnerable to infarction, especially the
deep cerebral structures and white matter since these are supplied
by end arteries with almost no anastomoses to compensate (2).
It has been suggested that lacunar strokes are more often a
result of vascular degeneration, rather than arteriole occlusion as
originally assumed, however more research is needed to confirm
this (39).

RISK FACTORS OF VASCULAR DEMENTIA

Many factors have to date been linked to increased risk of
developing VaD (Figure 1).
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Diabetes
Diabetes mellitus has been found to double the risk of dementia
and has been established as a clear risk factor for VaD (40).
Having diabetes in midlife (<65 years) is a stronger risk factor
for dementia than in later life (41). In addition to duration of
diabetes, the occurrence of peripheral vascular disease is also
an independent risk factor for dementia (42). The link between
diabetes and VaD is not surprising since diabetes increases the
risk of stroke, lacunar infarcts and vascular damage, which
inevitably increase the risk of VaD (1, 43, 44).

Hypertension
Hypertension is a risk factor for VaD, especially if untreated. It
has been reported that the use of antihypertensives to control
blood pressure in midlife reduces the incidence of dementia
in later life (45–48). Uncontrolled hypertension precedes white
matter lesion development and worsens VaD disease progression
(49). Conversely, other studies have found an association between
low blood pressure and dementia risk, with the Framingham
Study finding no association between blood pressure and
cognitive performance (50–52). Therefore, it is unclear whether
decrease in blood pressure is a side effect of dementia or a decline
in blood pressure in later life after having high blood pressure in
midlife is a sign of dementia to come (1).

Metabolic Syndrome
Metabolic syndrome is characterised by a combination of
several metabolic derangements that include hypertension,
dyslipidaemia, central obesity, and insulin resistance (53). A
cohort of 7,087 participants from the French Three-City study
showed that baseline metabolic syndrome in patients >65
years increased the risk of incident VaD over four years (54).
Triglycerides (45% increase) and diabetes (58% increase) in
particular were significantly associated with an increase in all-
cause dementia (54). Metabolic syndrome also doubles the
risk of developing dementia in individuals with mild cognitive
impairment (55). However, the exact role of metabolic syndrome
in cognitive dysfunction is still unclear due to age having varying
effects on the syndrome’s impact on cognitive decline (1).

Age
The cerebrovascular endothelium becomes increasingly
permeable with age, with blood-brain barrier endothelial
integrity decreasing progressively after the age of 70, and such
changes are commonly seen in VaD patients (31, 56). Even
people without dementia in the general population have an
increasing prevalence of cortical infarcts, lacunar infarcts, and
microbleeds as they get older (57–59). Despite these infarcts and
microhaemorrhages or microbleeds being common in elderly
patients with normal cognition, these lesions are associated
with reduced cognition and executive function (2, 60, 61).
Microbleeds were present in 85% of patients with subcortical
VaD, and are therefore likely to be a marker of SVD (62).
Interestingly, age-related dementia risk has steadily decreased in
Europe and North America over the past couple of decades with
one possible explanation being better vascular risk factor control

in mid-life, which reduces the cumulative effect experienced by
the cerebrovascular system over time (63, 64).

Stroke
Post-stroke dementia is a subtype of VaD resulting from
ischaemic and haemorrhagic stroke, where 10% of patients
develop dementia after their first stroke and a third of patients
after recurrent stroke (65). South Asians are at a particularly
high risk of ischaemic stroke due to a greater burden of
hypertension, diabetes, and dyslipidaemia (66, 67). Although
not all stroke patients develop post-stroke dementia, recurrent
stroke prevention and cardiovascular risk factor control remain
the therapeutic cornerstone of preventing VaD (3) due to stroke
doubling the risk of all-cause dementia (68).

Genetics
Cerebral Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy (CADASIL) is the most
common genetic cause of stroke and VaD in adults (69, 70).
CADASIL is the result of a mutation to the NOTCH3 gene that
encodes for a transmembrane receptor crucial to blood vessel
integrity (71, 72), eventually leading to dementia due to systemic
vascular degeneration (73), however the exact mechanism of
disease remains to be uncovered (74). CARASIL is the very rare
autosomal recessive (R) form of this hereditary microangiopathy,
which is caused by a mutation to the HTRA1 gene encoding a
serine protease (71, 75). Onset of cognitive decline and ischaemic
stroke resulting from these microangiopathies characteristically
begins in early to mid-life (69), however further research is still
required to establish the exact mechanism that leads to VaD.

PATHOLOGY OF VASCULAR DEMENTIA

Current understanding of the pathophysiology behind SVD and
thromboembolic events that lead to cerebral damage and VaD is
centred around mechanisms involving hypoxia, oxidative stress,
and inflammation (Figure 2).

Hypoxia
Hypoperfusion and reduced cerebral blood flow is a
characteristic feature of VaD (76). Chronic hypoperfusion
and thromboembolic events result in reduced cerebral blood
flow and hypoxia, which aggravates oxidative stress and triggers
inflammatory responses (1, 77).

The brain demands a large cardiac output to fulfil its high
oxygen and metabolic demand for normal functioning, which
makes this organ extremely vulnerable to hypoxic damage. The
periventricular white matter, basal ganglia, and hippocampus
are all highly susceptible to hypoperfusion induced lesions;
additionally, poor collateral blood supply in the deep structures of
the brain leave cerebral white matter very susceptible to hypoxia
induced damage (78). Frontal lobe white matter myelin loss is a
hallmark of VaD, and this demyelination is a result of hypoxic
injury to the oligodendrocytes (79). These ischaemic lesions
result in neurocognitive decline as demonstrated in rats suffering
a decline in cognitive performance when cerebral blood flow was
reduced (80).
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FIGURE 2 | Summary of vascular dementia pathology. Reduced cerebral blood flow, caused by small vessel disease, thromboembolism and hypoperfusion, induces

inflammation, oxidative stress, and hypoxia, which in turn lead to cognitive decline and vascular dementia. Adapted from Venkat et al. (1) (created with BioRender.com).

Oxidative Stress
Oxidative stress refers to the excessive generation of reactive
oxygen species and reactive nitrogen species that damage cellular
proteins, lipids, and DNA (80). Studies indicate that oxidative
stress is associated with the pathogenesis of VaD (81), which may
be because the brain is relatively more susceptible to oxidative
stress than other organs due to its high metabolic rate, high
polyunsaturated lipid content, and lower levels of endogenous
antioxidant activity and protective mechanisms (80).

Cerebral hypoperfusion-induced hypoxia can promote
mitochondrial dysfunction, inhibit protein synthesis, and cause
ATP depletion and ionic pump disorder (82). Mitochondrial
dysfunction leads to increased reactive oxygen species
production, which is problematic because of a simultaneous
reduction in antioxidase production due to protein synthesis
inhibition (80). This combination results in more severe
oxidative damage due to the significant disruption in balance
of reactive oxygen species to antioxidants, which damages
vascular endothelial cells, glial cells, and neuronal cells therefore
causing neurovascular uncoupling that results in a reduction
in cerebral blood flow, further exacerbating this cycle (1, 80).
Furthermore, reactive oxygen species react with nitric oxide to
form peroxynitrite, eliminating circulating nitric oxide that is
necessary for cerebrovascular functions such as vasodilation and
enzymes oxidation, further disrupting cerebral blood flow (83).

Diabetes may partly increase the risk of VaD through build-
up of reactive oxygen species as a result of hyperglycaemia
which perpetuates this disease process (84). Similarly,

hypercholesterolaemia is associated with an increase in
free-radical formation and reduced antioxidant levels (81, 85).
In mouse models, vascular oxidative stress disrupts the cerebral
microvasculature’s ability to clear amyloid-β peptide, leading
to toxic accumulation of amyloid proteins that contribute to
neurodegenerative mechanisms and cognitive impairment
(86, 87).

Inflammation
Tissue hypoxia triggers a series of complex molecular
mechanisms inducing vascular inflammation, neurovascular
unit disruption, microvascular remodelling, and dysfunction in
response to tissue injury (88–90). Hypoxia-inducible factor-1α
and matrix metalloproteinase-9 are released which produce free
radicals, induce vasogenic oedema, degrade the blood-brain
barrier and increase inflammatory factors such as interleukin 1
and 6, matrix metalloproteinase 2 and 9, tumour necrosis factor
α, toll-like receptor 4 and C-reactive protein (1, 33, 91–93).
These inflammatory factors aggravate white matter damage in
the brain, cause neurodegeneration, cell death and neuroglial
inflammation which further progress VaD development (31).

COAGULATION AND COMPLEMENT
SYSTEMS IN VASCULAR DEMENTIA

The coagulation and complement systems are separate complex
evolutionary defence mechanisms underpinning inflammation,
clot formation and degradation to protect the host. Extensive
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literature reveals important crosstalk between these two systems
(94–97) which uncovers exciting therapeutic potential for
pathologies resulting from overactivation of these systems, such
as thromboembolic disorders associated with stroke and VaD.

The coagulation system is a series of physiological events that
ensure haemostasis (stopping of bleeding) by producing a fibrin
meshwork that stabilises the preliminary platelet plug formed
at the site of endothelial damage (98). Endothelial damage
exposes collagen and tissue factor, which activate platelets and
the extrinsic pathway of coagulation respectively. Thrombin
generated through the coagulation system converts fibrinogen
to fibrin, forming the fibrin fibres mesh that stabilises the initial
platelet plug (98) (Figure 3).

The complement system is key to the body’s defence
mechanism against pathogens as part of innate and adaptive
immunities (99). Contact with pathogenic surfaces triggers a
series of reactions resulting in three main outcomes: production
of proinflammatory mediators, opsonisation (marking of cells
for phagocytosis) and destruction of pathogenic cells via the
formation of a membrane attack complex that makes pores in the
pathogen cell membrane (100). Complement activation occurs
through three possible pathways: classical, lectin and alternative
pathways, resulting in complement activation and membrane
attack complex formation (99) (Figure 3).

Coagulation and VaD
Coagulation can be activated by vascular injury caused by
hypoxia and inflammation (101). Follow-up studies of the
Rotterdam study in the 1990’s found that dementia risk increased
with elevated levels of serum fibrinogen, thrombin-antithrombin
complex, D-dimer, and tissue-type plasminogen activator (102,
103). Although the authors noted that some misclassification
between Alzheimer’s disease and VaD may have occurred due
to difficulty differentiating between the two diseases, 31 out of
the 192 dementia cases in the cohort were VaD patients (103),
raising concerns about the statistical power of some of these
associations. Gallacher et al. also found associations between
dementia risk and fibrinogen in addition to factor (F)VIII,
plasminogen activator inhibitor-1, and plasma viscosity (104).
Although their study was smaller than the Dutch studies and
only included men, the associations were made over a much
longer 17-year prospective time frame (104). It was suggested
that these components increased VaD risk by altering fibrin clot
formation and lysis activity through the FVIII / von Willebrand
factor complex and elevated plasminogen activator inhibitor-1
(impaired fibrinolytic activity), which lead to hypercoagulability
and microinfarction (104). Further systematic reviews and meta-
analyses support associations between fibrinogen, FVIII, D-
dimer, FVIIa, and von Willebrand factor in VaD patients (105,
106).

FVIII levels increase in acute stroke (107) and generally with
age (108), in addition to their association with increased VaD risk
(104–106). However, a recent study found no strong association
between FVIIIa clotting activity and cognitive function or burden
of white matter hyperintensities on magnetic resonance images
(109). Although this study did not specifically look at VaD,
as previously discussed, white matter damage is one of the

hallmarks of VaD and SVD (79). It is therefore possible that
FVIII does not progress cognitive decline and VaD through its
clotting activity, but rather through another mechanistic role
that needs exploration, such as crosstalk with other systems.
Thrombomodulin and tissue factor on the other hand, have
been associated with the extent of leukoaraiosis (abnormal white
matter) in cerebral SVD (110).

Some studies have found associations between vascular
cellular adhesion molecule-1, C-reactive protein, and
interleukin-6 with VaD and cognitive decline (111, 112),
whilst other studies have not (103, 104). Although sample size
was an issue in all of these studies, the Dutch studies had slightly
more robust data due to repeats. Nonetheless, further research is
necessary to establish the roles of these inflammatory markers in
cognitive decline (113, 114).

Lower levels of endothelial progenitor cells are found
in CADASIL patients (115), which is associated with more
significant degeneration of cognitive and motor performances,
possibly due to their role in maintaining normal homeostasis
and structure of the endothelium (116). CADASIL patients
also had significantly higher von Willebrand factor levels
than controls (115), which is a marker of endothelial damage
and dysfunction (117). Elevated levels of lipoprotein-associated
phospholipase A2, an enzymewhich influences platelet activation
and inflammatory molecule production for low-density
lipoproteins, have been identified as a risk factor for dementia
development (118).

Finally, kinins from the kallikrein-kinin system are pro-
inflammatory peptides that are important in regulating vascular
permeability, oedema formation, trans-endothelial cell migration
and inflammation in different organs following injury (119).
Activation of FXII initiates both the intrinsic coagulation
pathway and the kallikrein-kinin system when it meets negatively
charged surfaces, triggering both clotting and inflammation seen
in ischaemic stroke (120–123). Prekallikrein is a key component
of the contact-kinin system and can activate FXII in the
intrinsic pathway. Prekallikrein-deficient mice had significantly
smaller brain infarctions and less severe neurological deficits
due to reduced intracerebral thrombosis, with improved cerebral
blood flow and blood-brain barrier function, suggesting that
prekallikrein inhibition could be a potential strategy for stroke
prevention (124). It is likely that these same mechanisms
contribute to stroke induced VaD, suggesting that prekallikrein
inhibition in humans could be a potential therapeutic target in
VaD prevention.

Complement and VaD
The complement system component C3a (anaphylatoxin) has
been reported to be involved in cerebral white matter injury
in rats (125). Microglia are the resident macrophage cells
of the central nervous system and are key to maintaining
normal brain homeostasis, however chronic activation of these
cells via the C3a-C3aR (receptor) pathway in hypoperfusion
can aggravate white matter injury by engulfing myelin fibres,
resulting in cognitive dysfunction (125). One study found that
intracortical administration of a C3aR antagonist (SB 290157)
resulted in reduced phagocytosis of neurones, since microglia
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FIGURE 3 | Summary of crosstalk between components of the complement and coagulation systems. The classical, alternative and lectin activating pathways of

complement produce C3 convertase, which allows for downstream activation of C3, C5 and formation of the membrane attack complex (MAC) or C5b-9. Activation

of Factor IX in the intrinsic pathway and formation of the tissue factor/FVIIa complex in the extrinsic pathway converge at the common coagulation pathway by

activating FX. This allows for the formation of a fibrin clot downstream, strengthening the initial platelet plug, which is later degraded into fibrin degradation products

(FDP) by plasmin. Plasminogen activator inhibitor-1 (PAI-1) inhibits the formation of plasmin and tissue factor pathway inhibitor (TFPI) inhibits formation of the tissue

factor / FVIIa complex. L99 activation of the complement system by the coagulation system; 99K activation of the coagulation system by the complement system; |– –

– inhibition of the complement system by the coagulation system. MBL, Mannose-binding lectin; MASP, Mannose-binding lectin-associated serine protease (created

with BioRender.com).

expressing C3aR were inactivated (126). The CODAM study
found a strong positive correlation between carotid artery intima-
media thickness, ankle-arm blood pressure index, and plasma
C3a levels in humans (127), suggesting that C3a promotes
atherosclerosis, which could contribute to the pathogenesis
of SVD. Interestingly, in hyaline arteriosclerosis, inactive C3b

is a major component of the hyaline material deposited in

the vessel wall of arterioles, suggesting another role for the
complement system in SVD pathology (36). Inhibition of

mannose-binding lectin pathway offers therapeutic benefit by
attenuating C3 activity after oxidative stress (128). Finally,
in vitro studies and mouse models have demonstrated that
C5a (anaphylatoxin) can induce the release of histones and
reactive oxygen species that leads to inflammation, endothelial
damage, and thrombosis (129), fitting the oxidative stress model
of VaD.

Crosstalk Between the Coagulation and
Complement Systems
Studies looking at the effect of complement proteins on
coagulation activity, and vice versa, have identified a number
of communication avenues between the systems (Figure 3).
Complement protein C5a was found to increase tissue factor
expression in human umbilical vein endothelial cells (130),
which was supported by another study reproducing this effect
in monocytes (131). This is significant because it shows that the
complement system may contribute to initiation of coagulation,
since tissue factor is the primary physiological initiator of the
coagulation system (94). Mouse models have also indicated
that C5 activation amplifies tissue factor activation on myeloid
cells, whilst C3 activation helps induce platelet activation,
showing that both C3a and C5a have prothrombotic roles
in promoting fibrin formation (132). Plasminogen activator
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inhibitor-1 is a potent inhibitor of the conversion of plasminogen
to plasmin, and therefore fibrinolysis (133). C5a has been
found to increase plasminogen activator inhibitor-1 expression
from mast cells (134), thus preventing clot breakdown. This
could explain the association between dementia and elevated
plasminogen activator inhibitor-1 levels reported by Gallacher
et al. (104). Additionally, assembly of the C5b-9 (membrane
attack complex) on endothelial plasma membranes triggers the
exposing of FVa binding sites on the membrane, therefore
promoting prothrombinase complex assembly to accelerate
thrombin generation (135, 136).

Conversely, studies of the influence of coagulation system
activity on complement has revealed that the coagulation factors
FXII, FXI and prekallikrein not only initiate the intrinsic
pathway, but can also initiate the classical (antigen-antibody
complex) and alternative (Factor B mediated formation of C3
convertase) complement pathways (94, 137). C3 and C5 are
typically converted to their active form by C3 and C5 convertase,
however studies have shown that they can also be cleaved to C3a
and C5a by FXa (most potent) followed by plasmin, thrombin,
FIXa, and FXIa (138, 139).

Activity can be both stimulated and inhibited in either system
by crosstalk, for example thrombomodulin in the coagulation
system can downregulate complement by inactivating C3b into
the inactive iC3b (140). Another example is tissue factor pathway
inhibitor, which plays a role in impeding blood coagulation by
preventing the activation of the tissue factor / FVIIa complex and
FXa (141–144). Work by Keizer et al. has identified tissue factor
pathway inhibitor as a selective inhibitor of mannose-binding
lectin-associated serine protease-2, which therefore inhibited
cleavage of C4 and C2 in the lectin pathway (94, 145). This
may be a useful therapeutic target for VaD, as studies have
suggested deficiencies of the lectin pathway have protective
effects against stroke and ischaemic-reperfusion injury in mouse
and human (145–148). For example, a prospective cohort study
found mannose-binding lectin deficiency was associated with
smaller cerebral infarcts and better outcomes following ischaemic
stroke (147). Extrapolating from this, one could argue mannose-
binding lectin deficiency could potentially reduce the risk of
post-stroke VaD.

Finally, a positive complement-platelet activation loop exists,
whereby activated platelets release complement components
that promote vascular inflammation, atheroma formation
and activate further platelets, which exacerbates complement
activation (149–154). Future studies could investigate whether
this activation loop has a role in the mechanism behind
cerebrovascular inflammation and the disruption of the
blood-brain barrier in VaD. Much remains to be uncovered
about the crosstalk between the complement and coagulation
systems in the pathogenesis, prevention, and treatment
of VaD.

CONCLUSION AND FUTURE
PERSPECTIVES

VaD is a complex neurocognitive disorder with major impact on
quality of life. There is still much to learn about this disease,

one of which being the role of complement and coagulation
systems in the underlying mechanisms, along with crosstalk
between these systems which could provide novel therapeutic
targets to improve patient outcomes, fulfilling the urgent need
for effective treatment strategies. Measuring serum markers of
activated complement and coagulation components could also
be useful for the identification of individuals at risk of cognitive
decline and track dementia progression.

The link between complement, coagulation, crosstalk and
VaD in this review highlights possible areas for future
research that remain to be fully explored. i) What is the
mechanistic link between coagulation components FVIII, FVIIa,
fibrinogen, thrombin-antithrombin complex, D-dimer, tissue-
type plasminogen activator, plasminogen activator inhibitor-1,
von Willebrand factor and VaD? ii) What is the role of the
inflammatory markers vascular cellular adhesion molecule-1, C-
reactive protein, and interleukin-6 in cognitive decline? iii) Are
C3a and C5a involved in white matter injury in humans? iv)
Can prekallikrein inhibition reduce the risk of stroke and VaD
in humans? v) What is the extent of crosstalk between all these
components and how does this lead to VaD development?

Over and under activation of the complement and coagulation
systems have been recognised to play a part in various
diseases such as Alzheimer’s disease, multiple sclerosis, atypical
haemolytic uremic syndrome, and antiphospholipid syndrome
(94, 101). Therefore, the potential role of these systems in VaD
should be considered. Current studies have already suggested
a link between blood hypercoagulability and cognitive decline
in dementia, however the statistical power of these studies is
still not great enough to confirm without a doubt that the
haemostatic system is part of the pathological mechanisms
that lead to VaD (113). The limited data on complement and
VaD emphasise the need for further research into complement
components and how these could potentially be involved in
driving the process of hypoxia, oxidative stress and inflammation
that result in cerebral infarction. Another problem that still needs
addressing is the lack of an internationally recognised standard of
VaD neuropathological criteria to enable direct comparison and
analysis of research (2). It is currently difficult to compare the
results of studies due to varying selection criteria for patients,
which means that patients that are eligible in one study are not
recognised as VaD patients in another study due to differing
diagnostic criteria.
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