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The Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large

cohort study to incorporate cardiovascular magnetic resonance (CMR) to study the

mechanisms of cardiovascular disease in over 5,000 initially asymptomatic participants,

and there is now a wealth of follow-up data over 20 years. However, the imaging

technology used to generate the CMR images is no longer in routine use, and methods

trained on modern data fail when applied to such legacy datasets. This study aimed to

develop a fully automated CMR analysis pipeline that leverages the ability of machine

learning algorithms to enable extraction of additional information from such a large-scale

legacy dataset, expanding on the original manual analyses. We combined the original

study analyses with new annotations to develop a set of automated methods for

customizing 3D left ventricular (LV) shape models to each CMR exam and build a

statistical shape atlas. We trained VGGNet convolutional neural networks using a transfer

learning sequence between two-chamber, four-chamber, and short-axis MRI views

to detect landmarks. A U-Net architecture was used to detect the endocardial and

epicardial boundaries in short-axis images. The landmark detection network accurately

predicted mitral valve and right ventricular insertion points with average error distance

<2.5mm. The agreement of the network with two observers was excellent (intraclass

correlation coefficient >0.9). The segmentation network produced average Dice score of

0.9 for both myocardium and LV cavity. Differences between the manual and automated

analyses were small, i.e., <1.0 ± 2.6 mL/m2 for indexed LV volume, 3.0 ± 6.4 g/m2

for indexed LV mass, and 0.6 ± 3.3% for ejection fraction. In an independent atlas

validation dataset, the LV atlas built from the fully automated pipeline showed similar

statistical relationships to an atlas built from the manual analysis. Hence, the proposed

pipeline is not only a promising framework to automatically assess additional measures

of ventricular function, but also to study relationships between cardiac morphologies and

future cardiac events, in a large-scale population study.
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INTRODUCTION

Cardiovascular magnetic resonance (CMR) is widely used for the

non-invasive assessment of cardiac function, and has excellent

accuracy and reproducibility for clinical evaluation of cardiac

mass and volume (1). The ability of CMR to evaluate all
regions of the heart with high signal to noise ratio without
harmful radiation exposure has led to its use in several large

cohort studies investigating the development of cardiac disease
in general populations, including the Multi-Ethnic Study of

Atherosclerosis (MESA) (2) and the UK Biobank (3). MESA
was the first large epidemiological study to utilize CMR to

evaluate pre-clinical characteristics of participants before the
onset of clinical symptoms of cardiovascular disease (CVD).
The baseline MESA CMR exam was performed between 2000
and 2002 using the common imaging method prevalent at that
time: gradient echo cine imaging. However, this imaging method
has been largely replaced by steady-state free precession cine
imaging in subsequent studies and in clinical practice (4). Due
to differences in fundamental properties that comprise image
contrast as well as spatial resolution (5), image analysis tools
designed for modern steady-state free precession images are
likely to have poor performance when applied to 20-year-old
gradient echo imaging.

Three-dimensional (3D) atlas-based analysis methods have
been developed to quantify subtle differences in heart shape
(remodeling) and function associated with CVD risk factors
such as hypertension, smoking and diabetes (6–10). To date,
these methods have only been applied to a limited subset of

FIGURE 1 | Fully-automated atlas generation pipeline of cardiac MRI analyses. Three deep learning networks were trained to perform: (1) detection of mitral valve

points from long-axis (LAX) images, from both two-chamber or four-chamber views, (2) detection of right ventricular (RV) insert points from short-axis (SAX) images,

and (3) segmentation of myocardium mask from SAX images. Landmark points and contours from myocardium mask images were converted into 3D patient

coordinates to guide the customization of a left ventricle (LV) model. Breath-hold mis-registration of SAX slices were corrected. The final model was used to construct

a statistical shape LV atlas.

MESA cases, due to the need for additional image analysis
which was not performed as part of the original CMR analysis.
This is a recurring problem in large cohort legacy datasets,
since a limited amount of annotations are available and manual
analysis is unfeasible due to time and resource constraints. A fully
automated processing pipeline is therefore necessary to enable
more comprehensive analysis and make better use of the large
amount of image data acquired.

Deep learning methods, particularly convolutional neural
networks (CNN), have demonstrated high accuracy and
reproducibility for fully automated image analysis when sufficient
training images and high computational power is available
(11, 12). CNN can automatically learn optimal weights for
convolutional operations in each layer to extract image features.
It has been applied and adapted for image classification
(13), object recognition (14), segmentation (15), and image
registration (16). However, CNN solutions trained on modern
steady-state free precession images fail when applied to the old
gradient echo images. Transfer learning approaches, such as pre-
training or layer-wise fine tuning, have been proposed to adapt a
network to different domain, but when large amount of labeled
data is available, full training from scratch is the best option to
train a CNN (17).

In this study, we developed an automated CMR preprocessing
pipeline, shown in Figure 1. In order to automatically construct
3D LV shape models and a statistical shape atlas, anatomical
landmarks were required to orient the model and contours
were required to customize the shape models. Custom CNNs
were used to detect anatomical landmarks and to segment
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TABLE 1 | Patient demographics from the MESA cohort.

MESA CMR Landmark detection Segmentation Atlas validation

N 5,003 2,372 1,545 1,052

Age (years) 61.5 (10.1) 61.3 (10.1) 61.0 (10.2)** 60.1 (9.8)***

Gender Female 2,622 (52.4) 1,230 (51.9) 814 (52.7) 430 (40.9)***

Male 2,381 (47.6) 1,142 (48.1) 731 (47.3) 622 (59.1)

SBP (mmHg) 125.4(21.3) 126.2 (21.9)* 126.4 (22.0)* 124.8 (20.2)

DBP (mmHg) 71.8 (10.30) 71.6 (10.3) 71.7 (10.3) 73.6 (10.1)***

Heart Rate (bpm) 62.8 (9.5) 62.7 (9.5) 62.9 (9.5) 62.1 (9.6)**

Diabetes Yes 459 (9.2) 232 (9.8) 162 (10.5)* 74 (7.0)**

No 4,544 (90.8) 2,140 (90.2) 1,383 (89.5) 978 (93.0)

Hypertension Yes 1,766 (35.3) 805 (34.0) 539 (34.9) 373 (35.5)

No 3,234 (64.7) 1,566 (66.0) 1,005 (65.1) 677 (64.5)

Smoking status Never 2,569 (51.5) 1,237 (52.3) 805 (52.4) 511 (48.6)

Former 1,786 (35.8) 824 (34.9) 521 (33.9) 394 (37.5)

Current 634 (12.7) 302 (12.8) 209 (13.6) 146 (13.9)

Framingham score 13.9 (9.5) 14.1 (9.5) 14.0 (9.6) 13.7 (9.2)

Two sub-cohorts were defined to train and validate deep learning networks for landmark detection and segmentation. Another sub-cohort, disjoint from the two training datasets, was

defined for validation of the atlas generated from automated compared with core lab manual analysis. Continuous variables are written as mean (standard deviation), while categorical

variables are written as count (percentage). Statistical tests were performed between a sub-cohort against its complement with one-way ANOVA for continuous variables and χ
2 test

for categorical variables. *p < 0.05, **p < 0.01, ***p < 0.001 for difference between a particular sub-cohort and the rest of the MESA CMR cohort.

myocardium from the MESA gradient echo CMR images. We
demonstrate that these networks provide robust and consistent
contours and landmarks compared with manual annotations.
We also show that an LV atlas built from the proposed pipeline
produced similar associations with CVD risk factors to an atlas
built from manual analyses.

MATERIALS AND METHODS

Dataset
The MESA study has been described previously in (2). Briefly,
the CMR exam consisted of 5,098 participants who were initially
free from clinically recognized CVD at the time of enrollment
(18). Images were acquired with 1.5TMR scanners at six different
institutions across the United States using Siemens and General
Electric scanners between July 2000 and July 2002. All images
were acquired during breath-holding at resting lung volume.
From each CMR examination, we only included short- and long-
axis cine images for this study. The cine CMR images consist
of 10–12 short-axis slices (SAX), single four-chamber (4CH)
and single two-chamber (2CH) long-axis (LAX) views. All cine
images were acquired using fast gradient echo pulse sequence,
with typical parameters of slice thickness 6, 4mm gap, field of
view 360–400mm, 256× 160 image matrix (smallest 192× 160),
flip angle 20◦, echo time 3–5ms, repetition time 8–10ms with
20–30 frames per slice (temporal resolution <50ms) and pixel
size from 1.4 to 2.5 mm/pixel depending on patient size. All
participants gave informed consent, and the institutional review
board at each site approved the study protocol.

The MESA Core Lab provided 2D contour points drawn
manually by trained technologists. The Core Lab analysis
protocol for MESA study has been described previously
(18), including inter- and intra-observer variability. Briefly,

endocardial and epicardial borders were traced on short-axis
slices at end-diastole (ED) and end-systole (ES) frames using Q-
MASS software (version 4.2, Medis, the Netherlands). Papillary
muscles were included in the blood pool. All image contours were
reviewed and corrected by a cardiac MR physician.

In total 5,003 exams had adequate MRI data for analysis
(Table 1). Of these, 2,496 cases (49.9%) were available from
the Cardiac Atlas Project (19), while the remaining 2,507 cases
(50.1%) were provided by the MESA Core Lab at the Johns
Hopkins Medical Center, Baltimore, USA. In this study, we used
cases from the Cardiac Atlas Project for training, testing and
validating the deep learning networks, while the remaining cases
were used for an independent LV atlas validation. Figure 2 shows
detail divisions of the baseline MESA cohort for the automated
CMR analysis pipeline development.

Of the 2,496 cases for the training data, 2,273 cases had
manual contours. We further excluded 728 cases due to mis-
alignment of contours with the image slices, unmatched contours
with DICOM images or missing DICOM header information.
This resulted in 1,545 cases to train the segmentation
network, which were randomly split into 1,236 training
cases (80%), 154 validation cases (10%), and 155 test cases
(10%). Contour points were converted into mask images
consisting of three disjoint areas: myocardium, LV cavity, and
background pixels.

As anatomical cardiac landmark points were not part of
the MESA Core Lab protocol, we employed two experienced
analysts (both had >5 years of fulltime experience in CMR
exams) to manually place cardiac landmarks by using
Cardiac Image Modeler software (version 6.2; Auckland
MR Research Group, University of Auckland, New Zealand).
Of the 2,496 cases for the training data, 2,372 cases had
adequate annotations to train the landmark detection network.
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FIGURE 2 | Division of MESA cases into two independent sets of Atlas Validation and Training sub-cohorts. Within the Training sub-cohort, cases were divided into

training, validation and testing sub-groups for the different deep learning networks (Segmentation Network and Landmark Detection Network).

These were randomly split into 2,091 training cases (88%),
231 validation cases (10%), and 50 test cases (2%). The test
cases were also used for inter-observer variability study,
where landmark points from both analysts are available for
each case.

For the LV atlas validation, we need cases where we can derive
3D points from themanual contours. Unfortunately, information
about 3D image positions and orientations were not stored in
the Q-MASS contour files available from the Core Lab. We
therefore developed a simple matching algorithm to align Q-
MASS contours with the DICOM image headers. This consisted
of ordering the images and contours from apex to base, followed
by alignment based on image position and orientation. The
alignment results were manually reviewed to confirm correct
matching of contours and images. This process resulted in 1,052
cases with manually verified DICOM image matching, sufficient
to validate the automated pipeline developed in this study (see
Figure 2).

Cardiac MRI Analysis Pipeline
As shown in Figure 1, the proposed automated CMR analysis
combines two types of CNNs (myocardial segmentation and
landmark detection) with LV finite element shape modeling.
Cardiac landmark points were needed to determine the initial
pose and orientation of the LV model, but were not part of
the original MESA analysis protocol, hence further annotation
was required to provide training data. The LV contours were
required to guide the patient-specific customization of the LV
model, and training data could be provided from the original
MESA CMR analyses.

Landmark Detection Network
The landmark detection network was based on the VGGNet
architecture (20), which has been successfully used to classify
images and to recognize objects. It consists of 16 layers of CNN
blocks that gradually extract features into smaller tensor size.
The input is 256 × 256 MR image and the output is a feature
vector of 2,048 elements. The final layer reduces this feature
vector into four neurons corresponding to two points on the
input image in [x1, y1, x2, y2] format. Details of this landmark
detection architecture are given in Appendix A.

Two types of anatomical landmarks are predicted for the
proposed pipeline. The first landmark is the position of mitral
valve hinge points at the intersection between the left atrium and
the left ventricle from two long-axis MR images: two-chamber
(2CH) and four-chamber (4CH) views. The other landmarks are
the position of the intersection points between the right ventricle
and the interventricular septum (RV insert points) from short-
axis MR images. Mitral valve points were used to determine the
basal extent of the heart, whereas RV insertion points were used
to estimate the position of the septum.

Although sharing the same architecture, we trained three
separate landmark detection networks to detect the different
types of cardiac landmark points and image views: 2CH mitral
valve points, 4CH mitral valve points and short-axis RV insert
points. We developed a novel transfer learning scheme between
these networks during training, which was designed to exploit
similarities in the images, yet allowing for differences in the
spatial relationships. First, an initial network for one view was
trained from scratch with random weight initialization until
convergence. Then, the network was retrained for one of the
remaining two views. However, instead of using a random
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FIGURE 3 | Distributions of distances between landmark points identified by the landmark detection method (Auto) and the two analysts (Obs1 and Obs2). Median

(solid line), quartiles (thin lines) outliers (red points).

TABLE 2 | Landmark distance errors from neural networks trained independently

compared to networks trained with our training strategy.

System trained with

independent neural networks

System trained with our

training strategy

Two-chamber 2.98 (1.44) 1.53 (0.74)

Four-chamber 3.24 (1.55) 1.44 (0.74)

Short axis 2.94 (1.6) 2.07 (1.11)

Error values were measured on 232 validation cases and shown as mean (standard

deviation). All values are in millimeters.

initialization, the weights from the previous training step were
used as initial weights. After the new network was converged, its
weights were used as initialization for the third view. The order
in which the three different views were trained was random. This
sequence was repeated until convergence (e.g., the performance
of the two-chamber network compared to the previously trained
two-chamber network was not improved). An advantage of
this sequence is that it allows for maximum freedom when
training the neural networks for the different kinds of image
views whilst still being able to infer features learned from other
images. Table 2 shows the improvement of performance using
the transfer learning scheme in the validation set, where the
landmark distance errors significantly decreased.

On average, we included five frames per case for the mitral
valve points on each of the four-chamber and two-chamber
views, and five short-axis slices per case for the RV inserts
on the end-diastolic frame. In total, there were 11,604 images

for the two-chamber view, 11,670 images for the four-chamber
view, and 13,402 images for the short-axis view. Images were
whitened by subtracting the mean pixel intensity and divided by
standard deviation, on a per-image basis. Zero-padded cropping
was performed to create 256× 256 input images as needed.

We validated the predicted landmark points by the Euclidean
distance (in mm) on the image space. The strength of agreement
between the landmark detection and the two analysts was
measured using the intraclass correlation coefficient (ICC) with
a two-way random effects model (21). A high ICC (close to 1)
indicates a high similarity between landmark point locations
from all observers.

Segmentation Network
To segment the myocardium, we used the U-Net architecture
(22), which has been successfully used in a wide range area of
medical image analysis (12). The input is 256 × 256 short-axis
MR image and the output is a mask image of the same size
that consists of either myocardium, cavity or background pixel.
The short-axis image was segmented individually; no temporal
or other spatial multi-slice information was learned for this
segmentation network. During training, data augmentation was
performed by image flipping, zoom, brightness, and contrast
variations. Input images were zero-padded and cropped into
256 × 256 image size as needed. More details about the
segmentation network architecture and its training results are
given in Appendix B.
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We validated the accuracy of the segmentation network
by using the Dice score (23), for both myocardium and LV
cavity. We also validated standard clinical measurements for
post-processing CMR exams (1), which include LV volumes at
end-diastole and end-systole, ejection fraction and LV mass.
Volumes were estimated by the LV cavity areas times the
slice thickness (and slice gaps) for all short-axis slices where
endocardial contours were available. LV masses were calculated
from the myocardial volume (defined between endocardial and
epicardial contours) multiplied by a density of 1.05 g/mL. All
volumes and masses were indexed by body surface area, resulted
in LV end-diastolic volume index (LVEDVi), LV end-systolic
volume index (LVESVi), LVmass index (LVMi). Ejection fraction
(LVEF) was measured by (LVEDVi – LVESVi) / LVEDVi ∗ 100.
We compared all these values from the test cases (n = 155)
using the Bland-Altman plot analysis (24) to identify if there
is a systematic error from the mean offset of the differences,
inconsistent variability from the limits of agreement (mean ±

1.96× standard deviation), and any trend of proportional error.

LV Atlas Construction
After landmark detection and segmentation (Figure 1), a finite
element LV model was automatically customized to each set
of myocardial contours and landmark points, as described
previously in (25). Briefly, the LV model was first fitted to the
landmark and contour points by a least squares optimization.
The extent of the LV was defined from landmarks on mitral
valve points and an LV apex point obtained from the contours.
The septum area was located using the RV insertion landmark
points. After orienting the model according to the landmarks, the
endocardial and epicardial surfaces were fitted to the short axis
contours by minimizing the distance between the surfaces and
the contour points.

One advantage of using this LV model customization is that
we can automatically correct image slice shifting due to breathing
motion. In Figure 1, an example of this shifting artifact can be
seen from the 3D contour points. The automatic breath-hold
misregistration correction was based on (6). Briefly, a highly
regularized customization of the LV was performed first to
align a smooth LV model with the data. This model preserves
the overall shape but is robust to breath-hold misalignments.
Intersections between the LV model with short-axis image
slices were then calculated and the contours were aligned with
the model. The alignment movement was performed in-plane
allowing only two degrees of freedom during shifting (no shift in
the longitudinal direction). The shifting direction was calculated
from the centroid of the intersection of the model with the image
slice, based on the area-weighted average of the mesh barycenter.
Then the LV model was re-customized to the data with a
low regularization weight, minimizing the distance between the
model and the contours.

After model fitting, an LV atlas was constructed by
concatenating LV models from end-diastolic (ED) and end-
systolic (ES) frames to capture both shape and motion
information. In our previous study (7), concatenating ED
and ES surface sample points yielded better performance
to extract cardiac shape remodeling features compared to

points from individual frames alone. Let N be the number
of points sampled from the finite element model, and
Pendo_ED, Pepi_ED, Pendo_ES, Pepi_ES ∈ R

Nx3 be 3D surface
sampling points from the endocardium at ED, epicardium at
ED, endocardium at ES and epicardium at ES, respectively. A
single shape vector is defined by flattening each point matrix

into S =
[

x1, y1, z1, . . . , xN , yN , zN
]T
vector and concatenating all

of the four surfaces, resulting in 4 × 3 × N = 12N points.
We removed position and orientation variations between shape
vectors by using Procrustes alignment (26). The mean shape was
then calculated and the principal component analysis (PCA) can
be applied to the registered shape vectors.

Association With Cardiovascular Risk
Factors
To demonstrate the clinical efficacy of the predicted LV atlas, we
analyzed associations between LV shape and cardiovascular risk
factors, i.e., hypertension, diabetes, smoking status, cholesterol
level, and calcium score, and compared atlas associations
obtained from the automatic pipeline with atlas associations
obtained from manual contours and landmarks. For this
evaluation, we evaluated 1,052 MESA cases independent of
the sub-cohorts used to train the landmark and segmentation
networks (the atlas validation dataset, Table 1 and Figure 2).

Our hypothesis was that there is no significant differences in
the strength of risk factor associations between the automatically
generated LV atlas and the atlas derived from manual analyses.
Logistic regression (LR) models were used to evaluate the
strength of the risk factor associations. A separate LR model
was generated for each risk factor using that factor as a
binary univariate dependent variable and the first 20 principal
component scores (90% total variance explained) derived from
the atlas as the independent variables. Visual comparisons
between modes of shape variations from LV Atlas derived from
manual analyses and from the proposed cardiac MRI pipeline
are available in the Supplementary Files. The strength of the
association between shape and risk factor was quantified using
the area under the curve of the receiver operating characteristic
(AUC). To avoid overfitting, a ten-fold cross validation scheme
was employed. At each cross validation iteration, we rebuilt
the PCA from scratch to show that the associations were not
dependent to a fixed orientation of the principal axes.

RESULTS

Landmark Detection
The total training time for three landmark detection networks
was 14 h on NVidia Titan X Pascal GPU. Typically, five iterations
of transfer learning between 2CH, 4CH, and SAX networks
were required for overall convergence. The performance of the
landmark detection networks was tested on 50 independent cases,
which were annotated by two expert analysts independently.
Only images where both analysts identified all landmark points
were included. These resulted in 111 2CH, 107 4CH, and 286 SAX
images for comparisons. Since two points are identified from each
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FIGURE 4 | Examples of automated landmark detection (red markers) compared with manually defined placements by two observers (blue and green markers). The

top row shows cases with the maximum distance of automated detection to one of the observers while interobserver distances are small. The bottom row shows

cases with the largest interobserver distances.

image, the total number of points during the test was 222, 214 and
572 points for 2CH, 4CH, and SAX, respectively.

The distributions of Euclidean distances between automated
methods and the observers are shown in Figure 3. Mean,
standard deviation, and maximum distances are given in Table 3.
The results show that the automated landmark detection errors
are within the inter-observer variabilities with no significant
differences in the location of landmark points (all p < 0.001).
ICC between the automated method and the two analysts were
all excellent, i.e., 0.998, 0.996, and 0.995 for 2CH, 4CH, and
SAX respectively.

Examples of landmark detections are shown in Figure 4

together with manual expert observer placements. The top row
images show the largest distance of the automated detection
method where the distance between observers was low (< 3
pixels). Even in these cases, the automated method could identify
the landmarks very close to the observers. The bottom row
images in Figure 4 showcase the largest distances between expert
observers. The automated method was able to identify landmark
points in these cases with the position very close to one of the

TABLE 3 | Differences and intraclass correlation (ICC) values in detecting

landmarks on 50 validation cases.

2CH LAX 4CH LAX SAX

N = 222 N = 214 N = 572

Auto vs. Obs1 1.86 (1.19) 2.09 (1.32) 2.29 (2.15)

Auto vs. Obs2 1.81 (1.21) 2.19 (1.28) 2.27 (1.61)

Obs1 vs. Obs2 1.78 (1.16) 2.24 (1.68) 2.67 (2.29)

ICC value 0.998 0.996 0.995

All difference values are expressed mean (standard deviation) from the Euclidean distance

between annotations in millimeters. N is the number of cases.

observers. These cases show the difficulty of visually identifying
landmark points where image contrast is low and high image
noise is present.

Segmentation
Quartiles, means, and standard deviations of the Dice score from
the test dataset are presented in Table 4. Median and mean Dice
scores were high (>0.8) for myocardium and LV cavity masks,
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both at ED and ES frames. Typical segmentation results are
shown in Figure 5 with cases of best, mean, and worst results.
Figure 5 also demonstrates the difficulty of segmenting basal
slices near the LV outflow tract.

Table 5 shows comparisons of volumes (LVEDVi and
LVESVi), mass (LVMi) and ejection fraction (LVEF) from
the test cases. The segmentation network achieved excellent
correlation coefficients for all clinical measurements (all
Pearson’s coefficients are >0.9, p < 0.001). The mean offset
of differences are also small, i.e., <1 mL/m2 for volumes,
only 0.7% for ejection fraction, and 3 g/m2 for mass. As
shown in Figure 6, the differences are consistent within

TABLE 4 | Dice score results of the segmentation network from the test dataset

with 2,465 images.

Mask Frame Q1 Median Q3 Mean Std dev

Cavity ED 0.92 0.95 0.97 0.93 0.07

ES 0.86 0.91 0.94 0.88 0.11

Myocardium ED 0.85 0.89 0.91 0.87 0.07

ES 0.89 0.92 0.94 0.90 0.08

Frames indicate end-diastole (ED) and end-systole (ES). The 25th quartile (Q1), median,

and 75th quartile (Q3) are shown, together with means and standard deviations.

the limit of agreement lines without any visible trend for
proportional error.

Atlas Validation
Finally, we compared cardiovascular risk factor associations from
the LV atlas from the automated analysis pipeline with an atlas
formed from themanual analyses using a similar analysis method
to (25). Table 6 shows the comparison of the area under the
receiver operating characteristic curves (AUC) from risk factor
association results (test cases from the cross validation). From all
risk factors (hypertension, diabetes, smoking status, cholesterol,
and calcium score), none of them have significant differences
between the two methods except for cholesterol (p= 0.02) which

TABLE 5 | Comparisons of indexed LV volumes, ejection fraction and mass from

the 155 test cases between the predicted segmentation results with manual

contours.

LV function Correlation coefficient Differences

LVEDVi (mL/m2) 0.98 (p < 0.001) −0.02 (2.6)

LVESVi (mL/m2 ) 0.95 (p < 0.001) −0.46 (2.3)

LVEF (%) 0.92 (p < 0.001) 0.69 (3.3)

LVMi (g/m2) 0.92 (p < 0.001) 3.0 (6.4)

The differences are written as mean (standard deviation).

FIGURE 5 | Examples of short axis segmentation network results. Top row, base; middle row, mid-ventricle; bottom row, apex. Manual contours are in red while

automated contours are in blue. A range of Dice score results are shown.
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FIGURE 6 | Differences between automated analysis (Auto) and manually drawn contours (Man). Solid lines are mean differences and dashed lines are the limits of

agreement within ±1.96 × standard deviation from the mean. The mean difference values are shown in Table 5.

TABLE 6 | Area under the ROC curve (AUC) comparisons from the 1,052 LV

shape association studies using different contours: manual (Man) and deep

learning (Auto).

AUC P-value

Man Auto

Hypertension 0.69 0.71 0.22

Diabetes 0.56 0.53 0.34

Smoking status 0.59 0.61 0.33

Cholesterol 0.50 0.54 0.02

Calcium score 0.61 0.61 0.99

showed a stronger association with the automated analysis than
with the manual analysis.

DISCUSSION

In this study, we present methods for the automated analysis
of large cohort data from a legacy dataset obtained in the
MESA study, aided by deep learning methods. These methods
enable a more complete analysis of large cohort datasets,
augmenting the parameter set available from these valuable
studies. In addition to the end-diastolic and end-systolic volumes
computed in the original study, these methods enable the
analysis of 3D shapes, facilitating a fully automated 3D model-
based atlas analysis method. Almost all risk factors showed
similar strength of relationships with atlas scores, except for
cholesterol level in which the automated method showed a
stronger relationship (Table 5). However with AUC around 0.50,
the elevated cholesterol association was essentially random. The
slightly higher AUC for the automated contoursmay indicate that
some signal may be available in the automated analysis which was
lost in the manual analysis. This requires more research using a
larger cohort.

The automated landmark detection method was successfully
applied to GRE images, which are known to have lower signal-to-
noise ratio and lower contrast compared to the current standard
steady state free precession CMR imaging methods (5). The

agreements with two expert analysts were all excellent (ICC >

0.9). Since signal-to-noise ratio is low in some gradient echo
images, the analysts had noticeable disagreements between them
in some cases, as shown in Figure 4 (bottom row). However,
the automated detection method could identify the location of
the landmark point in agreement with one of the observers.
This ability was achieved by our approach to transfer learning
weight parameters between image views iteratively. We exploited
features between different domains to make the detection robust
to noise and other artifacts.

Other machine learning methods have reported good results
with landmark detection in cardiac MRI data, as well.
For instance, Tarroni et al. (27) applied a hybrid random
forest approach integrating both regression and structured
classification networks and reported mean errors of 3.2–3.9mm
in mitral valve landmark detection. Although it is difficult
to determine which methods give the “best performance” in
this application, our results show that the CNN-based method
is powerful enough in the applications where legacy datasets
provide sufficient annotated cases.

For the segmentation task, we demonstrated that the popular
U-Net architecture (22) without any major modifications is
capable of providing acceptable segmentation of the myocardium
in gradient echo cine images. The segmentation network,
which was trained based only on individual SAX images
(without temporal information), has already achieved excellent
performance. The first quartiles of the Dice score were all
above 0.85 (Table 4), and 92% of the Dice scores were above
0.80. From the test dataset, the network only failed to segment
one slice and only 8 images with Dice scores <0.5. All of
these slices were the apical slices, where blood cavity is hardly
recognizable even by visual inspection. Other problematic slices
were at the base around the outflow tract, where there are
more variability of the contours at the aortic root. Figure 5
shows some examples of the segmentation results at different
levels of the LV (base, middle and apex) with variations of
the Dice scores. Although apical and basal slices were more
difficult for the network, the LV shape customization method
was relatively robust to segmentation mask outliers, as evidenced
by the agreement in statistical relationships with common risk
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FIGURE 7 | An example of fully automated CMR pipeline result as a patient-specific LV model. Intermediate predictions of the myocardial contours (in blue) and

landmark points (yellow circles) are shown in each corresponding DICOM image. Manual contours are shown in red. The intersection contours between the 3D LV

model with the images are shown in green. This particular example demonstrates how failed segmentation contours (in apex and base slices) do not affect the final LV

model, which are clearly shown in the LAX intersection contours.

factors, since the model customization process used data from
all slices. Figure 7 demonstrates the benefit of the LV model
customization over large errors predicted in some problematic
slices. This is shown by the intersection contours of the LV
model with the SAX images that are well aligned with the manual
contours. Figure 7 also shows the intersection contours on LAX
images where the alignment of the contours at the myocardium
can be visually assessed.

It is known that different groups annotate cardiac MRI
data differently (28). For this study, the manual contours were
performed by a single core lab, whereas the landmarks were
performed in another core lab, so both the landmark detection
and segmentation networks will reflect the core lab standard
operating procedures on the gradient echo images. Differences
in local shape are expected when comparing the shape models
generated with gradient echo imaging with those generated from
other protocols, and these can be corrected using atlas-based
methods (29). Alternatively, the training data distribution can be
made richer to include more pathologies, images from different
centers and multiple observers, as has been demonstrated by Tao
et al. (30) and Bhuva et al. (31).

A common approach to train a complex deep learning
network is by end-to-end training (32, 33), where a combined

loss function is defined for multiple tasks as the global cost
function to optimize. In this work, landmarks and contours were
only available on separated image views, so we decided to train
the landmark detection network separately to the segmentation
network to make each network capable of predicting unseen
images independently. The ability to identify mitral valve points
therefore does not need to depend on the segmentation masks or
vice versa.

The problem of missing information is common to legacy
datasets such as MESA. In this study, information linking
contours with the corresponding 3D image position was not
available. Since most cases were able to be matched with a
simple algorithm, leading to sufficient training data, we did
not invest more time in developing more sophisticated image-
contour matching algorithms. The 3D conversions failed mainly
due to missing 3D position information in the DICOM header
or missing trigger time information needed to sort the images
temporally. To investigate whether there was any bias due to
poor image quality, we examined the image quality score given
by the original Core Lab readers. This was a three-level subjective
rating: 1 for good, 2 for moderate and 3 for poor. There were
no significant differences between included and excluded cases
(p = 0.4, Fisher’s Exact test), with 85.4% vs. 86.3% having score
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1, 14.6% vs. 13.5% for score 2 and 0% vs. 0.2% for score 3, for
included vs. excluded cases, respectively. LV wall motion was
also scored on a three point scale and there were no differences
between included and excluded cases.

Although this study specifically trained deep learning
networks for old legacy gradient echo (GRE) cine images, there
are some clinical applications employing GRE imaging. In a
recent guideline (34), the image quality of GRE images is better
than that of the current steady-state free precession (SSFP)
cine images for patients with cardiac implantable electronic
devices (35). GRE images are also preferred for T1 and T2-
weighted images particularly for patients with suspected iron
overload (36). Hence the proposed CMR analysis pipeline has
a wider application in other cardiac imaging studies as well,
albeit transfer learning is needed to adapt the learned weight
parameters to specific pathology. Note that the pipeline does not
depend only on GRE; it can be applied directly to other types
of CMR images, particularly where legacy datasets can provide
valuable additional data.

CONCLUSIONS AND FUTURE WORK

We have shown that deep learning networks can be used for
automatically finding LV landmarks and segmentations on legacy
MESA CMR images, in order to automate the construction of
LV models, which can be used to build an atlas and evaluate
associations between LV shape and risk factors. The final
prediction of the LV model based on deep learning networks had
similar power to evaluate associations with cardiovascular risk
factors compared to manual analysis. This has greatly reduced
the amount of time to analyze large-scale collections of cardiac
MRI study. In future work, the automated atlas will be used to
derive associations between LV shape and outcomes. In addition,
analysis of all frames in the cine will allow the calculation of
ejection and filling rates and other dynamic information.
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