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Our study aims to develop a data-driven framework utilizing heterogenous electronic

medical and clinical records and advanced Machine Learning (ML) approaches for:

(i) the identification of critical risk factors affecting the complexity of Coronary Artery

Disease (CAD), as assessed via the SYNTAX score; and (ii) the development of ML

prediction models for accurate estimation of the expected SYNTAX score. We propose

a two-part modeling technique separating the process into two distinct phases: (a)

a binary classification task for predicting, whether a patient is more likely to present

with a non-zero SYNTAX score; and (b) a regression task to predict the expected

SYNTAX score accountable to individual patients with a non-zero SYNTAX score. The

framework is based on data collected from the GESS trial (NCT03150680) comprising

electronic medical and clinical records for 303 adult patients with suspected CAD, having

undergone invasive coronary angiography in AHEPA University Hospital of Thessaloniki,

Greece. The deployment of the proposed approach demonstrated that atherogenic index

of plasma levels, diabetes mellitus and hypertension can be considered as important

risk factors for discriminating patients into zero- and non-zero SYNTAX score groups,

whereas diastolic and systolic arterial blood pressure, peripheral vascular disease and

body mass index can be considered as significant risk factors for providing an accurate

estimation of the expected SYNTAX score, given that a patient belongs to the non-zero

SYNTAX score group. The experimental findings utilizing the identified set of important

risk factors indicate a sufficient prediction performance for the Support Vector Machine

model (classification task) with an F-measure score of ∼0.71 and the Support Vector
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Regression model (regression task) with a median absolute error value of ∼6.5. The

proposed data-driven framework described herein present evidence of the prediction

capacity and the potential clinical usefulness of the developed risk-stratification models.

However, further experimentation in a larger clinical setting is needed to ensure the

practical utility of the presented models in a way to contribute to a more personalized

management and counseling of CAD patients.

Keywords: personalized (precision) medicine, coronary artery disease, machine learning, SYNTAX score, risk-

stratification model

INTRODUCTION

Nowadays, the advances in -omics disciplines and
nanotechnology provide new clinical and therapeutic directions
in the healthcare environment. The concept of personalized
(precision)medicine is based on the exploitation of themolecular
knowledge in the clinical practice so that the practitioners are
able to evaluate more precisely prognosis and diagnosis of
illnesses, as well as to deliver therapeutics. By working toward
the establishment of precision medicine, however, scientists and
clinicians face several challenges in healthcare. This difficulty
deals with the attempts to achieve practical clinical utility
by exploiting a diverse source of information, knowledge,
and methodologies. Moreover, the added value and the
implementation of the generated molecular knowledge into the
clinical setting to guide personalized therapeutic decisions for
patient populations, and/or individual patients is still challenging
(1–4). The latter can be achieved through the introduction of
Machine Learning (ML) prediction models that are adjustable
and accountable the molecular heterogeneity of biological
systems in real-time, present accuracy and reproducibility in the
clinical setting, as well as aim to achieve broad clinical utility
compliant to regulatory issues worldwide (5).

The evaluation of angina equivalents remains an intractable
problem in symptomatic patients with suspected coronary artery
disease (CAD). In clinical practice, CAD is routinely diagnosed
via invasive angiography and non-invasive functional tests.
Although these procedures decrease the misdiagnosis of stable

CAD, they do not always seem to be necessary and can sometimes
be considered as an excessive medical approach (6). Therefore,

models and risk scores, which could accurately predict the pre-

test probability (PTP) of obstructive and severe CAD in patients
with suspected CAD, could facilitate the selection of patients
who would benefit most from further diagnostic assessment or

invasive treatment (7).
Several trials have been conducted to pool novel risk models

for the effective risk-stratification of patients with suspected

CAD. The model proposed by Diamond and Forrester (8)

was the first and most widely used; yet it appeared to
overestimate PTP for obstructive CAD and was therefore

updated to also include age, sex, and symptoms as further

predictive indicators (9). However, a “battle of scores” predicting
PTP has followed over the last decade with many trial-based

risk models emerging up-to-date (10–12), but their integration
into clinical practice remains limited due to their inability to

accurately predict the extent of CAD. Therefore, the fundamental
question of whether the developed scores remain clinically
useful or should be updated in contemporary populations
remains unsolved.

Being motivating by the above considerations, the aim of the
present study is to develop a data-driven framework based on
ML approaches and the electronic clinical and medical health
records collected from a retrospective cohort analysis of patients
with suspected CAD undergoing coronary angiography. The
purpose of the data-driven framework is twofold: (i) to identify
a set of critical risk factors associated to the severity of CAD;
and (ii) to build data-driven ML predictive models for the
detection of symptomatic patients with severe CAD. To meet
our objectives, we propose a two-stage modeling approach that
combines both classification and regression ML techniques into
a unified risk-score assessment process. In the first step, the
focus is on distinguishing patients into two groups indicating
patients presenting a zero- or non-zero SYNTAX score, whereas
in the second step, the objective is to provide an estimate of the
expected SYNTAX score for patients categorized into the non-
zero SYNTAX score group. The proposed approach resulted in
a two-part model that is able to adequately handle the excess
of zeroes presented in the SYNTAX score distribution causing
serious implications on the deployment of traditional statistical
modeling techniques. Moreover, it is enhanced by a feature
selection ML technique that provides a simple way to identify a
set of potentially different important risk factors that affect the
output of the two separated modeling processes. This capability
leads to better understanding of the set of medical and clinical
features that are related to: (i) the zero/non-zero SYNTAX score;
and (ii) the strictly positive SYNTAX score distribution.

The proposed framework aims to provide a unified risk-
score assessment able to identify low-risk patients in need
of either anatomical or functional non-invasive testing to
evaluate suspected CAD, and patients with complex CAD
in need of urgent coronary revascularization procedure,
thereby enabling a more personalized approach in the every-
day clinical routine through the development of automated
recommendation systems, based on data-driven perspective
analytics algorithms.

METHODOLOGY

In this section, we present, in detail, the methodology followed
throughout the study in order to meet our objectives.
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FIGURE 1 | Proposed data-driven framework.

Study Design
The current study is a post-hoc analysis of the GESS trial
(ClinicalTrials.gov, Identifier: NCT03150680), the protocol
of which has been already published elsewhere (13).
GESS was a prospective, non-interventional cohort trial

enrolling patients who underwent scheduled or emergency
coronary angiography in the tertiary academic hospital of
AHEPA, in Thessaloniki, Greece. In brief, this trial aimed
to develop a novel risk prediction algorithm facilitating
the prediction of the complexity of CAD, based on a
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large panel of genetic markers, combined with clinical and
angiographic characteristics.

Study Population
The population of this study consists of 303 adult patients with
suspected stable angina enrolled in the GESS study. Patients
were eligible for this analysis only if they presented with
pain, suggestive of stable angina pectoris: typical, atypical, or
non-specific chest pain. Patients were excluded if they met
one of the following criteria: (i) known history of CAD;
(ii) presenting with acute coronary syndrome (ACS); (iii)
history of previous revascularization procedure (percutaneous
coronary intervention (PCI), or coronary artery bypass graft
surgery (CABG); and (iv) severe comorbidity with a life
expectancy <1 year or cardiopulmonary arrest at presentation
(see Supplementary Material).

Ethics
This study was conducted in compliance with the declaration of
Helsinki (14). The GESS trial has been approved by the Scientific
Committee of AHEPA University Hospital (reference number
12/13-06-2019). Written informed consent has been provided by
every participant of the study prior to their enrolment.

Proposed Framework
In this section, we present the proposed data-driven approach
(Figure 1) consisting of four phases that are (i) Data
Management, (ii) Feature Selection, (iii) Model Building,
and (iv)Model Deployment.

Data Management
The first phase involves the collection of relevant data from
the existed heterogenous sources related to the medical history
and clinical examination of each patient, whereas two expert
cardiologists evaluated independently the SYNTAX score of
each patient enrolled in this study. Any possible conflict in the
SYNTAX score assessment was resolved by a third expert. This
step resulted to a unified database, in which all raw data were
finally, aggregated and stored in appropriate data format.

The next step involves the careful investigation of raw data
for deciding, whether they fulfil the quality criteria of the
task being executed, since the extraction of meaningful insights
depends heavily on the collected data. To this regard, a series
of pre-processing techniques (feature encoding, correction and
removal of inconsistent values, missing value handling etc.) were
performed, resulting, in turn, into the final dataset.

After the preparation and finalization of the dataset,
appropriate data analytics techniques were performed on the
full set of the collected features. To this end, we made use
of appropriate univariate descriptive statistics methods and
visualization techniques for summarizing the characteristics
of patients, whereas exploratory analysis was also applied for
identifying potential effects of risk factors on the SYNTAX score
distribution. The results of these two types of analysis were
documented into a report for initiating a round of discussionwith
cardiology experts with the aim of identifying a preliminary set

of candidate features that would be meaningful for participating
into the building of the ML models.

Feature Selection
Although the utilization of the entire set of collected features
could be a reasonable choice for building a ML model, this
policy increases the dimensionality of the data with possibly
irrelevant, noisy, or redundant features. Moreover, in medical
applications, health-care experts are interested in understanding
the mechanisms related to the variable of interest, rather than
using a high-dimensional set of features resulted from a black-
box process. Thus, the approved by the expert cardiologists subset
of risk factors was the main input of a ML feature selection
mechanism for deciding upon the final set of risk factors with
a significant effect on SYNTAX score response. To this regard,
we utilized the Boruta algorithm which is a wrapper method built
around the random forest algorithm (15). The rationale behind
this approach is the exclusion of irrelevant features that are
proved to be less relevant to randomized versions of them. More
specifically, the Boruta algorithm consists of the following seven
steps (15), and was separately executed for two specific subsets of
patients (more details are described into the following section):

1. Duplicate the initial dataset by creating a copy of each
independent variable and add randomness to the new
generated variables (called shadow features) by shuffling
(permuting) their raw values.

2. Train a random forest model on the extended dataset and
evaluate the importance of each feature (both the original and
shadow features) using a pre-defined measure of importance
(e.g.,Mean Decrease Accuracy).

3. Evaluate the z-score of each original feature and compare
it with a threshold defined as the maximum z-score among
shadow features (MZSF).

4. For each feature presenting a z-score lower (or higher) than
MZSF record this hit (0/1) in a vector.

5. Repeat the process for a predefined set of iterations.
6. Use the binomial distribution to assess whether each original

feature is characterized as “non-informative,” “tentative,” and
“informative” based on three areas that are the area of refusal,
irresolution, and acceptance, respectively.

7. Repeat the procedure until all features are either characterized
as “non-informative” or “informative” or the algorithm has
reached the predefined limit of the random forest runs.

Model Building
In this section, we elected to model the relationship between
the SYNTAX score response and the set of predictors based on
the utilization of a two-part model inspired by a well-known
class of statistical models, namely the Hurdle models (16). The
Hurdlemodels are used for data having a large number of zeros as
one component, and a distribution of non-zero values as second
component. Hence, these models attempt to capture both the
absence (or presence) of a binary response (hurdle component)
and the magnitude of the non-zero outcome.

Describing briefly, in our experimental setup, the Model
Building phase consists of a two-step process that deploys
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TABLE 1 | Classification and regression methods for building the zero- and count-part models.

Method General idea

Regression Analysis (RA) variant with Logistic Regression and

Linear Regression for fitting the zero- and count-part models,

respectively.

Logistic Regression employs a logit function for estimating the log odds of a

binary response and probabilities for differentiating the cases into negative

(absence)/positive (presence) classes.

Linear Regression estimates the parameters (regression coefficients) of a known

explicit linear function describing the relationship between a continuous

response and a set of predictors minimizing the sum of square residuals.

Classification and Regression Tree (CART) for fitting the zero-

and count-part models.

Build hierarchical models composed of decision nodes and leaves to predict the

class (or continuous outcome) of a response based on a set of predictors.

Random Forest (RF) for fitting the zero- and count-part

models.

An ensemble algorithm that combines a set of votes (or continuous outcomes)

evaluated by a set of individual decision trees estimations.

Support Vector (SV) variant with Support Vector Machines

(SVM) and Support Vector Regression (SVR) for fitting the

zero- and count-part models, respectively.

SVM finds the optimal hyperplane separating the cases into negative

(absence)/positive (presence) classes margin between the data points to classify

them into predefined classes.

SVR is an extension of SVM sharing the same principles but with the aim of

estimating a continuous outcome for a response variable.

TABLE 2 | Performance evaluation metrics for classification and regression tasks.

Task Measure Definition

Classification (zero-part model) Accuracy Accuracy = TP+TN
TP+FP+TN+FN

Balanced accuracy Balanced Accuracy = sensitivity+specificity
2

Precision Precision = TP
TP+FP

-

Recall Recall = TP
TP+FN

F-measure F −measure = (1+β)2•Recall•Precision

β2•Recall•Precision

Regression (count-part model) Median Error (MdE) median {Ei}, where Ei =
(

yi − ŷi
)

Median Absolute Error (MdAE) median {AEi}, where AEi =
∣

∣yi − ŷi
∣

∣

Median Magnitude of Relative Error (MdMRE) median {MREi}, where MREi =
∣

∣

∣

yi−ŷi
yi

∣

∣

∣
• 100

Median Magnitude of Relative Error to the Estimate

(MdMER)

median {MERi}, where MERi =
∣

∣

∣

yi−ŷi
ŷi

∣

∣

∣
• 100

(i) a classification step, modelling a binary response, which
discriminates patients into two groups, i.e., patients with a zero
SYNTAX score (Y = 0) and patients with non-zero, positive
SYNTAX score (Y = 1), and (ii) a regression step, modelling
the SYNTAX score for patients with non-zero SYNTAX score
(Y > 0). Following the terminology used for the Hurdle models,
the former is referred as the zero-part model and the latter is
referred as the truncated count-part model (Figure 1), which
practically means that if a patient presents with a zero SYNTAX
score, the threshold to the truncated count part is not crossed,
and a zero value for SYNTAX score is assigned to this patient.
Otherwise, the threshold to the truncated count part is crossed,
and a SYNTAX score above zero is observed. In the latter case, the
count-part model is triggered, providing, in turn, the expected
positive value of the actual SYNTAX score.

Given the fact that there is a plethora of classification and
regression candidates that can be used for building the zero-
and count-part models, we decided to investigate a specific
set of well-established statistical and ML algorithms that have
been extensively applied in other experimental studies. More
specifically, we made use of four classifiers and their counterpart

regression techniques that are summarized in Table 1 along with
a brief description of their basic principles.

The building process of the candidate models was based
on a leave-one-out cross-validation (LOOCV) data-generating
schema partitioning the available dataset into training and test
sets. The training sets were used as the basis for fitting each
candidate model, whereas the test sets were then used for
evaluating the predictive power of each model. Regarding the
performance evaluation, a variety of well-known measures for
both classification and regression tasks have been computed for
assessing the quality of the set of competing ML models. In
particular, for the zero-part model, we made use of measures
(Table 2) derived from the confusion matrix, indicating the
instances of each class [positive (+) and negative (-)] that are
either correctly [True Positives (TP) and True Negatives (TN)]
or erroneously classified [False Positives (FP) and False Negatives
(FN)]. On the other hand, the evaluation of the prediction
performance for the regression models was based on specific
loss functions l(yi, ŷi), which compute the discrepancy between
the actual yi and the estimated (or predicted) ŷi values for each
instance of the test set.
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TABLE 3 | Descriptive and exploratory analyses for categorical risk factors and SYNTAX score.

SYNTAX score

Risk factor Group N (%) M (SD) Mdn [min, max] p

Gender Female 90 (29.70) 8.29 (11.46) 0.00 [0, 49.0] 0.061

Male 213 (70.30) 10.79 (12.78) 7.00 [0, 54.5]

Hypertension No 109 (35.97) 8.45 (12.00) 0.00 [0, 49.0] 0.025

Yes 194 (64.03) 10.94 (12.62) 7.00 [0, 54.5]

Diabetes mellitus No 215 (70.96) 8.29 (11.18) 2.00 [0, 45.0] <0.001

Yes 88 (22.04) 14.34 (14.27) 9.75 [0, 54.5]

Dyslipidaemia No 163 (53.80) 10.04 (12.64) 5.00 [0, 49.0] 0.757

Yes 140 (46.20) 10.05 (12.24) 6.00 [0, 54.5]

Positive (+) family history of CAD No 252 (83.17) 10.00 (12.64) 5.00 [0, 54.5] 0.705

Yes 51 (16.83) 10.29 (11.51) 7.00 [0, 41.5]

Smoking No 196 (64.69) 9.71 (12.55) 5.00 [0, 54.5] 0.353

Yes 107 (35.31) 10.66 (12.25) 7.00 [0, 44.5]

Chronic kidney failure No 290 (95.71) 10.07 (12.39) 5.00 [0, 54.5] 0.651

Yes 13 (4.29) 9.62 (13.93) 0.00 [0, 42.0]

Peripheral vascular disease No 292 (96.37) 9.60 (11.95) 5.00 [0, 49.0] 0.014

Yes 11 (3.63) 21.82 (18.88) 20.50 [0, 54.5]

ST-T changes No 252 (83.17) 10.48 (12.55) 6.00 [0, 54.5] 0.088

Yes 51 (16.83) 7.89 (11.74) 0.00 [0, 42.0]

Risk factors presenting a statistically significant effect on SYNTAX score are highlighted in bold font.

The proposed framework was implemented using the open-
source statistical programming language R (17). In all tests, a
difference was considered statistically significant when the p-
value (significance) was<0.05 (p ≤ 0.05). All the tests conducted
were two-tailed (non-directional) in the sense that the alternative
hypothesis is that the measures tested are not equal.

RESULTS

After applying the inclusion and exclusion criteria for this
analysis, our sample size finally included 303 patients with
suspected CAD. Tables 3, 4 summarize the findings from the
descriptive statistics analysis concerning the set of predictors
indicated as potential risk factors that may affect the distribution
of SYNTAX score. In addition, exploratory analysis along
with appropriate statistical hypothesis procedures were also
conducted with the aim of investigating patterns between the
response (SYNTAX score) and the set of risk factors. Regarding
the statistical hypothesis tests (Table 3), the non-parametric
Mann-Whitney U test was used for examining, whether there
was a statistically significant effect of categorical risk factors on
the distribution of the SYNTAX score response, since SYNTAX
score distribution was highly skewed with an excess of zero
values (Figure 2). This was also the reason for the utilization of
the non-parametric Spearman’s rho coefficient for investigating
statistically significant correlations between the SYNTAX score
and the set of continuous risk factors (Table 4).

The visual examination through the construction of boxplots
and violin plots for the SYNTAX score (Figure 2) and each
level of the categorical risk factors demonstrates substantial
differences between the distributions for a subset of risk

factors. More specifically, patients with Hypertension, Diabetes
Mellitus and Peripheral Vascular Disease have generally higher
values of SYNTAX score compared to patients without that
medical history. Indeed, the non-parametric Mann-Whitney
test indicated statistically significant effects of Hypertension
(p < 0.025), Diabetes Mellitus (p < 0.001), and Peripheral
Vascular Disease (p = 0.014) on the SYNTAX score distribution
(last column of Table 3). As far as the continuous risk factors
are concerned, the non-parametric Spearman’s rho coefficient
revealed a statistically significant negative correlation between
high-density lipoprotein (HDL) levels and SYNTAX score
[r (303) = −0.149, p = 0.009] and positive correlations
between systolic arterial pressure (SAP) [r (303) = 0.120, p =

0.036], white blood cells (WBC) [r (303) = 0.142, p = 0.013],
Monocyte-to-HDL ratio [r (303) = 0.118, p = 0.040] and
Atherogenic Index of Plasma (AIP) levels [r (303) = 0.180, p =

0.002] and the SYNTAX score response.
To conclude, the findings derived from the exploratory

analysis and hypothesis testing procedures showcased that there

is a set of risk factors, which can be considered as important

candidate predictors for estimating the SYNTAX score of a
patient. On the other hand, the analysis provides empirical

evidence for risk factors affecting the whole distribution of

SYNTAX score and not specific information regarding the risk

factors that should participate into the building of the two-part

model (zero-part and count-part). In other words, there is a

lack of knowledge concerning (a) the mechanism discriminating

the patients into zero/non-zero groups and (b) the mechanism

that efficiently models the relationship between positive values
of SYNTAX score and the subset of predictors. The latter can

be considered as a challenge of practical importance, since the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 January 2022 | Volume 8 | Article 812182

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Mittas et al. Predictive Framework of CAD Severity

TABLE 4 | Descriptive and exploratory analyses for continuous risk factors and SYNTAX score.

Risk factor M SD Mdn Min Max Spearman rho (p)

Age (in years) 64.25 11.13 66.00 24.00 87.00 0.092 (0.110)

Body mass index (BMI) (kg/m2 ) 28.85 4.97 28.40 12.20 44.30 −0.083 (0.151)

Systolic arterial pressure (SAP) (mmHg) 136.08 17.85 135.00 85.00 200.00 0.120 (0.036)

Diastolic arterial pressure (DAP) (mmHg) 80.17 9.62 80.00 49.00 110.00 −0.017 (0.767)

Glomerular filtration rate (GFR) by CKD-EPI (mL/min/1.73m2) 93.15 34.43 89.00 6.10 254.40 −0.089 (0.121)

UREA (mg/dL) 40.97 20.58 36.00 0.84 177.00 0.062 (0.285)

Total cholesterol (CHOL) (mg/dL) 164.73 42.14 162.00 5.50 341.00 −0.045 (0.438)

High density lipoprotein cholesterol (HDL) (mg/dL) 45.47 14.80 43.00 18.00 109.00 −0.149 (0.009)

Aspartate aminotransferase (SGOT) (units/L) 21.38 11.20 19.00 4.00 102.00 −0.032 (0.578)

Alanine aminotransferase (SGPT) (units/L) 23.25 14.76 19.00 3.00 114.00 −0.013 (0.819)

Hemoglobin (HGB) (g/dL) 14.02 1.65 14.00 4.52 18.80 −0.053 (0.354)

Platelets (PLT) (*1000) 232.38 65.02 227.00 70.00 599.00 0.065 (0.262)

White blood cells (WBC) (*1000) 7.51 1.98 7.31 1.06 14.90 0.142 (0.013)

Monocyte− to− HDL− cholesterol ratio (RATIO1) = (MONO%×WBC)
HDL

1.51 0.81 1.41 0.04 6.77 0.118 (0.040)

Lymphocyte− to−monocyte ratio (RATIO2) 0.33 0.17 0.29 0.01 1.47 0.013 (0.826)

Atherogenic index of plasma levels (RATIO3 = log
(

TG
HDL

)

) 0.47 0.32 0.46 −0.21 1.73 0.180 (0.002)

Statistically significant correlations are highlighted in bold font.

FIGURE 2 | The boxplots and violin plots represent the distributions of the SYNTAX score of patients (dots) for each level of categorical risk factor.

development of an accurate clinical risk-score algorithm that
leads, in turn, to an effective personalized patient management
should be based on techniques able to model the underlying
relationships for both zero-part and count-part models.

To alleviate the challenging task of identifying the critical
risk factors affecting the dependent variables in both the zero-

and count-part components, the Boruta algorithm was deployed

twice for modelling the underlying relationships. Figure 3

visualizes the results derived from the execution of the Boruta
algorithm on the building phase of the zero-part model. In
particular, the boxplots visualize the distributions of the z-
scores produced by the Boruta algorithm for the examined
risk factors, where risk factors confirmed as “informative” are
highlighted with green colour. In contrast, risk factors that
were characterized as “non-informative” are depicted with purple
colour. Furthermore, risk factors yielding important scores close
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FIGURE 3 | Importance of features extracted by the Boruta algorithm (zero-part) (the abbreviations of the risk-factors can be found in Table 4) [Ratio 1:

Monocyte− to− HDL− cholesterol ratio; Ratio 2: Lymphocyte− to−monocyte ratio; Ratio 3: Atherogenic Index of Plasma levels (log
(

TG
HDL

)

].

to the best shadow attribute (blue colour) are characterized as
“tentative” (yellow colour), and an additional step was conducted
for deciding whether a tentative attribute should be finally
confirmed as informative or non-informative based on the
comparison of its median z-score with the median z-score of the
best shadow attribute.

Considering the above guidelines related to the interpretation
of Figure 3, the results of the Boruta algorithm for the zero-part
model suggest a subset of three significant risk factors affecting
the discrimination of patients into zero and non-zero groups.
Atherogenic Index of Plasma levels (Ratio 3) and Diabetes
Mellitus followed by Hypertension can be considered as the
most important risk factors for the zero-part model since they
present very close median values and similar distributions. An
interesting conclusion derived from the analysis is the fact that
beside these three risk factors, Age andWBC are characterized as
tentative by the algorithm. This practically means that Age and
WBC may present significant effects on discriminating patients
into zero and non-zero SYNTAX score groups and there is a
need for further experimentation, when new patient records will
be available.

As far as the count-part model concerns, Figure 4 summarizes
the risk factors with significant effects on the strictly positive
distribution of the SYNTAX score response. Among the
examined risk factors, DAP, Peripheral Vascular Disease, BMI
and SAP were identified as important features for providing an
accurate estimate of the actual value of SYNTAX score given that
a patient presented with a non-zero SYNTAX score. Additionally,

among the four identified important risk factors, DAP exhibited
a considerably high z-value compared to the other risk factors
indicating a significant contribution to the accurate prediction of
the SYNTAX score. At this point, we have also to note that the
Boruta algorithm did not result into tentative variables, which
practically means that the identified solution provides strong
empirical evidence for the set of risk factors affecting the strictly
positive distribution of SYNTAX score.

Summarizing the results related to the former pillar of
this study, that is the investigation of important risk factors
affecting the zero- and count-part models, a first interesting
finding concerns the identification of different sets of clinical
risk factors associated to the two-step modelling technique. On
the one hand, the task of predicting, whether a patient is at
risk for presenting with a non-zero SYNTAX score is of great
importance, since the clinical management will be focused to
greater awareness even before hospitalization and the procedure
of coronary angiography. Similarly, a patient predicted with
zero SYNTAX score will avoid coronary angiography and get
more accurately counselling to follow lifestyle instructions and
periodical medical examination. To this regard, a set of three risk
factors (Atherogenic Index of Plasma levels, Diabetes Mellitus
andHypertension) was identified as critical for deciding, whether
a patient is at risk for presenting a non-zero SYNTAX score.
Based on this decision, the next crucial question concerns the
estimation of the expected SYNTAX score given that a patient is
classified into the non-zero group since the accurate evaluation
of SYNTAX score will lead, in turn, to different personalized
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FIGURE 4 | Importance of features extracted by the Boruta algorithm (count-part) (the abbreviations of the risk-factors can be found in Table 4).

patient management based on the severity of CAD determined
by the estimated SYNTAX score. The findings derived from the
proposed feature selection algorithm suggest that a set of different
risk factors (DAP, Peripheral Vascular Disease, BMI, and SAP)
are responsible for the changes presented in the strictly positive
SYNTAX score distribution.

Moreover, the experimentation on the available medical and
clinical records of patients revealed that the process of building
an accurate prediction algorithm should take into consideration
the different piece of information related to the two-part model.
Although the exploratory analysis and the statistical hypothesis
procedures provide meaningful guidance for the examination
of potential risk factors affecting the SYNTAX score response,
they are essential for extracting knowledge concerning the
whole distribution of SYNTAX score. Indeed, the aggregated
findings derived from the consecutive execution of the Boruta
algorithm on the zero- and count-part models are quite similar
to the results extracted from the conduction of the exploratory
analysis and hypothesis testing procedures but on the same
time, they also present few divergences. More specifically, based
on the aggregated set of risk factors (both zero- and count-
part models), five out of a total of seven risk factors are
identified as significant by both the proposed feature selection
mechanism and the traditional hypothesis test procedures.
On the other hand, the adopted feature selection algorithm
can be considered as a more dedicated approach providing
straightforward guidance fulfilling better insights about the
different mechanisms that are responsible for the two-part
modelling process rather than extractingmeaningful information

for the whole distribution of SYNTAX score. Moreover, the
Boruta algorithm resulted to the identification of two additional
risk factors (DAP and BMI) related to the count-part model,
which were not reported as statistically significant through the
evaluation of the Spearman’s correlation coefficient. A possible
explanation for this inconsistency may lie on the fact that the
non-parametric correlation coefficient is not able to detect the
relationship between the response and these specific factors, due
to the presence of excess zeros in the distribution of SYNTAX
score. Indeed, the evaluation of the non-parametric Spearman
correlation coefficient for the strictly positive SYNTAX scores
indicated a statistically significant negative correlation for both
DAP [r (173) = −0.225, p = 0.003] and BMI [r (173) =

−0.172, p = 0.024] risk factors.
After the identification of the significant risk factors, we

focused on the performance evaluation for the set of examined
classifiers (Table 5) and regression models (Table 6) that are
related to the zero- and count-part models, respectively.
Table 5 summarizes the performance metrics for the zero-
part models trained and test through LOOCV validation
scheme. The findings indicate the superiority of two specific
classifiers in terms of prediction capabilities as measured by
different metrics. More specifically, LR presents consistently
the best performance in three out of five measures (Accuracy,
Balanced Accuracy, Precision). In contrast, Support Vector
Machines (SVM) classifier seems to perform best in terms
of both Recall and F1 measure. As far as the count-part
model concerns, Table 6 suggests the dominance of Support
Vector Regression (SVR) model for evaluating the SYNTAX
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TABLE 5 | Performance evaluation results of zero-part models (classification task).

Model CART LR RF SVM

Measure Training Test Training Test Training Test Training Test

Accuracy 0.6964 0.5545 0.6304 0.6106 0.6436 0.6106 0.5941 0.5809

Balanced accuracy 0.6843 0.5391 0.6075 0.5892 0.6085 0.5748 0.5394 0.5240

Precision 0.7189 0.6022 0.6488 0.6368 0.6407 0.6190 0.5926 0.5839

Recall 0.7688 0.6474 0.7679 0.7399 0.8555 0.8266 0.9249 0.9249

F1 0.7430 0.6240 0.7037 0.6845 0.7327 0.7079 0.7223 0.7149

The best classifier in terms of each performance measure is denoted in bold font for both training and test sets.

TABLE 6 | Performance evaluation results of count-part models (regression task).

Model CART LR RF SVR

Measure Training Test Training Test Training Test Training Test

MdE −1.3125 −1.3548 −2.3666 −2.4494 −1.5827 −1.8972 −0.4284 −0.4383

MdAE 6.3125 8.5806 7.5393 7.7431 5.6916 7.5513 6.3216 6.5032

MdMRE 0.3567 0.4885 0.4511 0.4679 0.3388 0.4451 0.4340 0.4368

MdMER 0.3514 0.4440 0.4469 0.4624 0.3715 0.4604 0.4352 0.4535

The best regression model in terms of each performance measure is denoted in bold font for both training and test sets.

score of a patient given that he/she presents with a non-zero
SYNTAX score.

The final phase of the framework concerns the deployment of
the proposed data-driven ML approach in real life environments.
To this regard, a critical issue is to realize, whether the extracted
solution is both interpretable and understandable from a clinical
practitioner’s point of view. Indeed, the practical evidence
suggests that Hypertension and Diabetes Mellitus are amongst
the major risk factors for the development and progression of
CVDs (18). Similarly, SBP and DBP as well as the Atherogenic
Index of Plasma belong to traditional risk indicators associated
with the occurrence and development of CVDs (19–22). Also,
AIP is proposed as a strong biomarker for predicting the risk of
cardiovascular events in patients with Hypertension, Metabolic
Syndrome and Diabetes Mellitus (23, 24). Similarly, it has
also been shown that BMI represents a significant prognostic
indicator for various CVDs (25). Peripheral Vascular Disease
comorbidity has been also linked with higher prevalence of major
adverse cardiovascular events among CAD patients (26, 27).

DISCUSSION AND FUTURE WORK

The massive load of the molecular data generated from
several research efforts need the development of data analytics
and ML algorithms for extracting knowledge hidden in data
and for synthesizing the body of knowledge. Such necessity
is further stressed in CVDs from the heterogenous nature
of the data that must be in depth explored to allow the
practical utility of clinically relevant information, since they
are derived from various sources, e.g., clinical, molecular,
chemical, and epidemiological. In recent years, the rapid
increase in computational power allows data-driven analytical
solutions to be applied on diverse dataset collections to

generate predictive models of pattern associations of prognostic,
diagnostic and therapeutic value (3–5). To this end, the
capacity for the efficient clinical translation of the existed risk
factor variables in CVDs coincides with the development of
predictive models to accurately achieve the clinical validation
of the associated outcome in patient populations and/or
individuals (28, 29). By developing ML solutions as hands-
on approaches to precisely predict in-real time the disease
prognosis, this direction empowers robust personalizedmedicine
decisions for specific populations, or individual patients, in
the clinical setting. Previous efforts aiming to advance the
application of ML prediction models in CVDs have been
previously executed in patients suffering from ST-elevated
myocardial infarction (STEMI) (30) and non-ST-segment
elevation myocardial infarction (non-STEMI) (31).

It is of crucial clinical significance the capacity of developing
powerful risk-stratification algorithms (pre-test probability
testing models) with the aim of predicting the risk of
severe CAD in patients presenting with suspected symptoms.
Such efforts are in concordance with the current healthcare
environment where the power in computerized systems allows
the clinical implementation of data-driven ML platforms to
guide therapeutic decisions in the clinical setting. To this
end, the handling and monitoring of CVD patients have
been tremendously benefited from such artificial intelligence-
based algorithms and practices (32, 33). Importantly, the
use of ML frameworks provides to interfaces the needed
automate connection of information coming from various
sources and facilitates practitioners to improve clinical outcomes
in their practice. Consequently, the continuous application
of ML algorithms clearly contributes to the progression of
precision cardiovascular medicine. As far as CAD is concerned,
the implementation of ML algorithm approaches has been
applied in the clinical setting among others (i) to predict the
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occurrence of obstructive CAD by evaluating various clinical
variables and the coronary artery calcium score (34); (ii) to
improve the detection of functionally obstructive CAD (35),
as well as to detect lesion-specific ischemia (36) by using
computational fluid dynamics algorithms; (iii) to estimate the
pre-test probability of CAD (37); and (iv) to evaluate the
automatic prediction of obstructive CAD from myocardial
perfusion imaging (38, 39).

The present clinical status for patients suspected with CAD
relies on invasive coronary angiography and the estimation of the
SYNTAX score afterwards for their management and therapeutic
approach. Since all these patients are subjected to this invasive
procedure, it is stressfully demandable to develop predictive risk-
stratification models to precisely identify individuals with zero
SYNTAX score and thus avoiding such handling. In this study,
we proposed a data-driven approach with the aim of identifying
a set of critical risk factors that affect the SYNTAX score of
patients with suspected CAD. More specifically, we proposed a
two-step technique for modelling the underlying relationships
between the set of important risk factors and SYNTAX score that
evaluates the complexity of CAD by separating the process into
(a) a binary classification task for discriminating patients into two
groups (zero/non-zero SYNTAX score) and (b) a regression task
for providing an expectation of the actual SYNTAX score given
the fact that a patient belongs to the non-zero SYNTAX score
group. The reason behind this choice was the difficulties arisen
in the modelling process of SYNTAX score response through
traditional statistical methods due to the existence of an excessive
number of patients presenting with a zero SYNTAX score and the
overdispersion of the corresponding distribution. Moreover, the
proposed methodology inspired by the Hurdle models, provides
a straightforward mechanism for understanding how different
predictors are associated to a highly skewed response with an
excess of zero values, since it combines one process for zero
counts and another process for strictly positive counts. To this
regard, the framework makes use of an efficient feature selection
algorithm that extracts a set of potential different risk factors for
the two-step model.

The results from the deployment of the proposed approach
indicated that there is, indeed, an imperative need for the
development of efficient data-driven ML frameworks, since the
accurate prediction of SYNTAX score is a complicated task, in
which different risk factors contribute to its scalable values be
actually reached in each patient with CAD. The developed risk-
stratification ML framework aims to facilitate the clinicians to
identify which of the patients presenting with suspected CAD
should be referred for further functional or anatomical diagnostic
testing and which of them should undergo emergency coronary
angiography and/or a coronary revascularization procedure.

In terms of the count-part analysis, our model reflects
a growing effort for a bloodless coronary angiography in
cardiology, with the potential to assess patients with SYNTAX
score > 0. An observational study (6) in a large cohort
of 398,978 patients without known CAD undergoing elective
cardiac catheterization yielded that more than one third of
them had complex obstructive CAD. This renders imperative
the need to identify soon enough which of the presenting

patients may warrant urgent revascularization procedure to
be performed. On the contrary, a recent report (40) suggests
that at least half individuals undergoing invasive coronary
angiography do not earn some benefit from it, and that the
traditional use of obstructive stenosis on coronary angiography
might no longer be an adequate definition of CAD. Thus,
functional tests and the development of risk-score models,
such as our count-part model, which can quantify bloodlessly
the extent of CAD, could be useful to initially approach the
severity and complexity of a patient’s CAD and guide further
therapeutic approaches.

Undoubtedly, however, our study is subject to limitations.
Firstly, our model was not compared in terms of performance
with other widely used pre-test clinical scores for the assessment
of severe CAD. Most importantly, the restricted sample size
of our study limits the generalizability of our findings and the
created zero- and count-part models should be also externally
validated in larger CAD populations, in an effort to broadly
contribute to a more personalized patient management and
counselling within the healthcare environment.

An interesting direction for future work concerns the
deployment of the framework and its practical evaluation, when
more data will be available. Moreover, in this study, we opted
to base the building process of the two-step model on a specific
set of ML algorithms. Certainly, there is a plethora of alternative
ML methods that can be used for fitting both the zero- and
count-part models that deserves extensive experimentation for
implementation and clinical practical utility. Another dynamic
topic for further research that it is still challenging in this era deals
with the enrichment of the proposed framework with genotype
specific information covering clinically validated biomarkers
extracted through bioinformatic and pharmacogenomic analysis.
Indeed, as it has already been published by our research group,
the GESS trial, for each patient enrolled in the study, incorporates
the genotyping analysis of 228 SNP biomarkers that cover 127
genes being affected by the presence of one or more SNPs
(13). Such approach is complementary to the work presented
above since it will allow us to clinically evaluate the practical
utility of this panel of SNP biomarkers in predicting CAD
severity. By achieving the latter task, the statistically determined
relevant panel of SNPs that provides the predictive capacity, it
will be incorporated as genetic score into the algorithms of the
risk-stratification ML framework to enhance its accuracy and
strength. In this regard, the proposed genetic implementation in
the developed ML risk stratification model is quite challenging,
since it will allow clinicians to easily adopt predictive risk score
variables for the severity of CAD in their practice by using in
real-time clinical, laboratory and genetic parameters to stratify
and accordingly clinically handle individual patients. To this
end, our research team is working towards the development
of an open-source web platform augmented with an interactive
dashboard that will facilitate the adoption and extension of the
proposed ML framework targeting at different stakeholders that
are clinical practitioners, health care managers, researchers and,
generally, society.

In conclusion, once the created zero- and count-part
models get externally validated, they could help clinicians
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to identify which of the patients presenting with suspected
CAD should be just referred for further non-invasive
diagnostic testing and which of them should urgently undergo
coronary angiography and/or a coronary revascularization
procedure. This would ultimately ease clinical decision-
making process, patient management and counselling.
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