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Anthracycline antineoplastic agents such as doxorubicin are widely used and highly

effective component of adjuvant chemotherapy for breast cancer and curative regimens

for lymphomas, leukemias, and sarcomas. The primary dose-limiting adverse effect

of anthracyclines is cardiotoxicity that typically manifests as cardiomyopathy and

can progress to the potentially fatal clinical syndrome of heart failure. Decades

of pre-clinical research have explicated the complex and multifaceted mechanisms

of anthracycline-induced cardiotoxicity. It is well-established that oxidative stress

contributes to the pathobiology and recent work has elucidated important central roles

for direct mitochondrial injury and iron overload. Here we focus instead on emerging

aspects of anthracycline-induced cardiotoxicity that may have received less attention in

other recent reviews: thrombosis, myocardial atrophy, and non-apoptotic programmed

cell death.

Keywords: anthracycline cardiotoxicity, thrombosis, myocardial atrophy, programmed cell death, protease

activated receptor, FOXO1 (forkhead box O1)

INTRODUCTION

Considerable research effort has been invested in understanding the complex and multifactorial
mechanisms underlying anthracycline-induced cardiotoxicity. Longstanding evidence has
established causative roles for oxidative stress in contributing to cardiomyocyte dysfunction
and death (1). Mitochondrial dysfunction generates much of this oxidative stress and the
central role of multifaceted mitochondrial injury in anthracycline-induced cardiotoxicity has been
comprehensively reviewed recently (2). Here, we will focus on emerging, though less-studied,
mechanisms underlying the adverse effects of anthracyclines on both the heart and the vasculature.

ANTHRACYCLINES AND THROMBOSIS

Observational data suggest that some anti-cancer therapies are associated with increased risk
for thrombotic events in the venous and arterial vasculature including deep vein thrombosis
(DVT), pulmonary embolism (PE), and arterial thrombosis (AT) as recently summarized by
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Grover et al. (3). Indeed, Weiss et al. reported that 5% of stage II
breast cancer patients (22/443) with 2 years of post-mastectomy
chemotherapy developed venous thrombosis without signs of
metastasis (4). Interestingly, no thrombosis was observed after
completion of the chemotherapy (4). In another study of Stage
IV breast cancer patients, thrombosis incidence rose to 17.6% in
those who received anthracyclines (5). Interestingly, analysis of
common risk factors for thrombosis (ambulatory status, obesity,
family history, smoking, diabetes mellitus, hypertension, liver
dysfunction, thrombocytosis, and previous endocrine therapy)
showed no association with the observed thrombotic events
(5). With specific regard to anthracyclines, multiple myeloma
patients were at an increased risk of DVT (16%) when
doxorubicin (DOX) was added to thalidomide and that risk
increased with age (6). Importantly, the thrombotic risk for all
three of these trials is reported relative to a control group that
did not receive an anthracycline. Increased thrombosis incidence
(7.5%) was also observed in breast cancer patients undergoing
an anthracycline-containing chemotherapy regimen with age-
dependent risk increase (27%) in patients over 60 years, though
this study did not include a control group that was not exposed
to anthracyclines (7).

Patient-specific factors that enhance risk of anthracycline-
induced thrombosis are poorly defined, though one intriguing
possibility is the metabolic syndrome. Individuals with the
metabolic syndrome are at higher risk of both thrombotic events
(8), and anthracycline-induced cardiotoxicity (9), possibly as
a result of the chronically proinflammatory systemic milieu.
Obesity (10) and insulin resistance (11, 12) components of
the metabolic syndrome, also independently enhance risk for
anthracycline-induced cardiotoxicity, though a direct link to
thrombosis has not been established.

PRO-THROMBOTIC EFFECTS ON
VASCULAR CELLS

How do anthracyclines, such as DOX, contribute to a
prothrombotic phenotype? Multiple studies have shown that
anthracyclines increase phosphatidylserine (PS) exposure on the
outer cell surface on vascular cells (13–16). Negatively charged
PS-rich membranes enhance the coagulation cascade reaction by
increasing the activity of gamma carboxyglutamic acid (GLA)-
dependent coagulation factors like factor VIIa (FVIIa), FXa,
FIXa, and thrombin (17). Liaw’s group showed that DOX induces
a procoagulant phenotype in human endothelial cells (ECs)
by increasing the PS flip to the cell surface which enhances
activity of preexisting tissue factor (TF), without increasing its
expression level (16). Interestingly, this effect was not seen for
methotrexate nor 5-fluorouracil treated ECs (16). Further, the
increase in surface PS on the ECs was associated with DOX-
induced EC apoptosis (16). Later, Boles et al. (15) confirmed
that the anthracycline daunorubicin also increased cellular TF
activity without affecting TF protein levels, but rather by
enhancing PS surface exposure on the human monocytic cell
line THP-1 (Figure 1). DOX had a similar effect on platelets,
causing increased PS surface exposure due to apoptotic pathway

activation in DOX-exposed human platelets and subsequently
resulting in enhanced procoagulant activity (14). The authors
linked the increased PS exposure to DOX-induced platelet
mitochondrial dysfunction at doses of 2.5–7.5 mg/kg in rats (13).
Interestingly, at a cardiotoxic DOX dose of 25 mg/kg apoptosis-
dependent thrombocytopenia was observed as early as 4 h after
DOX injection in rats (13).

Moreover, daunorubicin was shown to increase the release
of TF+ extracellular vesicles (EV) from THP-1 cells in vitro
(Figure 1) (15). Increased anthracycline-induced EV release was
confirmed by others (18–20). DOX-induced EVs are enriched
for 4-hydroxy-2-nonenal (4-HNE), a marker for oxidative stress
(19). 4-HNE can directly induce the release of TF+EVs from
perivascular cells which can contribute to a prothrombotic
state (21, 22). In line with this observation, TF+EVs were
shown to enhance thrombus formation in multiple murine
models of cancer-associated thrombosis (23, 24). Aside from
its procoagulant effects, DOX is known to negatively affect
the anticoagulant properties of ECs by downregulating the
expression of the endothelial protein C receptor, leading to
decreased protein C pathway activation (25).

EFFECTS ON BLOOD FLOW AND
THROMBUS FORMATION IN VIVO

Injection of DOX (8 mg/kg) leads to occlusive vasoconstriction
of smaller vessels (<15µm) and vascular leakage in the murine
femoral microvasculature within 4min (26). Moreover, the same
dose of DOX also reduces the blood flow in testicular arteries
in mice within 15min of injection (27). The authors linked
these phenomena to DOX-induced vascular toxicity leading to
EC-platelet interactions and the formation of EC-bound platelet
microthrombi (27). Blood flow was restored by pre-treatment
with low molecular weight heparin or the anti-platelet drug
eptifibatide, suggesting that anti-platelet/anti-coagulant agents
might be effective in reducing the detrimental vascular effects of
DOX (27). DOX doses up to 7.5 mg/kg significantly enhanced
thrombus sizes in a modified rat FeCl3 vena cava thrombosis
model, without causing thrombocytopenia (14). In addition, in
a vena cava stasis model DOX (7.5 mg/kg) caused increased
thrombus formation that was reduced by administration of
clopidogrel, aspirin or an inhibitor of platelet activated factor
(28). These findings strongly suggest that DOX-induced venous
thrombosis is dependent upon platelet activation (28).

COAGULATION-DEPENDENT SIGNALING
IN ANTHRACYCLINE-INDUCED
CARDIOTOXICITY

While coagulation activation leads to fibrin deposition, the
coagulation proteases that are generated in the process also
lead to cleavage of protease-activated receptors (PARs) (29).
PAR1 and PAR4 are activated by thrombin and are expressed
on human platelets; their cleavage is the strongest platelet-
activating stimulus. PAR3 also is activated by thrombin, but
PAR3 mostly acts as co-factor for PAR4 and has only limited
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FIGURE 1 | Prothrombotic effects of anthracyclines. Anthracyclines (doxorubicin, daunorubicin) activate vascular cells including platelets, monocytes, and endothelial

cells leading to surface phosphatidylserine (PS) exposure, increased activity of pre-existing tissue factor (TF) on monocytes and endothelial cells, and the release of

TF-bearing extracellular vesicles (EV). Figure created with BioRender.com.

signaling function in humans (30). PAR2 is rather thrombin-
insensitive and is primarily activated by the TF:FVIIa complex
or FXa (31). Though PARs frequently are considered for their
roles in platelets, they also are expressed on cardiomyocytes,
where they contribute to the cardiac response to multiple injury
models (29, 31, 32). The absence of PAR1 and PAR2 reduced
infarct size and adverse cardiac remodeling in experimental heart
failure (29, 31, 32). PAR4 activation can be cardioprotective or
detrimental dependent on the chosen injury model and time
point analyzed (31, 33–36).

With regard to chemotherapy-induced toxicity, PAR1
deficiency and PAR1 inhibition with the FDA-approved drug
vorapaxar protected against DOX cardiotoxicity in mice (37).
PAR1 activation exacerbated mitochondrial dysfunction and
apoptosis in cardiac cells exposed to DOX in vitro (37). PAR1
deficiency was associated with reduced oxidative stress and
apoptosis as well as decreased circulating cardiac troponin
I and improved cardiac contractile function in the hearts of
mice treated with 20 mg/kg DOX (37). PAR1 deficiency was
also protective in a chronic DOX cardiotoxicity model (5
mg/kg/week for 5 weeks) (37). In line with these observations,
PAR1 inhibition with the PAR1 inhibitor Q94 reduced toxic
renal effects of DOX (15 mg/kg) in mice (38). Whether PAR2
or PAR4 contribute to DOX cardiotoxicity is the objective of
ongoing investigations. Interestingly, PAR2 inhibition with
FSLLRY-NH2 reduced nephropathy in a chronic rat DOX kidney
injury model (1 mg/kg/day for 6 weeks) suggesting that PAR2
deficiency/inhibition might also be cardioprotective during DOX
chemotherapy (39).

ANTHRACYCLINES INDUCE MYOCARDIAL
ATROPHY

Anthracycline-based chemotherapies are known to cause
abnormalities in heart morphology in cancer patients. Childhood

cancer survivors who received anthracycline treatment have
reduced ventricular wall thickness and myocardial mass later
in life (40, 41). Recent evidence suggests that anthracyclines
also cause a reduction in left ventricular mass in adult cancer
patients (42–44). Importantly, an early decline in heart mass
is associated with worse heart failure outcomes, emphasizing
the importance of this phenomenon (42). A decrease in heart
mass can be caused by reduced cardiomyocyte size (atrophy)
and/or number (i.e., loss of cardiomyocytes due to cell death).
Here, we summarize recently identified mechanisms underlying
anthracycline-induced atrophy and cell death (Figure 2).

Similar to the clinical findings, exposure to the anthracycline

DOX also reduces heart weight in mice (44–46). At the molecular

level, DOX induces p53 expression, which is necessary for

inactivation of mammalian target of rapamycin (mTOR), a

serine-threonine kinase essential for protein synthesis (46).

Interestingly, DOX-induced reductions in heart weight and

myocyte size are abolished by cardiac-specific expression
of dominant-interfering p53 or constitutively active mTOR,
suggesting that DOX induces cardiac atrophy through p53-
dependent inhibition of mTOR (46). Activation of mTOR by
vascular endothelial growth factor-B (VEGF-B) gene therapy
also prevents DOX-induced cardiac atrophy (47). Conversely,
inducible ablation of mTOR in adult heart is sufficient to reduce
cardiomyocyte size within 1–2 weeks (48). Taken together, these
data indicate that mTOR inhibition is an important mechanism
underlying DOX-induced atrophy.

DOX also induces expression of muscle RING finger
1 (MuRF1), a striated muscle-specific ubiquitin ligase and
a key mediator of cardiac atrophy (44, 45). Mice lacking
MuRF1 are resistant to DOX-induced reduction in heart mass,
suggesting that MuRF1 is necessary for DOX-induced atrophy
(44). Mechanistically, DOX exposure induces cyclin-dependent
kinase 2 (CDK2)-mediated phosphorylation of forkhead box
O1 (FOXO1) at Ser 249, resulting in FOXO1 activation and
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FIGURE 2 | Signaling pathways in DOX-induced cardiomyocyte atrophy and death. ABCB8, ATP-binding cassette protein-B8; CaMKII, Ca2+-calmodulin–dependent

protein kinase; CDK2, cyclin-dependent kinase 2; CypD, cyclophilin D; FOXO1, forkhead box O1; GSDMD/GSDME, gasdermin D/E; Hmox1, heme oxygenase-1;

mito, mitochondria; MLKL, mixed lineage kinase domain like pseudokinase; mPT, mitochondrial permeability transition; mTOR, mammalian target of rapamycin;

MuRF1, muscle RING finger 1; Nox2, NADPH oxidase 2; RIPK3, receptor-interacting protein kinase 3; ROS, reactive oxygen species; NLRP3, NLR family pyrin

domain containing 3; TRPC3, transient receptor potential canonical 3. Arrows indicate activation; bar-headed lines indicate inhibition.

transcription of MuRF1 (45). Treatment with a FOXO1 inhibitor
prevents DOX-induced cardiac atrophy and dysfunction (45).
Collectively, FOXO1-dependent MuRF1 expression mediates
DOX-induced atrophy.

Cardiac atrophy can occur as a result of oxidative stress.
DOX exposure induces reactive oxygen species (ROS)
generation through mitochondrial iron accumulation, owing
to repression of ATP-binding cassette protein-B8 (ABCB8)-
mediated mitochondrial iron export (49). Cardiac-specific
ABCB8 transgenic mice are protected from DOX-induced
ROS generation and atrophy (49). In addition, DOX
exposure induces transient receptor potential canonical
3 (TRPC3)-dependent upregulation of NADPH oxidase
2 (Nox2) (50). Formation of the TRPC3-Nox2 complex
amplifies ROS production and results in cardiac atrophy.
Knockdown of TRPC3 or pharmacologic inhibition of
TRPC3-Nox2 interaction attenuates DOX-induced atrophy
in neonatal rat cardiomyocytes (NRCMs) (50). Moreover,
mice lacking Nox2 are also resistant to DOX-induced cardiac
atrophy (51). These findings suggest that enhanced ROS
production resulting from mitochondrial iron accumulation
or TRPC3-Nox2 complex formation also contributes to
DOX-induced atrophy.

CONTRIBUTIONS OF PROGRAMMED
CELL DEATH TO ANTHRACYCLINE
CARDIOTOXICITY

Exposure to anthracyclines triggers a variety of cell death
modalities in the heart, resulting in cardiac cell loss.

Anthracycline-induced cell death pathways have been reviewed
in detail quite recently (52). A brief summary of the novel
mechanisms of anthracycline-induced cardiomyocyte death is
provided below.

Apoptosis
Apoptosis is undoubtedly the most intensively studied form
of cell death in anthracycline cardiotoxicity. DOX targets
topoisomerase-IIβ to cause DNA double-strand breaks
and initiate the intrinsic apoptosis pathway (53). DNA
damage induces p53-dependent oligomerization of the Bcl2
family members Bak and Bax, which forms a pore in the
outer mitochondrial membrane, resulting in cytochrome
c release, caspase activation, and apoptosis. Accordingly,
pharmacological inhibition of p53 or Bax blocks apoptosis
and prevents DOX-induced cardiomyopathy (54, 55). It
is noteworthy that p53 plays complicated roles in DOX-
induced cardiotoxicity by modulating apoptosis-independent
processes including mitochondrial biogenesis (56) and clonal
hematopoiesis (57), as well as atrophy (46). In addition to
the pore-forming effectors Bak and Bax, the pro-apoptotic
Bcl2 family proteins also include activators (Bim, Bid, and
Puma) that directly interact with the effectors to trigger
apoptosis (58). DOX induces expression of Bim through
CDK2-dependent FOXO1 activation (45, 59). Inhibition of
either CDK2 or FOXO1 attenuates DOX-induced apoptosis
and cardiac dysfunction (45, 59). Young age, a major risk factor
for anthracycline cardiotoxicity in humans, is associated
with higher sensitivity to apoptosis, further supporting
an important role of apoptosis in anthracycline-related
cardiotoxicity (60).
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Mitochondrial Permeability Transition Pore
(mPTP)-Driven Necrosis
Necrosis driven by opening of the mPTP is characterized by
rapid loss of the inner mitochondrial membrane potential and
is dependent on cyclophilin D (CypD) (61). Recent evidence
suggests that DOX treatment provokes mPTP-driven necrosis in
cardiomyocytes (62). Mechanistically, DOX induces expression
of Bnip3, which binds CypD to trigger mPTP opening and
resultant necrosis (62). Bnip3 null mice are protected from
DOX-induced mitochondrial damage, necrosis, and cardiac
dysfunction (63). In addition, Bax and Bak are necessary for
mPTP-driven necrosis (64, 65). Indeed, a small-molecule Bax
inhibitor protects against DOX-induced necrosis in vivo (55).

Necroptosis
Necroptosis is programmed cell necrosis that is initiated by
binding of a death ligand (typically from the TNF superfamily)
to a death receptor (such as Fas, TNFR1, or TRAIL) and
culminates in plasma membrane permeabilization mediated
by mixed lineage kinase domain like pseudokinase (MLKL)
(61). MLKL activation and plasma membrane translocation
requires phosphorylation by receptor-interacting protein kinase
3 (RIPK3) (66). DOX exposure upregulates cardiac RIPK3
and MLKL in vivo and in vitro to induce necroptosis
(67). RIPK3 knockout mice are resistant to DOX-induced
myocardial necrosis, cardiomyopathy and death (68). In
this context, RIPK3 induces activation of Ca2+-calmodulin–
dependent protein kinase (CaMKII) to trigger necroptosis (68).
Moreover, DOX-induced cardiomyocyte death is blocked by the
necroptosis inhibitor necrostatin-1, suggesting that necroptosis
contributes to DOX-induced cardiomyocyte injury (67).

Ferroptosis
Ferroptosis is a form of programmed cell death associated
with mitochondrial damage owing to iron accumulation and
lipid peroxidation (61). DOX induces nuclear factor erythroid
2–related factor 2 (Nrf2)-dependent transcription of heme
oxygenase-1 (Hmox1) to trigger heme degradation, resulting in
free iron accumulation, and ferroptosis (69). Treatment with
the Hmox1 antagonist zinc protoporphyrin IX, the iron chelator
dexrazoxane, or the ferroptosis inhibitor ferrostatin-1 protects
against DOX-induced cardiomyopathy (69). Interestingly, loss of
the E3 ubiquitin ligase tripartite motif containing-21 (TRIM21)
enhances Nrf2 antioxidant activity but downregulates Hmox1,

resulting in reduced ferroptosis and cardiotoxicity following
DOX exposure (70). In addition, DOX reduces the levels
of glutathione peroxidase 4 (GPx4), acyl-CoA thioesterase 1
(Acot1), and mitochondrial ubiquitin ligase MITOL, all of
which augment lipid peroxidation and ferroptosis, in mouse
heart (71–73).

Pyroptosis
The major characteristic of pyroptosis is plasma membrane
permeabilization mediated by gasdermin proteins such as
gasdermin D (GSDMD) and gasdermin E (GSDME) (61).
Cleavage of GSDMD by caspases 1, 3, 4, 5 or 11 results
in GSDMD pore formation at the plasma membrane and
subsequent pyroptosis. Pyroptosis is often pro-inflammatory
owing to secretion of interleukin-1β and interleukin-18. DOX
exposure induces cardiomyocyte pyroptosis in vivo and in vitro
through NLR family pyrin domain containing 3 (NLRP3)-
dependent activation of caspases 1, 3, and 11 (74, 75). In addition,
Bnip3-dependent activation of caspase 3 also contributes to
DOX-induced pyroptosis in cardiomyocytes (76).

CONCLUSIONS

Here, we have reviewed our emerging understanding of
the contributions of thrombosis, myocardial atrophy, and
programmed cell death to the complex and multifaceted
pathobiology of anthracycline-induced cardiovascular toxicity.
Future work in our labs and others will further explicate
the importance of these processes to anthracycline-induced
cardiovascular toxicity and define whether they could represent
novel therapeutic targets for prevention or treatment of these
dose-limiting and potentially life-threatening adverse effects.
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