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Objective: To implement an all-day online artificial intelligence (AI)-assisted

detection of ST-elevation myocardial infarction (STEMI) by prehospital

12-lead electrocardiograms (ECGs) to facilitate patient triage for timely

reperfusion therapy.

Methods: The proposed AI model combines a convolutional neural

network and long short-term memory (CNN-LSTM) to predict STEMI on

prehospital 12-lead ECGs obtained from mini-12-lead ECG devices equipped

in ambulance vehicles in Central Taiwan. Emergency medical technicians

(EMTs) from the 14 AI-implemented fire stations performed the on-site 12-lead

ECG examinations using the mini portable device. The 12-lead ECG signals

were transmitted to the AI center of China Medical University Hospital to

classify the recordings as “STEMI” or “Not STEMI”. In 11 non-AI fire stations, the

ECG data were transmitted to a secure network and read by available on-line

emergency physicians. The response time was defined as the time interval

between the ECG transmission and ECG interpretation feedback.

Results: Between July 17, 2021, and March 26, 2022, the AI model classified

362 prehospital 12-lead ECGs obtained from 275 consecutive patients who

had called the 119 dispatch centers of fire stations in Central Taiwan for

symptoms of chest pain or shortness of breath. The AI’s response time to

the EMTs in ambulance vehicles was 37.2 ± 11.3 s, which was shorter than
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the online physicians’ response time from 11 other fire stations with no AI

implementation (113.2 ± 369.4 s, P < 0.001) after analyzing another set of

335 prehospital 12-lead ECGs. The evaluation metrics including accuracy,

precision, specificity, recall, area under the receiver operating characteristic

curve, and F1 score to assess the overall AI performance in the remote

detection of STEMI were 0.992, 0.889, 0.994, 0.941, 0.997, and 0.914,

respectively. During the study period, the AI model promptly identified 10

STEMI patients who underwent primary percutaneous coronary intervention

(PPCI) with a median contact-to-door time of 18.5 (IQR: 16–20.8) minutes.

Conclusion: Implementation of an all-day real-time AI-assisted remote

detection of STEMI on prehospital 12-lead ECGs in the field is feasible with

a high diagnostic accuracy rate. This approach may help minimize preventable

delays in contact-to-treatment times for STEMI patients who require PPCI.

KEYWORDS

artificial intelligence (AI), contact-to-balloon (C2B) time, convolutional neural

network and long short-term memory (CNN-LSTM), prehospital 12-lead ECGs, ST-

elevation myocardial infarction (STEMI)

Introduction

Acute ST-segment elevation myocardial infarction (STEMI)

remains a tremendous global health issue requiring early

diagnosis and timely reperfusion for morbidity and mortality

reduction. Adherence to guideline-directed strategies, such as

performance of prehospital 12-lead electrocardiograms (ECGs),

shortening of contact-to-balloon and door-to-balloon times,

repetitive monitoring and feedback of predefined quality

indicators, and the use of standardized medications, are crucial

factors for improving outcomes in patients with STEMI (1,

2). Among these factors, the performance and transmission

of prehospital ECGs can expedite patient triage and early

recognition of STEMI, thereby contributing to the shortening

of contact-to-balloon time. Using on-site ECG transmission

via the emergency medical system (EMS), STEMI patients

could be transferred to the nearest interventional center by

ambulance, bypassing the emergency department, and undergo

timely catheter-based reperfusion therapy upon prehospital

STEMI diagnosis. To improve the efficiency and accuracy of

prehospital 12-lead ECG diagnosis, new technologies, including

machine learning and deep learning algorithms, have been

implemented (3–5).

The application of machine learning or deep learning

algorithms to predict STEMI has recently gained considerable

attention (4, 6, 7). One of the challenges in the development of

such models is the lack of robust 12-lead STEMI datasets for

training and validation. As such, most prior algorithms (8–19)

have used the open-source ECG database (MIT-BIH PhysioNET

or PTB Physiobank), or have retrospectively analyzed historical

ECGs from hospital records with a relatively small number of

verified STEMI 12-lead ECGs, for model development.

Although most of these machine learning classifiers report

a high accuracy rate of >90%, whether the usefulness of

such models can be generalizable to real-world clinical settings

remains questionable. An alternative approach for developing

these models is to combine classical ECG features with

clinical patient data, such as medical history and laboratory

parameters (20–23). Despite the high accuracy achieved by

these models, the clinical utility in early prehospital patient

triage is often limited owing to the need for clinical data,

according to their original algorithm designs. Recently, Al-

Zaiti et al. (24) trained and tested multiple classifiers on two

independent prospective patient cohorts using prehospital 12-

lead ECGs, which outperformed experienced clinicians and the

interpretations made by commercial software. However, their

results were based on offline analysis, and they have yet to be

confirmed in real-world online practice.

We previously utilized a bidirectional long short-term

memory deep learning model to detect STEMI and 12

major heart rhythms, which outperformed board-certified

physicians including cardiologists, emergency physicians,

and internists (4, 6). We further developed a new model

combining a convolutional neural network and long short-

term memory (CNN-LSTM), and implemented an all-day

artificial intelligence (AI)-based triage system to facilitate

STEMI ECG diagnosis in the ED (5). We implemented the

CNN-LSTM model to detect STEMI on prehospital 12-lead

ECGs acquired from a mini portable ECG device in an

ambulance service to expedite patient triage and support

decision-making. The purpose of this study was to provide

online real-world evidence by assessing how AI-assisted

remote detection of STEMI may impact the timeliness

and accuracy of prehospital ECG interpretation, important
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FIGURE 1

The flowchart of the AI-based pre-hospital STEMI detection system. Traditionally, after the 12-lead ECG had been recorded in the ambulance

vehicle, the ECG data were posted on a secured network for reading by available online physicians as had been usual practice. The time interval

between ECG transmission and interpretation feedback by physicians was defined as the physician’s response time. In our AI-based pre-hospital

STEMI detection system, the recorded signal was also simultaneously transmitted to the AI center of the China Medical University Hospital to be

classified “STEMI” or “Not STEMI.” Similarly, the time interval between the ECG transmission and the ECG interpretation feedback by the AI was

defined as the AI’s response time.

elements related to early diagnosis and timely reperfusion in

STEMI patients.

Methods

Prehospital 12-lead ECG workflow

The implementation of AI-based STEMI detection on

prehospital 12-leads ECG was conducted in Taichung City

and Nantou County in Central Taiwan between July 17, 2021,

and March 26, 2022. A total of 14 pre-assigned fire stations,

covering 19% of all fire stations and serving an estimated

population size of 562,222, in the two administrative districts

participated this pilot study. During the study period, we

analyzed prehospital 12-lead ECG data recorded in ambulance

vehicles from patients who called 119 dispatch centers of

fire stations for symptoms of chest pain or shortness of

breath in Taichung City and Nantou County. Emergency

medical technicians (EMTs) from the 14 pre-assigned fire

stations performed the on-site 12-lead ECG examinations

using mini portable devices (QT Medical, Diamond Bar, CA.,

USA), after pre-on-board training. Individuals who had the

characteristics including traumatic chest or abdominal injury,

conscious disturbance, failure to cooperate with or refusal of

ECG examinations, age ≤18 year-old, and pregnant women

were excluded from the ECG examination. This portable ECG

machine is a U.S. Food and Drug Administration-cleared and

CE marking device that can be used for personal care and

provide hospital-grade 12-lead electrocardiograms. In contrast

to the conventional 12-lead ECG machine, which requires

placing ten separate electrodes and connecting 10 lead wires,

this mini portable ECG device uses a single-piece disposable

electrode design with no lead wires to provide certified

digital 12-lead ECG signals. After the 12-lead ECG had been

recorded in the ambulance vehicle, the ECG signal was first

transmitted to the AI center of the China Medical University

Hospital to be classified “STEMI” or “Not STEMI.” The AI-

annotated ECG data were then posted on a secured network for

diagnosis confirmation by available online emergency physicians

as had been usual practice. The time interval between the

ECG transmission and the ECG interpretation feedback by

the AI was defined as the AI’s response time (Figure 1).

Similarly, the time interval between ECG transmission and
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FIGURE 2

Diagram depicting the deep learning model architecture. The deep learning model used a combination of CNN and LSTM to classify STEMI on

12-lead ECGs. The architecture of the proposed AI mode was composed of two 1D -CNNs blocks fed with chest and limb leads, to extract the

features from the 6-lead signals. The outputs of the two 1D-CNNs were connected to two layers of LSTM, which served as a sequence analyzer.

Then the outputs of the two LSTMs were concatenated and connected to a fully connected layer to classify the data as “STEMI” or “Not STEMI”.

interpretation feedback by physicians was defined as the

physician’s response time. The physicians’ response times at 11

other fire stations without AI implementation were collected

for comparison. When the AI model identified STEMI on a

prehospital ECG and the result was confirmed by available

online physicians, the EMT personnel contacted the nearest

available interventional hospital to shorten ambulance transfer

time for timely reperfusion therapy.

AI model for detection of STEMI on
prehospital 12-lead ECGs

The development of our deep learning model to classify

STEMI on 12-lead ECGs has been previously reported (4, 5).

Briefly, we first retrieved 3,296 12-lead ECG data from the digital

ECG core laboratory database at the China Medical University

Hospital (CMUH) in an extensible markup language (XML)

format as inputs to develop the AI model. The 12-lead ECGs

were recorded at a sampling rate of 500Hz using a computerized

ECG machine (GE Healthcare MAC 2000/3500/5500, US).

After excluding 389 ECGs with significant noise or artifacts,

the remaining 2,907 ECGs containing 882 STEMI ECGs

and 2,025 non-STEMI ECGs, as judged by the ground

truth committee, were used for model training (80%) and

validation (20%).

The deep learning model used a combination of CNN and

LSTM to classify STEMI on 12-lead ECGs. The architecture

of the proposed AI mode (CNN-LSTM) described previously

(25) was composed of two 1D-CNNs blocks fed with chest

and limb leads, to extract the features from the 6-lead signals

(Figure 2). The outputs of the two 1D-CNNs were connected to

two layers of LSTM, which served as a sequence analyzer. Then

the outputs of the two LSTMs were concatenated and connected

to a fully connected layer to classify the data as “STEMI” or

“Not STEMI.” In the trainingmodule, we chose the binary cross-

entropy as the loss function, and the Adam as the optimizer.

By combining the strengths of CNN and LSTM architectures,

the current CNN-LSTMmodel was developed to predict STEMI

on the prehospital 12-lead ECG because of its high spatio-

temporal dependencies. The precision, F1 scores, and recall

were evaluated using the validation set to prevent overfitting

during the training process. Before deploying the STEMI

classifier model, an additional 4,007 12-lead ECGs were tested

against the ground truth with excellent overall performance,

as previously reported (5). The overall performance of the AI

model in classifying “STEMI” or “Not STEMI” on all prehospital

12-lead ECGs was assessed by a confusion matrix, and the

accuracy, precision, recall, area under the receiver operating
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FIGURE 3

Validation of 12-lead ECG signals between devices. The proposed deep learning model for STEMI detection was based on the digital 12-lead

ECG signals recorded using a computerized ECG machine (GE Healthcare MAC 2000/3500/5500, USA). For the prehospital 12-lead ECG

acquisition in the current study, we used a mini portable ECG device (QT Medical, Diamond Bar, CA, USA) with the proposed AI algorithm

integrated within. To ensure the e�cacy of AI-based STEMI detection using the mini-portable ECG device, we checked the consistency of the

12-lead ECG output signals between the two devices. A total of 194 verified ECGs acquired from GE machines (GE-ECGs) were converted into

the corresponding QT Medical ECG output format (QT-ECGs) using a certified ECG simulator. Finally, the signal similarities between raw

GE-ECGs and the transcribed QT-ECGs was analyzed. The performance of the AI model in classifying data as “STEMI” or “Not STEMI” for each of

the two sets of ECG signals was compared to attest to the consistency of AI performance across devices.

characteristic (ROC) curve, and F1 score against a ground truth

were assessed according to the consensus of three expert board-

certified cardiologists.

Validation of 12-lead ECG signals
between devices

The proposed deep learning model for STEMI detection

was based on the digital 12-lead ECG signals recorded

using a computerized ECG machine (GE Healthcare MAC

2000/3500/5500, US). For the prehospital 12-lead ECG

acquisition in the current study, we used a mini portable

ECG device (QT Medical, Diamond Bar, CA., USA) with

the proposed AI algorithm integrated within. To ensure the

efficacy of AI-based STEMI detection using the mini-portable

ECG device, we checked the consistency of the 12-lead

ECG output signals between the two devices. We randomly

retrieved a separate set of 199 12-lead ECGs including 99

“STEMI” and 100 “Not-STEMI” data from the digital ECG

core laboratory database of CMUH. After excluding five

ECGs with excessive noise, each of the remaining 194 ECGs

acquired from GE machines (GE-ECGs) were converted into

the corresponding QT Medical ECG output format (QT-ECGs)

using a certified ECG simulator (WhaleTeq Co., Ltd, Taipei,

Taiwan) (Figure 3). Finally, the signal similarities between raw

GE-ECGs and the transcribed QT-ECGs was analyzed. The

performance of the AI model in classifying data as “STEMI”

or “Not STEMI” for each of the two sets of ECG signals was

compared to attest to the consistency of AI performance

across devices.

Statistical analysis

Continuous data with normal distribution are expressed

as the mean ± standard deviation, while non-normally

distributed data are reported as median (25th−75th percentiles).

Differences in data were analyzed using the Student’s t-test or

the Mann-Whitney U test as appropriate. Categorical data were

expressed as numbers (percentages) and were compared using

the chi-square test or Fisher’s exact test. A two-tailed probability

value of <0.05 was considered statistically significant. The

correlation coefficient was used to assess the signal similarity

between GE-ECGs and QT-ECGs. This score ranged from 1

and −1, where 1 indicated a perfect positive correlation, −1

represented a perfect negative correlation, and 0.7–1 denoted

a highly positive correlation. The Cohen Kappa value was also

used to verify the consistency of the AI’s performance between

the raw GE-ECG and transcribed QT-ECG signals. This value
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FIGURE 4

Comparison of response time between AI and physicians on

prehospital ECGs. Between July 17, 2021, and March 26, 2022,

the proposed AI model classified a total of 362 prehospital

12-lead ECGs as “STEMI” or “Not STEMI”, obtained from 275

consecutive patients who had called the 119 dispatch centers of

the fire stations in Taichung City and Nantou County for

symptoms of chest pain or shortness of breath. The AI’s

response time to the EMTs in ambulance vehicles was 37.2 ±

11.3 s, which was shorter than the online physicians’ response

time (113.2 ± 369.4 s, P < 0.001) from 11 other fire stations with

no AI implementation after analyzing another set of 335

prehospital 12-lead ECGs.

ranged from 1 to−1, and scores between 0.81 and 1.00 indicated

an almost perfect agreement. All statistical analyses were

performed using the SAS software (version 9.4; SAS Institute,

Cary, NC, USA). The Research Ethics Committee of CMUH

reviewed and approved the study protocol (IRB: CMUH111-

REC2-104).

Results

Between July 17, 2021, and March 26, 2022, the proposed

AI model classified a total of 362 prehospital 12-lead ECGs

as “STEMI” or “Not STEMI,” obtained from 275 consecutive

patients who had called the 119 dispatch centers of the fire

stations in Taichung City and Nantou County for symptoms

of chest pain or shortness of breath. The AI’s response time

to the EMTs in ambulance vehicles was 37.2 ± 11.3 s, which

was shorter than the online physicians’ response time from 11

other fire stations with no AI implementation (113.2 ± 369.4 s,

P < 0.001) after analyzing another set of 335 prehospital 12-lead

ECGs (Figure 4).

Among the 362 prehospital 12-lead ECGs, AI labeled 18 as

“STEMI,” and the remaining 344 ECGs as “Not STEMI.” Of

the 18 AI STEMI labeled ECGs, 16 were interpreted as STEMI,

and the remaining two were judged as false-positives according

to a consensus of board-certified cardiologists. Among the 12

adjudicated STEMI patients, 9 patients were diagnosed based

on a single ECG, and the remaining 3 patients had received

multiple ECGs (3 ECGs in one, and 2 ECGs in another 2

patients) with all ECGs showing consistent STEMI features.

Ultimately, 10 out of the 12 adjudicated STEMI patients

underwent primary percutaneous coronary intervention (PPCI)

with a median contact-to-door time of 18.5 (IQR: 16–20.8)

mins and a median contact-to-balloon time of 92.5 (IQR: 81–

124.8) mins (Table 1). Of the remaining two correctly labeled

STEMI patients, one was confirmed by coronary angiography to

have acute myocarditis-related ST elevations without coronary

artery occlusion, and the other was judged to be a recent

myocardial infarction based on the comparison of serial ECGs

and laboratory data, and did not receive PPCI at the discretion

of the cardiologist in charge at the destination hospital. Both

ECGs with a false positive STEMI classification by AI were

judged to be recent or old myocardial infarctions by the

ground truth committee (Figure 5). One ECG with a false

negative labeling by AI as “Not STEMI,” was interpreted as

“STEMI” according to the adjudication by the ground truth

committee (Figure 5). Interestingly, this patient was diagnosed

with a recent myocardial infarction by the cardiologist in charge

at the destination hospital after incorporating more hospital-

based information, such as historical ECGs for comparison

and laboratory data, and did not require PPCI. The evaluation

metrics including accuracy, precision, specificity, recall, area

under the receiver operating characteristic curve, and F1 score

to assess the overall AI performance in the remote detection of

STEMI from 362 prehospital 12-lead ECGs were 0.992, 0.889,

0.994, 0.941, 0.997, and 0.914, respectively (Figure 5).

Before applying the AI algorithm, which was originally

developed using GE-ECG data to predict the prehospital 12-lead

ECG signals acquired from the QT-ECG device in ambulance

vehicles, we first checked the signal similarity and consistency

of AI performance between the two devices used. Among the

separate set of 194 12-lead ECGs with 2,328 ECG leads signals,

the correlation coefficient of output signals from GE-ECGs and

QT-ECGs was>0.85 in 94.2% (2,193) ECGs, indicating that they

were highly correlated. In addition, the Cohen Kappa value for

testing the consistency of AI performance between the sets of

ECG signals was 0.88, representing an almost perfect agreement

(Figure 3).

Discussion

To the best of our knowledge, the current study is the first

real-world study to implement a 24/7 AI-based algorithm to

detect STEMIs on prehospital 12-lead ECGs to facilitate patient

triage and ensure timely reperfusion therapy by shortening the

contact-to-door. The strengths of this study, in contrast to
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TABLE 1 Consistent labeling of ST-elevation myocardial infarction by AI and ground truth committee (12 cases).

Patient

No.

Demographics Quality metrics Outcomes

Age Gender AI

STEMI

Consensus

STEMI

Contact-to-ECG

(min)

Contact-to-door

(min)

Contact-to-balloon

(min)

Culprit vessel

revascularization

Hospital

discharge

1 53 M Y Y 10 21 83 Proximal RCA Alive

2 55 M Y Y 8 19 143 LM to LAD; Cardiogenic

shock with ECMO

Expired

3 68 M Y Y 14 20 131 Proximal LCX Alive

4 67 F Y Y 5 14 81 Middle LAD Alive

5 89 M Y Y 5 10 82 Middle LAD Alive

6 63 M Y Y 6 17 69 Proximal RCA; VT/VF

with DC shock and IABP

Alive

7 45 M Y Y 10 21 74 Middle RCA Alive

8 53 M Y Y 8 18 106 Middle RCA Alive

9 76 M Y Y 11 23 102 Proximal RCA Alive

10 58 M Y Y 9 16 275 LM to LAD; OHCA with

ECMO

Expired

11 65 F Y Y 12 16 - Myocarditis with

cardiogenic shock and

ECMO

Expired

12 62 M Y Y 11 22 - Old MI, No PPCI Alive

Contact-to-ECG time, time between emergency medical technicians (EMT) arrival and first ECG performed; Contact-to-Door time, time between EMT arrival and patient arrival at the hospital; Contact-to-Balloon time, time between EMT arrival

and restoration of coronary artery blood flow; RCA, right coronary artery; LM, left main coronary artery; LAD, left anterior descending artery; ECMO, extra-corporeal membrane oxygenation; LCX, left circumflex artery; VT/VF, ventricular

tachycardia/ventricular fibrillation; DC, direct current; IABP, intra-aortic balloon pump; OHCA, out-of-hospital cardiac arrest; MI, myocardial infarction; PPCI, primary percutaneous coronary intervention.
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FIGURE 5

Representative ECGs of false positive and false negative labeling

by the proposed AI model. (A) This prehospital ECG showing

pathological Q waves in the inferior and anterolateral leads was

classified as STEMI by AI. The ground truth committee

interpreted this ECG as recent or old myocardial infarctions and

judged this AI labeling as a false positive case. (B) There was only

one ECG with a false negative labeling by AI as “Not STEMI,”

which was interpreted as “STEMI” according to the adjudication

by the ground truth committee. Interestingly, this patient was

diagnosed with a recent myocardial infarction by the

cardiologist in charge at the destination hospital after

incorporating more hospital-based information including

historical ECGs and laboratory data, and did not require PPCI.

(C) The evaluation metrics including area under the receiver

operating characteristic curve, accuracy, specificity, precision,

recall, and F1 score to assess the overall AI performance in the

remote detection of STEMI from 362 prehospital 12-lead ECGs

were 0.997, 0.992, 0.994, 0.889, 0.941, and 0.914, respectively.

conventional strategies, are that the proposed AImodel provides

a cardiologist-level STEMI ECG diagnosis using a simple-to-use

mini ECG device that does not require additional manpower for

expediting patient triage in a real-world prehospital setting.

The importance of prehospital 12-lead
ECG

STEMI is a medical emergency requiring early diagnosis and

timely reperfusion treatment by expert teams in experienced

centers. The performance of prehospital 12-lead ECGs is

a key element in enabling early diagnosis and transfer of

STEMI patients to a PPCI-capable hospital. On the other

hand, if STEMI patients are inappropriately transferred to

a PPCI-incapable hospital, this can cause a significant delay

in time to reperfusion, ∼60–80 mins (26–31). Once STEMI

was identified by prehospital ECGs, early notification of the

emergency department resulted in a significant shortening of

the first medical contact-to-reperfusion time, door-to-balloon

time, and door-to-needle time compared with no prehospital

12-lead ECG recording in STEMI patients (32–42). The results

of our study concur with these findings, with a fast contact-to-

door time and contact-to-balloon time in 10 identified STEMI

patients undergoing PPCI compared with registry data from

the USA and Europe. The shortening of contact-to-reperfusion

time was even more striking when excluding the two patients

presenting with cardiac arrest, with one occurring in the field

and the other in the emergency department. Furthermore,

with early detection of STEMI on prehospital ECGs, STEMI

patients can be directly transferred to the cardiac catheterization

room, bypassing the emergency department for PPCI to

achieve prompt reperfusion treatment (37). Therefore, the

contemporary American College of Cardiology/American Heart

Association and European Society of Cardiology guidelines

provide Class I recommendations for performing prehospital

12-lead ECGs and notifying the emergency care service in

advance (43, 44).

AI-based autodetection of STEMI on
prehospital ECG

Despite the recognition of the importance and the

increasing utilization of the prehospital 12-lead ECG in

the field, performing and accurately interpreting prehospital

ECGs remains challenging. A 12-lead ECG examination in a

prehospital setting is almost exclusively performed by EMT

personnel. With the conventional ECG device, it usually takes

time and training for paramedics to place 10 separate electrodes

and connect 10 lead wires correctly, which may limit the

widespread utilization of prehospital ECG for field triage (45).

In the current study, we were the first to use a mini-ECG device

with a single-piece disposable electrode design and proven

certified digital 12-lead ECG signals. Its easy-to-use design

greatly motivated the paramedics to perform prehospital 12-lead

ECG, according to a user satisfaction survey conducted during

the study period (data not shown), along with a relatively short

first EMT contact-to-ECG time.

In the USA and Europe, interpretation of the prehospital

12-lead ECG was usually made by the device’s computerized

algorithm or initially by trained paramedics, and then the ECGs

were transmitted wirelessly via the Internet to the PPCI center
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for confirmation. Recently, machine-learning-based algorithms

have been proposed to assist in the prehospital diagnosis of

acute coronary syndrome (ACS), including STEMI. Takeda

et al. employed a machine learning-based approach for early

prediction of ACS using 17 features, including vital signs, 3-

lead ECG monitoring, and symptoms, and demonstrated that

this model was highly predictive of ACS in a prehospital setting.

However, they built a predictive algorithm using a 3-lead, and

not a 12-lead ECG, and whether the model improved the

timeliness of ACS diagnosis was not presented in this study

(46). Al-Zaiti et al. utilized features extracted only from the

prehospital 12-lead ECGs, achieving a machine learning model

that outperformed both commercial software and experienced

clinicians in the prehospital diagnosis of ACS. Nevertheless,

the low positive predictive rate (0.43) of this model and the

additional requirement of combined judgment from trained

EMT personnel may limit its clinical utility (24).

The current study has several strengths in bridging the

existing gaps to fulfill the guideline-recommended performance

and timely interpretation of prehospital 12-lead ECG to expedite

coronary reperfusion. First, we integrated a useful AI algorithm

into an easy-to-use 12-lead ECG device that motivates EMT

personnel to perform prehospital 12-lead ECG examinations

and may further shorten contact-to-ECG time. Second, in this

study, although the mean differences of the response time

between AI and physicians was <2min, we noticed high

variations of the physician’s response times with some of the

physician’s response times were far longer than the mean value.

While the AI response time showed little variations, 5% of the

physician’s response timewas>10min in fire stations with noAI

implementation. This finding highlights a potential limitation

of physician-dependent reading of the prehospital ECGs. Third,

the performance of our AI model, which reached a cardiologist

level of STEMI detection, has been extensively validated in

preclinical testing and in emergency medicine environments.

Implementation of the AI algorithm can facilitate chest pain

triage, shorten the D2B time during off-hours, and increase the

percentage of D2B time <90min in the emergency department.

Forth, before implementing the AI model in the mini portable

ECG device, we checked and confirmed the signal similarity and

consistency of the AI performance between the GE-ECG and

QT-ECG devices, which is essential for ensuring the uniformity

of AI performance in the field. Taken together, this pilot study

is the first to report an AI-assisted diagnosis of STEMI on

prehospital 12-lead ECGs and its potential impact on time-to-

treatment for patients with STEMI.

Limitations

Our study had several limitations. First, the proposed

AI algorithm was developed to interpret STEMI in a binary

response model. Thus, it is currently not possible for this model

to detect other types of ACS beyond STEMI, such as non-

STEMI or unstable angina. However, a large body of evidence

has shown that STEMI remains the most time-critical condition,

requiring prompt intervention for revascularization, compared

with other types of ACS (1, 2). Therefore, the proposed AI

model was intended solely for assisting with STEMI triage

in consideration of its clinical importance in a prehospital

setting. Second, although the AI-based approach seems to have

a short prehospital transport time, such as contact-to-ECG,

contact-to-door, or contact-to-balloon times, whether these

results can be translated into better outcomes needs to be

confirmed in large-scale controlled studies. Third, the study

was conducted in two administrative areas in Central Taiwan,

with a limited number of fire stations participating in the

program. The usefulness of this AI-based approach in assisting

with the prehospital diagnosis of STEMI needs to be confirmed

in a prospective cohort involving a broader geographic region

or across entire countries. Finally, only 10 STEMI patients

identified by this program underwent PPCI, and it is still too

early to draw a solid conclusion that the AI-based remote clinical

decision support system may contribute to better outcomes

in STEMI patients. Nevertheless, the results of the current

study demonstrated the feasibility and excellent performance

of the proposed AI model in classifying STEMI on prehospital

12-lead ECGs.

Conclusions

We demonstrated the feasibility and usefulness of

implementing AI-assisted remote STEMI detection with

prehospital 12-lead ECG using a mini portable ECG device

in the field. This strategy can facilitate the prehospital

STEMI diagnosis, and may help minimize preventable

delays in contact-to-treatment time for patients with STEMI

undergoing PPCI.
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