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Patients with long COVID and acute COVID should benefit from treatment

with H.E.L.P. apheresis, which is in clinical use for 37 years. COVID-19

can cause a severe acute multi-organ illness and, subsequently, in many

patients the chronic illness long-COVID/PASC. The alveolar tissue and adjacent

capillaries show inflammatory and procoagulatory activationwith cell necrosis,

thrombi, and massive fibrinoid deposits, namely, unsolvable microthrombi,

which results in an obstructed gas exchange. Heparin-induced extracorporeal

LDL/fibrinogen precipitation (H.E.L.P.) apheresis solves these problems by

helping the entire macro- and microcirculation extracorporeally. It uses

unfractionated heparin, which binds the spike protein and thereby should

remove the virus (debris). It dissolves the forming microthrombi without

bleeding risk. It removes large amounts of fibrinogen (coagulation protein),

which immediately improves the oxygen supply in the capillaries. In addition,

it removes the precursors of both the procoagulatory and the fibrinolytic

cascade, thus de-escalating the entire hemostaseological system. It increases

myocardial, cerebral, and pulmonary blood flow rates, and coronary flow

reserve, facilitating oxygen exchange in the capillaries, without bleeding risks.

Another factor in COVID is the “cytokine storm” harming microcirculation

in the lungs and other organs. Intervention by H.E.L.P. apheresis could

prevent uncontrollable coagulation and inflammatory activity by removing

cytokines such as interleukin (IL)-6, IL-8, and TNF-α, and reduces C-reactive

protein, and eliminating endo- and ecto-toxins, without touching protective

IgM/IgG antibodies, leukocyte, or platelet function. The therapy can be
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used safely in combination with antiviral drugs, antibiotics, anticoagulants, or

antihypertensive drugs. Long-term clinical experience with H.E.L.P. apheresis

shows it cannot inflict harm upon patients with COVID-19.
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H.E.L.P. apheresis, PASC, COVID-19, long COVID, SARS-CoV-2, heparin, fibrinogen,

rheology

Introduction

In COVID-19 pandemic, the key question is: which

therapeutic approach should be favored in order to save

seriously sick patients? What kind of approach is suitable to

prevent looming acute lung failure involving microthrombi

and inflammation of the endothelium (1–5) as a result of an

excessive immune response of the body when the host’s first

lines of defense have already failed? We know that SARS-CoV-2

uses the angiotensin-converting enzyme 2 (ACE2) receptor and

the transmembrane serine protease 2 (TMPRSS2) as gateways

(6–8) to infect cells of the alveolar epithelium (1–4) and

endothelial cells in the lungs, heart, kidneys, intestines, and

liver (5). This is why patients with coronary artery disease (9–

12), hypertension (3, 13), diabetes (3, 13), or obesity (3, 13)

exhibit a higher mortality risk as their receptor density is up-

regulated (14). Moreover, the binding of the SARS-CoV-2 spike

protein inhibits and down-regulates ACE2 function which in

turn promotes the inflammatory response (6–8). Diabetes for

instance increases thrombogenicity and hyperactivates platelets,

and so does hypertension by increasing shear stress in the

vessels (15–17).

Histological studies confirmed the presence of the virus

in both cell types: alveolar epithelium and endothelial cells

(1–5). Alveolar tissue and adjacent capillaries reveal massive

inflammatory and procoagulatory activation together with cell

necrosis, thrombi, and massive fibrinoid deposits (1–5, 18, 19).

It results in the clinical picture of an obstructed gas exchange.

The enlargement of the diffusion barrier limits the benefits of

artificial ventilation and extracorporeal membrane oxygenation

(ECMO) (20–23). In addition, the latter promotes the formation

of radicals as a side effect (20–23).

The application of H.E.L.P. apheresis could significantly

contribute to the restoration of microcirculation in the lungs

and other affected organs. The method, developed by Seidel

and Wieland in 1984, primarily for patients with severe

hyperlipidemia or familial homozygous hypercholesterolemia

(24–30), has not only been proven beneficial as an ultima ratio

treatment of arteriosclerosis and its atherothrombotic sequelae,

it also has been successfully applied in coronary heart disease

(24–27, 31–33) to prevent and treat graft vessel disease following

heart transplantation (33–39), acute thrombotic graft occlusion

following aortocoronary bypass surgery (40), preeclampsia

(41, 42), strokes (43–46), unstable angina pectoris (47), and

hyperlipoproteinemia (a) (32). It exhibits anti-inflammatory

effects in chronic, and also acute inflammatory processes of the

endothelium in the micro- and macrocirculation (26–36, 40,

48, 49) and has anticoagulant and anti-inflammatory properties

(25, 50, 51).

Methodology

During H.E.L.P. apheresis, blood cells are first separated

from plasma in the extracorporeal circuit, then 400.000 units of

unfractionated heparin are added to the plasma, and the pH is

lowered to 5.12 using an acetate buffer. That is the isoelectric

point for the optimal precipitation of the apolipoproteins

from LDL cholesterol, lipoprotein (a) [Lp(a)], and VLDL,

which are precipitated in the precipitation filter together with

fibrinogen. The excess heparin is adsorbed, and bicarbonate

dialysis balances the pH again. The blood cells of the patients are

reinfused in parallel with a saline solution (24, 50). The duration

of treatment-−2 h on average—can be shortened or extended to

meet individual needs (50).

Rationale for H.E.L.P. apheresis

Patients with acute and long COVID-19 most probably will

benefit from H.E.L.P. apheresis due to the following reasons:

1. It has no allocation problem and allows direct access

to the entire macro- and micro-circulation owing to its

extracorporeal access.

2. It uses 400.000 units of unfractionated heparin in the

extracorporeal circuit, which was shown of being capable to

bind SARS-CoV-2 spike protein (19, 52), and thereby could

directly remove the virus and viral debris during viraemia.

3. The large quantity of unfractionated heparin allows the

desolvation of forming microthrombi without a bleeding risk

due to the heparin adsorber (50).

4. Heparin-induced extracorporeal LDL/fibrinogen

precipitation (H.E.L.P.) apheresis removes about 50–

70% of fibrinogen, the most important coagulation protein,

within 2–3 h, that in turn immediately improves oxygen

supply in the capillaries (50, 51).

5. In addition, it partially removes the precursors of both

the procoagulatory and the fibrinolytic cascade by 35–50%,
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thus de-escalating the entire haemorheologic system (50).

However, antithrombin III is only eliminated by 25% (50)

ensuring minimized bleeding risk complications.

6. From the very beginning, H.E.L.P. apheresis is rheologically

effective (30, 31, 33, 53): it increases myocardial (30, 53),

cerebral (54), pulmonary blood flow rates, and coronary flow

reserve (53). These effects facilitate oxygen exchange in the

capillaries sustainably (51).

7. It removes cytokines such as interleukin (IL)-6, IL-8, and

TNF-α, and reduces C-reactive protein (CRP) concentrations

by more than 50% (41, 48, 49). The heparin adsorber

completely eliminates endo- and ecto-toxins (48), so that

the excessive inflammatory response, the so-called “cytokine

storm”, can calm down (18, 19, 48, 49).

8. Heparin-induced extracorporeal LDL/fibrinogen

precipitation (H.E.L.P.) apheresis has already been

successfully applied for septic multi-organ failure in

pilot studies by Bengsch et al. (48, 49). In modified form,

it showed a successful outcome in the enterohaemorrhagic

E.coli (EHEC) epidemic in patients suffering from the

hemolytic-uraemic syndrome (HUS) (55).

9. Heparin-induced extracorporeal LDL/fibrinogen

precipitation (H.E.L.P.) apheresis is an established,

commercially available system (B. Braun AG, Melsungen,

Germany) that has been in clinical use for 37 years. It is easy

to handle and was shown to reduce complication rates in

acute and chronic cardiac patients very effectively by 82–97%

(27, 29, 30, 32, 34, 36). The long-term clinical experience

with H.E.L.P. apheresis suggests, with a probability close

to certainty, that it cannot inflict harm upon patients

with COVID-19.

10. It does not remove protective IgM or IgG antibodies and

does not affect leukocyte or platelet function. In the past, the

therapy has been shown to be well-tolerated and safe during

treatment with antiviral drugs, antibiotics, anticoagulants, or

antihypertensive drugs.

Background

In patients who are suffering from severe COVID-19, the

computed tomography (CT) scan of the lungs shows ground-

glass-like interstitial thickening (5), (which presumably leads

to acute respiratory distress syndrome (ARDS). As a result

of an excessive immune response, it appears uncontrollable.

The advanced disease stage develops after the initial antiviral

defense lines of the innate immune system—such as protective

effects of interferons and secretory IgA on alveolar epithelium—

have failed to eliminate the virus. The presence of SARS-CoV-

2 viraemia is the prerequisite for humoral antibody synthesis

of IgM and IgG subtypes. They could lyse virus-infected cells

in the presence of complement factors. As far as we know,

the nature and extent of the cellular immune response to

viral antigens are almost entirely dependent on T-lymphocytes

(56). The cell-mediated antibody-dependent cytotoxicity is T-

cell-dependent and, currently, is being the subject of intensive

virological and cell biological research.

In principle, intervention in the inflammatory cascade takes

place as early as possible before the onset of the “cytokine

tsunami” in order to prevent uncontrollable coagulation and

inflammatory activity (18, 19) harming microcirculation in the

lungs and other organs. This may be the case in COVID,

for example, as this cytokine storm likely results in the

presence of microthrombi found in patients suffering from

COVID-19 (57). These microthrombi have the ability to

block microcapillaries and hence, inhibit oxygen exchange and

supply at various organs, resulting in the various symptoms

of long COVID such as muscle fatigue, breathlessness, sleep

impairment, and anxiety or depression (58). The phenomenon

of a “cytokine storm” was first described in 1973 in graft-vs.-

host disease (GvHD) following organ transplantation, and later

in ARDS, sepsis, Ebola, avian flu H5N1, smallpox, systemic

inflammatory response syndrome (SIRS), and now in COVID-

19 (59).

Cytokines are proteins that coordinate and modulate

cellular immune responses: they guide and activate leukocytes–

in particular, T-lymphocytes and monocytes–to the site of

inflammation where cytokine secretion is regulated by positive

feedback. During a “cytokine storm”, leukocytes are activated

to such an extent that the immune response seems inexorable.

High concentrations of IL-1ß, IL-6, and IL-8 are expressed

(18, 19, 59–61). Furthermore, IL-1ß and IL-6, together with

TNF-α—the latter being mainly expressed by macrophages-

direct systemic inflammatory effects such as the increase in body

temperature and blood flow, capillary permeability, and leakage.

Due to the complexity of regulation and orchestral functions, IL-

6 plays a key role in the transition of mechanisms of innate to

acquired immunity (60, 62). The CRP triggers IL-6 (61) and IL-6

links procoagulatory activation, especially triggering fibrinogen

production in the liver [51]. Whenever the body’s defense is

not able to clear the virus from all sites, the inflammation may

persist in macrophages, in vascular beds, or in the brain stem

and chronify, as recently reviewed by Proal and VanElzakker

(63) with the consequence of a wide range of long-lasting

clinical symptoms and impaired host immunity. In recent years,

Pretorius and Laubscher (64) proved the persistence of insoluble

clots containing excess alpha2-Antiplasmin bound plasminogen

fibrinogen and amyloid proteins, which results in hindered

fibrinolysis in long COVID patients.

Discussion: E�ects of HELP
apheresis

The anti-inflammatory effects of H.E.L.P. apheresis had been

intensively investigated by Bengsch et al. (35, 36) in the nineties.
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It has been applied by them in pilot studies to successfully treat

sepsis and septic shock patients with multiple organ failures. In

2012, we were able to rescue a patient with EHEC-induced HUS

from her comatose state within hours, and from kidney failure

within 2 days (55).

In the case of COVID-19, H.E.L.P. apheresis could be

of immediate benefit because this extracorporeal system

can reduce the trigger and effector of the overwhelming

immune response in a simultaneous manner. The SARS-CoV-

2, circulating cytokines, CRP, on top fibrinogen are reduced

drastically, the latter by 50% within 2 h. As a result, the

rheology of the pulmonary microcirculation will immediately be

relieved—without reduction of the erythrocyte concentration.

Fibrinogen is the effector of plasmatic coagulation and

decisive determinant in microcirculation, plasma viscosity,

and erythrocyte aggregability (51). Owing to the use of

unfractionated heparin, the antithrombotic effect is maximal.

Previous studies using positron emission tomography in

heart transplant patients showed that the median coronary

blood flow rate remains significantly increased by 17.5% for

24 h after a single 2-h apheresis procedure. It increases by 27%

under simulated exposure to the administration of adenosine

(33). In principle, the decreased fibrinogen concentration

causes rheologically significant effects and facilitates oxygen

exchange. Plasma viscosity is reduced by an average of 19%,

and erythrocyte aggregability is significantly decreased by 60%

(33). In addition, the vascular endothelial growth factor (VEGF)

and nitric oxide (NO) release are favorably influenced (33).

The improvements have also been demonstrated for cerebral

blood flow in the cardiac patients, where they profit from a 63%

increase in the CO2 reserve capacity (54).

Heparin-induced extracorporeal LDL/fibrinogen

precipitation (H.E.L.P.) apheresis reduces LDL cholesterol

and Lp(a) concentrations with similar efficacy as fibrinogen

(24, 25), thereby improving endothelial function (33, 53, 54).

With regards to LDL reduction through apheresis, it remains

unclear whether SARS-CoV-2 resembles delta coronavirus,

which uses cholesterol as a vector due to its lipid envelope (65).

For practical reasons it is important to mention that

H.E.L.P. apheresis is not restricted to a 2-h treatment time.

The system can be recirculated for many hours—until the

precipitate filter is saturated. The precipitate filter however

can also be exchanged during the procedure, so the fibrinogen

concentration theoretically could be reduced by up to 99.9999%.

In-depth preliminary studies into the influence of H.E.L.P.

apheresis on the kinetics of the procoagulation and fibrinolytic

cascades have shown that the precursors of both cascades are

also reduced by 35–50% within 2 h—with the exception of

antithrombin III, which is reduced by 25% (50). Taking together,

H.E.L.P. apheresis thus de-escalates the coagulation situation

of both arms without any bleeding risk due to the complete

adsorption of unfractionated heparin (50).

The heparin adsorber also has the ability to eliminate endo-

and exo-toxins regardless of viral or bacterial origin (48, 49,

55). Recent data from Carlo Brogna indicate that the SARS-

CoV-2 virus acts as a bacteriophage on the microbiome of the

lungs and the guts of infected patients, thereby inducing the

bacteria to produce neurotoxic “conotoxins”. These so-called

conotoxins might also be eliminated by means of H.E.L.P.

apheresis (64).

The use of H.E.L.P. apheresis should be considered for the

treatment of patients with acute and long COVID in order

to restore the vascular homeostasis, remove inflammatory and

thrombogenic mediators, and to avoid unnecessary suffering.

Our first experiences with patients with long COVID are

promising and summarized in the corresponding article.

Meanwhile, we could successfully treat hundreds of patients with

long COVID with this method.
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