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Over the last few decades, catheter ablation has emerged as the first-line

treatment for ventricular arrhythmias. However, detailed knowledge of cardiac

anatomy during the surgery remains the prerequisite for successful ablation.

Intracardiac echocardiography (ICE) is a unique imaging technique, which

provides real-time visualization of cardiac structures, and is superior to other

imaging modalities in terms of precise display of cardiac tissue characteristics

as well as the orientation of anatomical landmarks. This article aimed to

introduce the various advantages and limitations of ICE in the ablation of

ventricular arrhythmias.
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Introduction

Timely intervention is needed for ventricular arrhythmias (VAs) that cause
palpitation, chest tightness and other symptoms, as well as that can lead to or
have led to cardiomyopathy. Necessary therapeutic measures for VAs usually consist
of specific drug therapy like beta-blockers (β-blockers) and class Ic antiarrhythmic
drugs. However, in cases of ineffective drug therapy or inadequate patient compliance,
catheter ablation is considered to be an effective means of treatment (1). Intracardiac
echocardiography (ICE) refers to the placement of an ultrasound probe at the catheter
tip, which is then transported to the cardiac cavity through peripheral blood vessels.
Hence, this process enables precise cardiac anatomy visualization without air and other
interference factors, thereby providing optimum outcomes. It provides high-resolution
real-time visualization of cardiac anatomy as well as the catheter placement, thereby
dynamically monitoring the entire ablation process. ICE also helps in understanding the
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spatial relationship between mapping the ablation catheter
and corresponding cardiac structures and guides the degree
of attachment between the top of the ablation catheter and
corresponding anatomical landmarks (2). It can easily monitor
the formation, location, extent, and degree of ablation injuries
for assessing the safety and efficacy of ablation. Additionally, ICE
also continuously monitors complications as well as determines
their location and severity in real-time, such as pericardial
effusion (3–5) or thrombosis (6, 7). Based on this, procedural
complications can often be detected and treated in time before
the hemodynamic changes occur (2). Moreover, ICE can also
display all cardiac structures and accurately locate the aortic
root and the pulmonary sinus by operating in the right cardiac
system. The ablation of outflow tract is more instructive, and
it is of greater significance for mapping and ablation of related
arrhythmias originating from the structures protruding from
the cardiac cavity, such as papillary muscle (PM), false tendons
(FT), and moderator band. Simultaneously, it also reveals the
functional changes in myocardial echo and thickness (8, 9)
and helps in the accurate localization of substrates such as
scars. Other benefits of this technique include excellent patient
tolerance, low radiation and contrast agent exposure, and lack of
need for general anesthesia (2).

Classification of intracardiac
echocardiography systems

Common ICE systems are divided into the following two
types:

(1) Radial or rotating ICE: This system uses a single
piezoelectric crystal attached to the tip of a 6-to 10-French
catheter. The rotating sensor operates at an imaging frequency
of 9–12 Mhz and provides images within 6–8 cm around the
probe during surgery. The resultant images are omnidirectional
tomography images perpendicular to the long axis of the
catheter and similar to intravascular ultrasound images.

(2) Phased-array ICE: It consists of a 64-element ultrasonic
probe crystal mounted on the distal end of an 8-to 10-French
catheter which provides a perpendicular sector view. As the
ultrasonic frequency of the probe is variable (5–10 Mhz), it
can bend in four directions: anterior (A), posterior (P), left (L),
and right (R), with a maximum bend angle up to 160◦. This
catheter displays 2D pulse/Doppler ultrasound imaging with
a depth up to 15–16 cm. Phased-array ICE possesses several
advantages that include greater radial depth, Doppler imaging
ability, and higher operability. CARTOSOUND software is a
new imaging technology that integrates ICE with 3D electro
anatomical mapping systems. It consists of a magnetic sensor
embedded within the phased-array ICE catheter tip that allows
integration of 2D ultrasonic images developed by intracardiac
ultrasonic catheter with 3D magnetic field information obtained
by the 3D electro anatomical mapping system. Hence, this

technology is the cumulative, precise combination of 3D
magnetic field positioning and navigation along with real-time
2D ultrasonic technology.

The standard intracardiac
echocardiography view

(1) The introduction of ICE: Experienced operators usually
use a bilateral femoral vein approach to enter the cardiac cavity
without any radiographic imaging. The basic principle is to
always maintain a clear echogenic space (black) in front of the
catheter and avoid pushing it when showing an echogenic space
(white) (2).

(2) Right atrium operation and view: After positioning the
ICE catheter in the mid-right atrium (RA) through the inferior
vena cava, the catheter was rotated so that the ultrasound probe
points to the center of the tricuspid valve (TV), thereby reaching
the HomeView position. This important position provided
imaging of the RA, TV, right ventricle (RV), aortic long axis,
non-coronary, and right coronary cusps, as well as a small part
of the right ventricle outflow tract (RVOT) (Figure 1). From the
HomeView position, a clockwise rotation exhibited the RV long
axis model, showing the RA, coronary sinus, non-coronary and
left coronary cusps, and part of the left ventricle (LV). Further
clockwise rotation identified the left atrium (LA) and displayed
the LA, RA, coronary sinus, left atrial appendage, mitral valve,
and LV, respectively (Figure 2).

Other commonly used views: Based on HomeView, the
catheter was positioned in the high RA and was rotated
clockwise slightly to display the short axis of the RVOT,

FIGURE 1

Homeview position. RA, right atrium; TV, tricuspid valve; RV,
right ventricle; NCC, non-coronary cusp; RCC, right coronary
cusp; AO, aortic valve; RVOT, right ventricular outflow tract; PA,
pulmonary artery.
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FIGURE 2

(A) The clockwise rotation from the HomeView position. (B) The clockwise rotation from the A position. RA, right atrium; CS, coronary cusp; LV,
left ventricle; NCC, non-coronary cusp; LCC, left coronary cusp; RVOT, right ventricular outflow tract; LA, left atrium; MV, mitral Valve; LAA, left
atrial appendage.

pulmonary valve, and sinus, the long axis of the left ventricle
outflow tract (LVOT) and the long axis of the aorta, respectively.

(3) Right ventricular operation and view:
Right ventricular modeling: Based on the HomeView

position, the ultrasound sector rotated clockwise toward the
RA posterior wall, bending the P curve and directing the
catheter into the RV along with the TV orifice. With additional
clockwise rotation, the RVOT came into view, along with the
long axis of the pulmonary artery, the short axis of the aorta,
and the aortic sinus (Figure 3). The catheter was then rotated
counterclockwise toward the RV free wall and made an L-bend,
thereby showing the RV, LV, moderator band, interventricular
septum, and LV anterolateral papillary muscle. Additional
downward movement of the catheter to the lowest apical
position resulted in the loosening of the L and P bends. Then
the catheter was rotated counterclockwise toward the bottom of
the RV displaying the moderator band and the papillary muscle
of the posterior RV. A continuous counterclockwise rotation
toward the RV free wall showed the RV anterior papillary
muscle, the free wall of the tricuspid annulus, the subvalvular
reflex, and a part of RA (Figure 4). At this point, the RV
modeling was complete.

Left ventricular modeling: Based on HomeView, the catheter
was rotated clockwise to point the ultrasonic sector toward
the RA posterior wall; the P curve was bent, which sent the
catheter into the RV along with the tricuspid orifice. A slight
clockwise rotation attached the ultrasonic catheter to the RV
septum and bent the L curve to complete the modeling of the
LV long axis and PM papillary muscle from top to bottom.
After the completion of the LV long-axis modeling, the P and L
curves were loosened, and the ultrasound catheter was rotated

clockwise so that the fan pointed toward the LV bottom to
complete the LV short-axis modeling.

Application of intracardiac
echocardiography in the ablation

Application of intracardiac
echocardiography in transatrial septal
puncture

The common approach for conducting the ablation
procedure of LV arrhythmias is usually divided into the
retrograde aortic valve as well as the transseptal approaches.
A transseptal approach should be chosen to avoid aortic
valve injury in cases of aortic valve stenosis, dysplasia, arterial
plaque formation, or children with body weight < 15 kg (10).
Moreover, the transseptal approach improves the stability and
attachment of the ablation catheter to the LV posterior medial
papillary muscle for precise mapping and ablation (11). ICE
is a valuable tool that determines the location of the oval
fossa and the surrounding anatomical structures and guides
transseptal puncture for accurate imaging (12, 13). During a
transseptal puncture, ICE imaging from RA displays the needle
tip resting on the septum, shaped like a “tent.” Once the needle
passes through the septum, the “tent” collapses, revealing bright
red arterial blood. Furthermore, saline injections lead to the
visualization of the puncture needle as well as a “blister” sign
in the LA. ICE-guided transseptal puncture is more intuitive,
safe, and reliable, without any need for fluoroscopy-assisted
puncture. Since ICE allows a real-time assessment of cardiac
anatomy, early monitoring of the complications, like pericardial
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FIGURE 3

The short axis of the aorta. AO, aortic valve; RVOT, right ventricular outflow tract; PA, pulmonary artery.

FIGURE 4

Tricuspid annulus subvalvular reflex. RA, right atrium; TV, tricuspid valve; RV, right ventricle.

effusion or pericardial tamponade, and resolving them in time
become feasible (2).

Several studies have described that transseptal puncture
can be safely and effectively performed with ICE and 3D
electroanatomical mapping system guidance and helps in
reducing radiation exposure to patients and operators (14,

15). It is difficult to puncture through the atrial septum
with abnormal anatomical structures, such as atrial septal
thickening and aneurysm, lipoma, atrial septum after previous
cardiac surgery, and implantation of atrial septal occlude
(16). Sometimes, due to its inability to be located under
conventional fluoroscopy, certain complications occur, namely,

Frontiers in Cardiovascular Medicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1037176
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1037176 October 26, 2022 Time: 11:50 # 5

Ma et al. 10.3389/fcvm.2022.1037176

pericardial tamponade, aortic root puncture, arterial embolism,
and pulmonary vein perforation (17). ICE usage is more
advantageous in abnormal atrial septal puncture cases to avoid
life-threatening complications and improve the success rate of
the procedure. However, it should be noted that for patients with
cardiac implantable electronic devices, special consideration
should be given due to the risk of electrode shift caused
by ICE (15).

Application of intracardiac
echocardiography in the ablation of
outflow tract arrhythmias

Idiopathic outflow tract arrhythmias include premature
ventricular complex (PVC), unsustained and sustained
ventricular tachycardia (VT), respectively. The majority of
outflow tract arrhythmias originate from a focal mechanism
that includes enhanced automaticity, triggered activity, and
micro-reentry and is unrelated to either scar formation or ion
channels (1).

Mostly idiopathic, right ventricular outflow tract
arrhythmias are the most common form of clinical ventricular

arrhythmias, accounting for about 80% of the total outflow
tract ventricular arrhythmias (18). The myocardial tissue of
the RVOT anatomically extends to the pulmonary valve and
the pulmonary artery, which makes the ablation target location
more complex. A previous study suggested that about 90% of
the subjects had myocardial extension above the pulmonary
valve, whereas nearly half (46%) of the RVOT arrhythmia
lesions were located above the pulmonary valve (19). In recent
years, inverted U-shaped ablation above the pulmonary valve
has been widely popularized due to an increased understanding
of the RVOT ablation mechanism (20, 21). ICE technique shows
the precise position and relationship between the ablation
catheter, pulmonary valve, pulmonary artery, and RVOT
defines the position of supra-and subvalvular reflexes, visualizes
the adhesion and stability of the ablation catheter and the
target tissue in real-time as well as monitors the occurrence of
procedural complications like valve perforation (Figure 5). Due
to the complex anatomy surrounding RVOT, radiofrequency
energy transmitted near coronary arteries can lead to the
occlusion of major epicardial vessels like the left anterior
descending coronary artery, thereby causing myocardial
infarction in some cases (22). Hence, it’s critical to identify the
functional status of the coronary arteries. De Sensi et al. (23) and

FIGURE 5

(A) Anatomic reconstruction of right ventricular outflow tract under ICE. RVOT: right ventricular outflow tract; Blue arrow: pulmonary valve.
(B,C) Image of the catheter successfully entering the pulmonary artery under the CARTOSOUND module. (B) Right anterior oblique view; (C)
pulmonary artery view. (D,E) Image of the catheter successfully attached to the pulmonary sinus in a reverse U-shape under the CARTOSOUND
module. (D) Right anterior oblique view; (E) pulmonary artery view. (F) Successful placement of the catheter above the pulmonary sinus was
verified by angiography.
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Ho (24) reported several successful cases of inverted U-shaped
RVOT under the guidance of ICE. The pulmonary artery, aortic
valve, left anterior descending branch, and RVOT were precisely
monitored in real-time, thus, avoiding the use of radiography
and contrast agents, with no perioperative complications.

The incidence of LVOT arrhythmias, especially ventricular
premature or ventricular tachycardia originating from the aortic
sinus and its adjacent areas, is notably increasing year by year.
The aortic sinus is located in the center of the heart, and its
adjacent anatomical structure is complex, and the origin of some
patients may be close to important anatomical structures (such
as coronary arteries, etc.). Any injury to this area may lead
to valve injury, myocardial perforation, or fatal complications
like acute myocardial infarction and complete atrioventricular
block, resulting in an increased risk of surgery. Accurate
identification of the coronary ostium significantly reduces the
risk of coronary artery injury while ablating the target area.
Furthermore, the distance between the coronary ostium and the
catheter tip > 1 cm is considered safe for ablation procedures
(1, 2). Although angiography has been commonly used in the
past, it suffers from many limitations when judging the position
of catheters and arteries (25). Firstly, the relative distance
between the artery and the catheter might vary according
to the heart cycle and subtle catheter movements. Secondly,
angiography cannot be performed continuously during an
ablation procedure. And thirdly, the shape and size of the lesions
might become risk factors for the injury that are not related
to direct arterial contact. When angiography is compared with
ICE in terms of functional accuracy, it is suggested that ICE
provides high-resolution real-time visualization of the left main

coronary artery ostium in relation to the short-axis section of
the aortic sinus, whereas the right coronary artery ostium is
seen when the ICE probe points above the right coronary sinus.
Furthermore, when ICE guides the catheter’s position either
at the bottom of the aortic sinus or the junction of the two
cusps, the catheter is usually placed > 1 cm from the coronary
orifice. Based on this, it can be stated that ICE can replace
coronary angiography in evaluating the catheter’s stability and
association with the adjacent structures like aorta, aortic valve,
and coronary artery orifice by real-time monitoring, and thus,
can provide safe surgical interventions as well as improve the
procedural success rate.

The left ventricular summit (LVS) is the triangular region at
the most superior part of the LV epicardial surface consisting of
the left circumflex coronary artery, the left anterior descending
artery, and an approximate line from the first septal coronary
artery laterally to the left AV groove. As the LVS region is
bisected by the great cardiac vein (GCV), an area superior to
it is inaccessible to catheter ablation due to the proximity of the
coronary arteries and overlying epicardial fat (26). It is suggested
that PVCs in this area sometimes require “anatomical ablation,”
and the successful target may not be the earliest source of
excitement (27). In the traditional 3D model, the presence of an
unexplored area might result in incomplete model construction
and ablation failure. Hence, coronary angiography or cardiac
venography is usually used to guide the localization, while
the distance between the ablation catheter and the epicardial
coronary artery exceeding 0.5 cm is considered safe to avoid
vascular damage (28). However, some studies have revealed
that catheter ablation of adjacent structures like the aortic valve

FIGURE 6

ICE view of the aortic root and pulmonary artery at the left ventricular summit region, viewed from the right ventricular outflow tract. At the
center, a short axe of the left main coronary artery (LMCA) (blue arrow) surrounded by a thick layer of adipose tissue (LVS). RCC, right coronary
cusp; LCC, left coronary cusp; LA, left atrial; LAA, left atrial appendage; PA, pulmonary artery; The LVS is marked with an X.
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and RVOT under ICE-assisted imaging is highly effective (29)
(Figure 6). Furthermore, although the selective resolution of the
ICE prohibits the viewing of the small veins, the operator can
successfully perform ablation in the branch without venography.
Rivera et al. reported successful zero-ray ablation procedures
in 26 cases of PVC/VT originating from the LVS region, with
an immediate success rate of 84% due to the guidance of an
ICE-guided 3D electroanatomical mapping system without any
serious complications (30).

Application of intracardiac
echocardiography in ablation of
arrhythmias originating from papillary
muscles

Due to their unique anatomy, PMs are a source of
ventricular arrhythmias (VAs) in both normal and abnormal

cardiac structures (31). The left ventricular papillary muscle
connects the mitral valve chordae tendineae to the LV with
posteromedial and anterolateral papillary muscles. The left
anterolateral papillary muscle, originating from the anterior LV
wall, is connected to the anterior part of the two mitral lobes
via chordae tendineae, while the left posteromedial papillary
muscle, derived from the posterior inferior LV septum, gets
attached via chordae tendineae to the middle and posterior parts
of the two mitral lobes. Owing to the variable anatomy of LV
papillary muscle, it can have single or multiple heads. On the
contrary, the RV papillary muscle is divided into three portions:
septal, posterior, and anterior papillary muscles that connect the
RV myocardium to the TV via the tricuspid chordae tendineae
(1). The septal papillary muscle is closely associated with parts
of the right bundle branch (RBB).

Catheter ablation is highly effective yet challenging because
of complex PM anatomy, their independent movements during
the cardiac cycles, the ambiguous origin of arrhythmias along

FIGURE 7

Papillary muscle. (A) Left ventricular anterior papillary muscle. (B) Left ventricular posterior papillary muscle. (C) Right ventricular posterior
papillary muscle. MV, mitral valve; LV, left ventricle; APM, anterior papillary muscle; PPM, posterior papillary muscle; RV, right ventricle.

FIGURE 8

Moderator band. TV, tricuspid valve; LV, left ventricle; APM, anterior papillary muscle; MB, moderator band.
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with catheter-tissue contact instability. They were associated
with a higher rate of local recurrence rate and had a lower
success rate when compared with VA from other sites (32).
Certain disadvantages of a 3D electroanatomical mapping
system like the improper orientation of the catheter to the PM
as well as operation of the catheter may sometimes lead to
premature termination of arrhythmia and subsequent ablation
failure (33). Integration of ICE with 3D electroanatomical
mapping systems has further increased the efficacy of real-time
monitoring of both catheter and local anatomy, along with
accurate identification of the PMs structure (size, shape, and
number of heads). An important factor governing a successful
ablation is the appropriate contact between the ablation catheter
and the targeted tissue, as well as the correct location and
stability of the catheter tip for optimum outcome (1, 2, 34).
A single-center study conducted on more than 100 people
described that ICE effectively identifies the catheter’s location
and lesion distribution segments, reduces the surgical time and
radiation exposure, and thus, improves the overall success rate
of surgery (35). Rivera et al. stated that CFS RF/ICE is the
most effective way to reduce the consumption of antiarrhythmic
drugs and dynamic ECG load after catheter ablation in LV
papillary muscle origin arrhythmias (36). A strong correlation
was also observed between the ICE usage and successful
procedural outcomes, whereas the recurrence rate in patients
undergoing ablation without ICE was 20 times higher than in

ICE patients. Furthermore, ICE can duly identify abnormal PM
echoes and the existence of scars, thus, recognizing the exact
origin of arrhythmias (Figure 7).

Application of intracardiac
echocardiography in ablation of
arrhythmias originating from bundle
branch

Idiopathic left ventricular arrhythmia is derived from the
left bundle branch and has three manifestations on body surface
electrocardiogram (ECG): (1) left posterior fascicular (LPF)
ventricular arrhythmia, whose QRS morphology exhibits a right
bundle branch block (RBBB) configuration and a superior
axis; (2) left anterior fascicular (LAF) ventricular arrhythmia,
which displays an RBBB configuration and right-axis deviation;
and (3) upper septal fascicular (USF) ventricular arrhythmia,
with a narrow QRS configuration and normal or right-axis
deviation. LPF ventricular arrhythmia is the most common type
of fascicular ventricular arrhythmia and accounts for 90% of
the cases (37). Since the left posterior branch VT should be
correctly distinguished from the VT of papillary origin, due to
their proximity in anatomical positions, the distinction between
the two variants by ECG and cardiac electrophysiology becomes

FIGURE 9

The anatomy of para-his area under ICE. RV, right ventricular; RA, right atrial; NCC, non-coronary cusp; RCC, right coronary cusp; TV, tricuspid
valve; RVOT, right ventricular outflow tract; Blue arrow, atrial septum; The His region is marked with an X.
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difficult (38). It has been shown that the mechanism of branched
VT is closely related to the association between the Purkinje
fibers and the FT distributed around the PMs. Since anatomical
structures surrounding traditional left-median posterior septal
regions like left posterior PM or the FT are in proximity during
the onset of VT, they are difficult to distinguish under ordinary
3D measurement systems. ICE displays the association between
ablation catheter and left ventricular septum’s positions, PM and
FT during the surgery and clarifies the true anatomical position
of the best target, along with the degree of the catheter and the
target adhesion. Consequently, it plays a highly significant role
in exploring the mechanism of left posterior branch VT and
improving the surgical success rate (33, 39).

Application of intracardiac
echocardiography in ablation of
arrhythmias originating from
moderator band

A moderator band is a muscular band located in the mid to
apical RV that connects the interventricular septum to the RV-
free wall, supporting the anterior papillary muscle. It typically
contains an RBB subdivision and is one of the possible origin
sites for arrhythmias (31, 40). Using a 3D mapping system alone
for the ablation of moderator band arrhythmias is not highly
effective due to uncontrollable stability as well as mapping and
ablation catheter arrival rate. ICE is particularly useful in such
cases as it clearly shows the anatomical structures adjacent to
the moderator band, which is helpful for mapping and ablation.
Furthermore, the construction of the long and short-axis views
of the moderator band can clearly define the position of the
band body, the septal and the anterior papillary muscle insertion
points, and monitor the attachment and stability of the catheter
and the target tissue in real-time (11, 41) (Figure 8).

Application of intracardiac
echocardiography in ablation of
arrhythmia originating from false
tendon

A false tendon is a common intraventricular anatomical
variation (42), characterized by a fibrous or fibromuscular
chord-like band that crosses the LV cavity and gets attached to
the septum, PMs, trabeculations, or the LV free wall. Due to
the presence of conductive tissue, some ventricular arrhythmias
may originate from this site (42–44). The existence of FT
hinders the operation of intracardiac catheterization while its
complex anatomy, independent movement during the cardiac
cycle, and unstable catheter-tissue contact pose challenges to
mapping and ablation. Using ICE effectively improves the safety

and feasibility of surgical technique by constructing an LV
anatomical model, describing the relative relationship between
anterior and posterior papillary muscles, free wall, and FT,
completing target mapping in direct vision, and real-time
monitoring of the catheter’s stability and ablation structures
(45, 46).

Application of intracardiac
echocardiography in ablation of
ventricular arrhythmias originating in
the vicinity of the his bundle

VT and PVC originating in the vicinity of the His bundle
account for 3–9% of all idiopathic Vas (47). For arrhythmias
originating in this area, it is necessary to map their adjacent
structures in detail because of their complex anatomy structure
(48). ICE constructs the left and right His bundle area, RA,
RV, tricuspid annulus, outflow tract, and interatrial septum in
detail, which becomes convenient for the operator to understand
the local anatomy (Figure 9). Under direct ultrasound vision,
the operator can determine the earliest activation time and
achieve a higher success rate by utilizing activation maps along
with cardiac pacing and mapping, avoiding the conduction area
and reducing the possibility of cardiac block. If the earliest
ventricular activation is observed near the RV His bundle area,
the ablation target distance from the maximum His potential
should be > 5 mm for the safety and feasibility of the operation
(48).

Tricuspid annulus refers to the area immediately adjacent
to the TV, including the septal, free wall, and para-His regions.
In general, the septal region can be divided into three areas: the
anterior, middle, and posterior septa. The bundle of His passes
through the anterior septal region; a majority of idiopathic VAs
in its vicinity originate from the anterior and middle septal areas.
The application of ICE makes catheter ablation safe and more
feasible. Under the direct vision of ICE, the C-shaped curve of
the ablation catheter is reversed under the TV septal lobe by
using the adjustable curved long sheath to make the ablation
catheter stable while protecting the atrioventricular node from
radiofrequency energy damage (49, 50).

Identification and ablation of scar
(patch)

In patients who have undergone LV reconstruction, the
arrhythmias mostly originate in the scar or patch boundary (51)
or the myocardium below the patch. When the origin is in the
myocardium below the patch, most of them need to be ablated
via an epicardial pathway. However, a study stated that ICE-
guided catheter ablation of an arrhythmogenic substrate under
the patch via an endocardial approach is safe and feasible (52).
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ICE also identifies and depicts the scars of the endocardium,
mid-myocardium, and epicardium, defines the local anatomy,
and evaluates the distribution of arrhythmogenic substrate (9)
(Figure 10). In ischemic cardiomyopathy, the scar is visualized
as an area of myocardial hypokinesia/akinesia associated with
thinning and hyper-echogenicity and corresponds to a coronary
territory displaying voltage and electrogram abnormalities on
electroanatomic mapping. In non-ischemic cardiomyopathy,
ICE also detects the presence of mid-myocardial and epicardial
scar (8), which correlates with unipolar endo-and epicardial
bipolar voltage abnormalities. Furthermore, for epicardial
ventricular tachycardia, ICE-guided pericardial puncture and
catheter ablation exhibits better safety. ICE enables real-time
visualization of the puncture, minimizing the risk of inadvertent
RV puncture, cardiac tamponade, and pericardial bleeding. In
addition, during epicardial mapping and ablation, the catheter
tip was tagged and located on ICE imaging to ensure stable
attachment of the catheter to the epicardial scar. Finally, ICE
defines the specific reference point of the aneurysm neck by
describing the inflection point between the aneurysm and the
normal tissue (53). Because of the large area of myocardial
thinning in the aneurysm, continuous ICE catheter monitoring
is essential to avoid myocardial perforation during mapping and
ablation.

Other applications of intracardiac
echocardiography in ablation

Inaba et al. proposed a contraction mapping method in
which the ICE probe located in the right cardiac system
defined the location of early myocardial contraction required
for detailed mapping while excluding the location of myocardial
delayed contraction, which was insignificant (54). This method
helped limit the activation range and cardiac pacing mapping
and reduced the surgical time. This mapping method might
work well in cases of mapped VAs originating from the left side
due to the predictable local activation time for the LV without
any transseptal or arterial puncture.

The posterior-superior process of the LV is the most inferior
and posterior aspect of the basal LV, extending posteriorly to
the plane of the TV. Since the LV posterior-superior process
is anatomically adjacent to the medial and inferior side of
the right atrium, the arrhythmia originating from the LV
posterior-superior process can successfully be ablated from the
RA (48). Santangeli et al. reported a successful case of ICE-
guided ablation of VAs arising from the left posterior-superior
process via the right atrial approach (55). The best view of
the inferior medial RA and adjacent LV can be obtained by
clockwise rotation and anterior deflection of the catheter in
the HomeView, where it is placed on the inferior and medial
side of the RA, opposite to the earliest activation position
of the left ventricular endocardium. Hence, ICE is essential

for determining the anatomical relationship between the left
ventricular posterior-superior process and the adjacent RA
and visualizing the tissue contact and stability in real-time
during ablation.

Monitoring of complications

ICE plays an important role in identifying and monitoring
surgical complications. Real-time evaluation of the heart by
ICE helps operators in evaluating the possible causes of
complications and taking corrective measures to minimize the
adverse consequences. The role of ICE in the early identification
of complications has been listed as a Class I recommendation
in the 2019 HRS/EHRA/APHRS/LAHRS expert consensus
statement on Catheter Ablation of Vas (1).

Pericardial effusion and cardiac tamponade are the most
serious complications occurring in the process of ablation,
which occur rapidly when puncturing the cardiac structures,
such as the atrial septum, left atrial appendage, etc. ICE monitors
pericardial fluid accumulation along with atrial and ventricular
compression caused by pericardial tamponade in real-time,
detects pericardial effusion before hemodynamic changes,
and implements early interventions (3–5) (Figure 11 and
Supplementary Video 1). Additionally, ICE also evaluates the
severity of pericardial effusion in patients with intraoperative
hemodynamic deterioration (56). Notably, intracardiac
echocardiographic differentiation of fat from fluid could be
subtle. Several clues can be useful to distinguish epicardial fat
from pericardial effusion. First, ICE can detect invagination
of the right atrial or ventricular wall during diastole and early
systole as an important sign of pericardial effusion and even
cardiac tamponade (Supplementary Video 1). Second, fat
is usually located more anterior than posterior. Third, fat is
slightly less mobile and pericardial layers move less freely.
Fourth, fat is usually slightly more echogenic or granular than
fluid.

Cardiogenic shock, characterized by a progressive decrease
in blood pressure during the surgery or inability to maintain
blood pressure after electrical cardioversion, is more common
in patients with left ventricular dysfunction. The resultant
ICE imaging shows a stagnation of cardiac activity (2), which
requires urgent treatment.

Since ICE also detects the formation of intracardiac (6),
the sheath tip, and catheter thrombi, thus, potential therapeutic
interventions can be taken before their occurrence (7). ICE
imaging displays thrombi as echo-dense reflecting masses
with defined margins that are distinct from the underlying
endocardium and observed in multiple imaging planes without
any relation to pectinate muscles, FT, or trabeculae (57)
(Figure 12). The appearance of spontaneous echo contrast
due to low-flow conditions preceding the thrombus formation
is also assessed (4). Once ICE detects a soft thrombus, the
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FIGURE 10

(Left panel) The ventricular septal scar under ICE. LV, left ventricular; RV, right ventricular; Green circle, the position of the ablation catheter tip;
Blue arrow, scar (increased echo density). (Right panel) The position of the ablation catheter tip under the CARTOSOUND module in the
ablation of the scar. Left ventricular outflow tract (gray); Conduction beam (yellow balls); White arrow, ablation catheter; Blue arrow, ICE
catheter.

FIGURE 11

Still frame of pericardial effusion occurring during a catheter intervention under ICE. (A) Left ventricular pericardial effusion. (B) Right ventricular
pericardial effusion. LV, left ventricular; RV, right ventricular; RA, right atrial; Blue arrow, the positions of the pericardial effusion.

clot can be sucked into the sheath tube, and higher doses
of anticoagulants can be administered to prevent serious
thromboembolic complications (58). Sometimes, ICE can guide
the withdrawal of the thrombus to the RA if the thrombus is
firmly attached to the catheter (59).

ICE monitors the stability of catheter-tissue contact and
the formation of lesions, thus, providing operators with
key information to avoid steam popping and myocardial
perforations. Any other signs of excessive tissue temperature,
such as a local increase in cardiac echoes (excessive whitening
of the catheter tip and adjacent cardiac tissue) or a sudden
increase of microbubbles (signs before steam popping), can also
be successfully detected (60) (Figure 13 and Supplementary
Video 2).

This technique also keeps track of valve changes before,
during, and after the surgery, along with complications such
as valvular regurgitation caused by valvular insufficiency and
rupture of chordae tendineae.

Limitations of intracardiac
echocardiography

Firstly, ICE has limited application in terms of spatial
accuracy and resolution. Although ICE can reveal PM, FT, and
other protruding or suspended structures in the cardiac cavity, it
seldom achieves accurate imaging for a few smaller anatomical
structures, such as fibromuscular bands and trabeculae carneae
(33). Secondly, although ICE plays an important role in early
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FIGURE 12

Still frame of formation of thrombus under ICE. LA, left atrial; LAA, left atrial appendage; Blue arrow, thrombus in the left atrial appendage; White
arrow, LCX (left circumflex artery).

FIGURE 13

Steam-pop formation during RF (A–F). (A,B) The microbubbles were observed before steam pop; (C–F) ICE imaging showed that the formation
suddenly expanded to a sphere over the course of several seconds. Green semi-ellipse: the positions of the ablation catheter tip; RA, right atrial;
RV, right ventricle; RAA, right atrial appendage.

intraoperative monitoring of complications, its ability to reduce
the incidence of complications is still uncertain. Some studies
have shown that ICE can reduce the incidence of complications
during pulmonary vein isolation (61), but in the ablation of VAs,
there is no comparative study recommended in the 2019 expert
consensus statement to clarify the relationship between them.
Several studies have suggested that ICE minimizes the incidence

of complications by identifying relevant anatomical structures
and real-time catheter localization (4, 62–64). Thirdly, the
operating space of the ICE catheter is limited due to the
restricted size of the cardiac cavity. Often, multiple mapping
catheters are placed in the cardiac cavity, which reduces
their functional capacity and maneuverability. Fourthly, as
ICE usage requires systematic echocardiographic training for

Frontiers in Cardiovascular Medicine 12 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1037176
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1037176 October 26, 2022 Time: 11:50 # 13

Ma et al. 10.3389/fcvm.2022.1037176

interventional physicians, the proficiency of interventional
physicians in operating ICE might affect the safety and
effectiveness of the surgery (8, 65, 66). Lastly, the price of ICE
ultrasound catheters is high, and as disposable catheters are
commonly used, their utilization is limited to some extent.

Summary and future perspectives

ICE allows real-time visualization of the mapping
and ablation of ventricular arrhythmias and dynamically
displays the relationship between the catheter and specific
anatomical structures. It also plays an important role in
maintaining the catheter tip-tissue contact and attachment,
monitoring the formation of lesions, early identification
of surgical complications, and reducing fluoroscopy time.
Further improvements in existing healthcare models like
increased imaging quality, appropriate catheter size, 3D
imaging capability, and cost-effectiveness will make ICE a
more widely used treatment modality in the ablation of
ventricular arrhythmias.
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