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Since early 2020, SARS-CoV-2-induced infection resulted in global pandemics

with high morbidity, especially in the adult population. COVID-19 is a highly

prothrombotic condition associated with subsequent multiorgan failure and

lethal outcomes. The exact mechanism of the prothrombotic state is not

well understood and might be multifactorial. Nevertheless, platelets are

attributed to play a crucial role in COVID-19-associated thrombosis. To

date, platelets’ role was defined primarily in thrombosis and homeostasis.

Currently, more focus has been set on their part in inflammation and

immunity. Moreover, their ability to release various soluble factors under

activation as well as internalize and degrade specific pathogens has been

highly addressed in viral research. This review article will discuss platelet

role in COVID-19-associated thrombosis and their role in the cholinergic

anti-inflammatory pathway. Multiple studies confirmed that platelets display

a hyperactivated phenotype in COVID-19 patients. Critically ill patients

demonstrate increased platelet activation markers such as P-selectin, PF4, or

serotonin. In addition, platelets contain acetylcholine and express α7 nicotinic

acetylcholine receptors (α7nAchR). Thus, acetylcholine can be released under

activation, and α7nAchR can be stimulated in an autocrinemanner and support

platelet function. α7 receptor is one of the most important mediators of the

anti-inflammatory properties as it is associated with humoral and intrinsic

immunity and was demonstrated to contribute to better outcomes in COVID-

19 patients when under stimulation. Hematopoietic α7nAchR deficiency

increases platelet activation and, in experimental studies, α7nAchR stimulation

can diminish the pro-inflammatory state and modulate platelet reactiveness

via increased levels of NO. NO has been described to inhibit platelet adhesion,

activation, and aggregation. In addition, acetylcholine has been demonstrated

to decrease platelet aggregation possibly by blocking the e p-38 pathway.

SARS-CoV-2 proteins have been found to be similar to neurotoxins which

can bind to nAChR and prevent the action of acetylcholine. Concluding, the

platelet role in COVID-19 thrombotic events could be explained by their active

function in the cholinergic anti-inflammatory pathway.
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Introduction

Since early 2020, severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2)-induced infection resulted in

global pandemics with high morbidity, especially in the

adult population (1, 2). Coronavirus disease 19 (COVID-19)

presented with a specific organ and system involvement, such

as severe acute respiratory syndrome (SARS) which was already

observed in other viral infections (3). In addition, this infection

demonstrated very specific SARS-CoV-2-unique pathological

phenotypes which raised a lot of concern and unanswered

questions with regard to evidence-based management options

(4, 5). Those clinical phenotypes do differ in patient clinical

data on admission, complications, comorbidities, and clinical

outcomes; thus, treatment might be tailored based on the

clinical course and previous risk (5). Moreover, it emerged

that COVID-19 is a highly prothrombotic condition associated

with subsequent multiorgan failure and lethal outcomes (6–

8). Multiorgan failure is still under investigation, yet different

mechanisms such as endothelial cell damage, immune response,

dysregulation of the renin-angiotensin-aldosterone system, and

thromboinflammation have been involved (9, 10). A new type

of COVID-19-associated multiorgan failure—a multisystem

inflammatory syndrome (MISC) was described in children (11,

12). It closely resembles Kawasaki disease, known for several

decades for its coronary complications (13). Up to 68% of

affected children are treated in the pediatric intensive care

unit (PICU) (14). Also, the increasing incidence of MISC

is reported in young adults (15, 16). In most cases, MISC

is characterized and investigated with the main focus on

hyperinflammation, meanwhile, coagulation and thrombosis

are less understood. Still, a study by Buonsenso et al. found

D-dimers (fibrin degradation products) as an independent

predictor of the outcomes of MISC (17). From the beginning of

the COVID-19 pandemics, various data revealed that 20–50%

of all COVID-19 hospitalized cases show abnormal coagulation

results (18). An increase in D-dimer concentrations has been

shown in a high percentage of severe COVID-19 cases. Elevated

D-dimer values are associated with more severe diseases

course and unfavorable outcomes of COVID-19 (8, 19–22).

Platelets are another important marker in COVID-19. The most

common finding in severe SARS-CoV-2-induced infection is

thrombocytopenia. A meta-analysis by Jiang et al. demonstrated

that lower platelet counts were detected in severe COVID-19

cases compared to milder ones (23). Thrombocytopenia has

been reported to be associated with an increased risk of severe

disease (24–26). Also, more studies analyse platelet activation

role in the prothrombotic phenotype of COVID-19 patients.

The exact mechanism of the prothrombotic state is not well

understood and might be multifactorial. Nevertheless, platelets

are attributed to play a crucial role in COVID-19-associated

thrombosis. In this review, we will summarize the platelet

role in COVID-19-associated thrombosis. Moreover, we will

provide more insight into the role of the platelet alpha7 nicotinic

acetylcholine receptor (α7nAChR) in the COVID-19-associated

inflammation leading to thrombotic events.

COVID-19 inflammation and
thrombotic events: Clinical picture

The global pandemic of COVID-19 caused by SARS-CoV-2

started in 2020 and continues nowadays with the new disease

entities. Initially, COVID-19 was thought to cause mainly

respiratory symptoms which for the most affected were mild,

subsequently, it had shown to be associated with a higher

number of different complications.

Thrombosis plays a crucial part in the pathogenesis of

COVID-19. In the beginning, SARS-CoV-2 infection induces a

tremendous inflammatory reaction leading to uncontrolled or

disrupted anti-inflammatory response (27). Interaction between

SARS-CoV-2 and host cells, and prolonged inflammation cause

endothelial damage and dysfunction with the result of excessive

prothrombotic factor production contributing to an increased

coagulation state. Moreover, COVID-19-induced hypoxia can

further stimulate thrombosis through blood viscosity and

hypoxia-inducible transcription factors (28). Nevertheless, DNA

and histones from neutrophil extracellular traps (NETs) can

additionally contribute to pro-thrombotic pathway activation

(9, 29).

Up to 4.7% of severe COVID-19 cases progress to critically

ill patients (30), and a significant number—approximately

79% result in severe thrombotic complications associated

with a high mortality rate (8, 31, 32). Despite prophylactic

anticoagulation treatment, almost one-third of the patients

experience thrombotic events as demonstrated by the study of

Lodigiani et al. (33). Moreover, a systematic review by Alahyari

et al. revealed that thromboembolic events, such as deep vein

thrombosis (DVT) or pulmonary embolism are most frequent

of all the COVID-19-associated hematologic complications

(34). Globally, a wide spectrum of incidence (10.9–58%) of

DVT in COVID-19 patients was reported by several studies

(33, 35, 36) with a higher percentage in critically ill patients

(37). When compared to non-COVID acute respiratory distress

syndrome (ARDS), COVID-19 ARDS demonstrated higher

rates of pulmonary embolism (2.1 vs. 11.7%, respectively) (38,

39). A post-mortem study by Wichmann et al. revealed an

important interplay between COVID-19 and venous thrombosis

events (37). Most importantly, the unique feature of COVID-19-

induced thrombosis is that it can be, both arterial and venous

(32). Arterial thrombotic complications are less common (40),

nevertheless, they can cause severe and devastating outcomes

even with prescribed prophylactic anticoagulation therapy

(41). A plethora of thrombotic complications are affecting

cardiovascular and cerebrovascular systems (9, 10), myocardial

infarction being themost prominent event (40, 42), and reaching

Frontiers inCardiovascularMedicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1037369
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Jankauskaite et al. 10.3389/fcvm.2022.1037369

21% in the most recent meta-analysis study (43). Few studies

suggested that ischemic stroke affects COVID-19 diseased

younger people (6, 44, 45). Furthermore, the latest study by

Xie et al. showed significantly higher cardiovascular outcomes

after COVID-19 exposure (46), and cardiac complications have

been linked to poor outcomes (43). Additionally, mesenteric

ischemia is being reported in 1–5% of the cases with

COVID-19 (38, 47). Besides macrovascular complications, more

evidence demonstrates COVID-19-associated microvascular

thrombotic events. Alveolar-capillary microthrombi have been

found in severe COVID-19-induced ARDS cases (48–50).

Nevertheless, more evidence shows that microangiopathy can

cause complications in COVID-19 asymptomatic patients or

patients withmild respiratory symptoms. An international study

in perinatology recently demonstrated that pregnant women

with mild COVID-19 symptoms resulted in placentitis leading

to widespread placental insufficiency with subsequent fetal

hypoxia and even lethal outcomes (51). In 37% of the examined

placenta samples, multiple intervillous thrombi formations were

identified and suggested as one of the contributing mechanisms

to severe placental malperfusion. Another hypothesis of the

possible presentation of SARS-CoV-2-induced microangiopathy

was reported in several studies of case series showing increased

incidence of “chilblains like” skin lesions during COVID-19

(52, 53). Moreover, this was supported by histological reports

of skin biopsies where microthrombi were detected (54–

56). The underlying hypothesis was SARS-CoV-2-associated

epithelial damage, and secondary ischemia leading to the

microangiopathic lesions (54). However, the clear confirmed

pathogenesis and association of these skin lesions to COVID-19,

especially in asymptomatic forms of the disease, is still under

debate (57, 58). In general, the cause of various thrombosis

in SARS-CoV-2 infection is closely related to coagulopathy,

inflammation, platelet hyperactivity, thrombocytopathy, and

endotheliopathy (9).

Role of the platelets in the immune
system, inflammation, and
COVID-19-associated thrombosis

For a long time, platelets have been known as cells playing

role in thrombosis and hemostasis. It is noteworthy that recently

they have been attributed a significant role as immunemediators

(59, 60). Platelets are a nucleate blood cells derived from

megakaryocytes that reside primarily within the bone marrow

(61). Additionally, studies have shown that the lung can be

a potential site for platelet biogenesis. In the lung, platelets

function as antiseptic cells when released in the vicinity of

potential pathogen entry (62).

Patients with acute COVID-19 tend to be in a prothrombotic

state and have severe inflammation (63). COVID-19 thrombosis

encompasses both arterial and venous thromboembolic events,

and they frequently co-occur with thrombocytopenia (32, 39).

Systemic inflammation often leads to sepsis and septic shock and

may present with increased platelet-leukocyte aggregates and

thrombocytopenia (64–66). Genes encoding transcription

factors involved in hematopoiesis and megakaryocyte

biogenesis, such as Runt-related transcription factor 1

(RUNX1), GATA-binding factor 1 (GATA1), and others, have

an impact on variations in platelet count (67–69). The liver

produces thrombopoietin (TPO), which activates the TPO

receptor in megakaryocytes to cause the creation of platelets

through a process that is triggered by thrombocytopenia (70). In

the final stage of platelet production, some of the transcription

factors play a negative feedback role on TPO (71). Numerous

cytokines can initiate megakaryopoiesis (e.g., interleukins 3, 6,

and 11 (IL-3, IL-6, IL-11), fibroblast growth factor 4 (FGF4),

and others) (72). Viruses can activate the host’s cytokine profile

to alter platelet formation through hepatic TPO synthesis.

The simian immunodeficiency virus (SIV), which increases

tumor growth factor (TGF), causes the synthesis of TPO (73);

human papilloma virus-6 (HPV6) may prevent the development

of TPO-induced megakaryocytic colonies (74). Meanwhile,

SARS-CoV-2 via its spike protein may trigger the production

of antibodies that cross-react with human TPO, to induce

thrombocytopenia (75). Conversely, SAR2-CoV-2 stimulates

angiotensin-converting enzyme (ACE) expression, which leads

to induced inflammation via angiotensin II (Ang II) resulting

in IL-6 stimulated TPO augmentation (76). In inflammation,

IL-6 raises the levels of TPO to promote the creation of platelets

(77), therefore, it can be considered that an inflammatory

environment is required for COVID-19-induced thrombosis.

Currently, more studies demonstrate direct viral-platelet

interaction in platelet thrombotic and inflammatory function

modulation (78, 79). Platelets do express pattern recognition

receptors (PRRs), such as Toll-like receptors (TLR), Nod-like

receptors, or C-type lectin receptors (80). Those receptors are

crucial in damage-associated molecular patterns (DAMPs) and

exogenous pathogen-associated molecular patterns (PAMPs)

recognition. DAMPs and PAMPs are referred to as virus-

associated molecular patterns (80–83). The attachment to

DAMPs and PAMPs can initiate different intracellular pathways

resulting in various pro-inflammatory cytokine production

(84–87). In addition, platelet expression of functional TLR2

can further contribute to thrombotic pathway activation (84)

(Figure 1). In the case of flu, the influenza virus has been proven

to activate platelets via TLR-7 and Fcγ receptor IIa (FcγRIIa).

The platelet expression of FcγRIIa leads to the activation of

immune complexes (88). Antibodies against self-antigens,

such as antiphospholipidic antibodies, have been reported

in COVID-19 patients (89). However, thrombus formation

was seen in COVID-19 patients’ serum that had low levels

of antiphospholipidic antibodies (90). Nevertheless, aberrant

glycosylation of anti-SARS-CoV-2 spike immunoglobulin

G(IgG) complexes was found to be a significant factor in the
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FIGURE 1

Platelet activation and α7nAChR involvement in thrombosis regulation. DAMPs, danger associated molecular patterns; PAMPs, pathogen

associated molecular patterns; TLR, toll-like receptor; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; ACh,

acetylcholine; NETosis, neutrophil extracellular trap formation; NO, nitric oxide; ACE2, angiotensin-converting enzyme-2; ANG II, angiotensin II;

ATR, ANG II receptor; ATP, adenosine triphosphate; ROS, reactive oxygen species; α7nAChR, alpha7 nicotinic acetylcholine receptor.

ability of these complexes to increase thrombus formation

(91). Activation of TLR-7 evokes platelet degranulation,

platelet-leucocyte aggregation, and NETosis stimulation

leading to thrombus formation (79, 92) (Figure 1). Plasma

from hospitalized COVID-19 patients demonstrated increased

circulating platelet-neutrophil aggregates (93). Additionally,

the autopsy of COVID-19 patients showed that microvascular

thrombi composed of platelets and neutrophil extracellular

traps were present (94). Also, recent studies show that platelets

can internalize virus particles, and after viral ssRNA, dsRNA,

or CpG DNA attachment to TLRs downstream signaling is

initiated leading to platelet activation, platelet granule release,

and P-selectin exposure (95, 96). P-selectin is a platelet receptor

that has been linked to platelet activation. Platelets can bind

to leukocytes via the P-selectin glycoprotein ligand-1 to

mediate neutrophil rolling and intracellular leukocyte signaling

(97, 98). Their depletion or blocking of the P-selectin-mediated

interaction with neutrophils may reduce lung injury in

COVID-19 (99). P-selectin, soluble CD40 ligand and others are

released under platelet stimulation (100, 101). Their increased

levels are observed in COVID-19 patients and P-selectin

stimulates monocyte tissue factor (TF) expression contributing

to a prothrombotic phenotype (102, 103).

Systemic levels of pro-inflammatory cytokines, such

as TNFα, IL-1, and IL-6, are markedly elevated in severe

COVID-19 (104). Moreover, the expression of pro-

inflammatory cytokines, including TNFα, and IL-6 is dependent

on Ang II (105, 106) (Figure 1), which amount is increased

in SARS-CoV-2 infection (107). Angiotensin II (Ang II)

contributes to endothelial dysfunction and the development of

microvascular thrombosis (108), it stimulates TF expression,

which is the physiological initiator of blood coagulation (109).

Frontiers inCardiovascularMedicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1037369
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Jankauskaite et al. 10.3389/fcvm.2022.1037369

Also, Ang II triggers platelet-derived growth factors (PDGF)

production (110) and increases platelet aggregation (111). In

addition, P-selectin expression levels are enhanced by activated

platelets and by endothelial cells during Ang II stimulation

(112). The relationship between Ang II and α7nAchR has

been determined when activation of α7nAChR alleviated

Ang II-mediated vascular smooth muscle senescence (113).

Furthermore, it was suggested that decreased expression of

α7nAchR might contribute to TNFα-induced vascular tissue

inflammation, which was previously described as related to

Ang II-mediated microvascular thrombosis (114). α7nAchR

and the cholinergic system have been already studied regarding

their beneficial role in COVID-19-induced hyperinflammation

and disease outcomes (115, 116). Moreover, it has been shown

that vagal stimulation via α7nAchR improves COVID-19-

induced lung infection and inflammation, as well as systemic

hyperinflammation (117–119). Additionally, patients lacking

α7nAchR levels presented with higher C-reactive protein

(CRP) values, more pronounced lymphopenia, extended

pulmonary lesions, and increased expression of the TNFα

pathway (115). Despite that α7nAchR role in platelets is still

not widely studied and not well summarized, thus, we will

analyse currently present data and platelet α7nAchR role in

COVID-19-induced thrombosis.

The cholinergic system, α7nAChR,
and platelet role in COVID-19-
induced hyperthrombosis

More and more data suggest that the autonomous nervous

system plays a crucial role in inflammation via a cholinergic

anti-inflammatory pathway (CAP). CAP is mainly composed

of the parasympathetic nerves with the vagal nerve being

most important together with acetylcholine (ACh) and its

receptors (120). This pathway bridges the autonomic nervous

system and immune system. Recently, the alleviating effect

of COVID-19-induced hyperinflammation has been widely

described in several studies (115, 117, 121–123). Under

direct activation of the afferent vagal nerve, the main

neurotransmitter ACh is released which further stimulates

α7nAChR (124, 125) resulting in an anti-inflammatory response.

Non-neuronal ACh was demonstrated to have an anti-

inflammatory potential as well. α7nAChR is widely present

on different immune cells and a variety of other cells,

such as neuronal, endothelial cells, and platelets (126–128).

Increased levels of TNFα, IL-6, and CRP have been detected

in α7nAChR knockout mice (124, 129). Moreover, endothelial

cell activation as well as leucocyte recruitment can be

inhibited via α7nAChR stimulation (126). In addition, platelet

function can be modulated during the inflammation process

(128, 130).

Several studies have shown that platelets do contain some

components of a non-neuronal cholinergic system, e.g., ACh,

choline acetyltransferase, and acetylcholinestares (131–133).

It is known that acetylcholinestares (AChE), for instance,

hydrolyses the neurotransmitter ACh in the nervous system.

Under AChE excess, an inflammatory process can be promoted

(134). Three C-terminal variants of AChE have been identified

(135). One of them—is a read-through transcript which is

formed through the continuous transcription through intron

I-4. This variant has been demonstrated to play an active

role in the hematopoietic system and could be linked with its

regulation under specific conditions, such as development or

stress (132). Moreover, few studies found RNA signals of nAChR

subunits, as well as α7 subunit in platelets (136, 137). Schedel

et al. described functional α7nAChR Ca2+ channels in human

platelets and in the megakaryocytic lineage and proposed an

autocrine regulation mechanism via released stored ACh (128).

Platelets are known to store various molecules in their granules.

Those different cargo molecules are released under stimulation

and contribute to coagulation, inflammation, or facilitating

adhesion to other cells (138, 139). Nevertheless, ACh could

be presented via other cells, such as endothelial cells, which

are in close contact with platelets (131). A study by Bennett

et al. indicated that endogenous ACh produced by platelets does

inhibit platelet activation (140). It was demonstrated that via

elevated nitric oxide (NO), ACh inhibits platelet degranulation,

inhibits P-selectin externalization, and glycoprotein IIb IIIa

(GPIIbIIIa) activation (141, 142) (Figure 1). Moreover, platelets

express nitric oxide synthase 3 (NOS3) which may regulate

platelets by an endogenous NO pathway (143). Few studies

have shown that inhaled NO downregulates P-selectin, platelet

aggregation, and fibrinogen binding in severe ARDS (144,

145). Kooijman et al. confirmed that mice lacking α7nAChR

showed increased platelet aggregation ex vivo (130). Still, the

hypothesis by authors has been raised that only a lack of

both, platelet and endothelial α7nAChR could be associated

with a significant impact on inflammation. Afterall, the role

of endothelial cells in a cholinergic anti-inflammatory pathway

is not well studied. Platelet and endothelial cell interaction

is clearly described and shown to be important in various

inflammatory conditions. Endothelial cell disruption during

COVID-19 and released cytokines can be a possible mechanism

of thrombosis (146). In addition, it has been demonstrated

that platelets do play a crucial role in hypercoagulation

during COVID-19 (147). Additionally, few studies revealed

that monomeric C-reactive protein (mCRP) is linked with

platelet activation which is mediated via p38 mitogen-activated

protein kinase (MAPK) and Jun N-terminal kinase (JNK) (148).

Interestingly, ACh has been shown to block mCRP binding

and related pro-inflammatory action (149). MAPK is highly

important in platelet activation, aggregation, and thrombus

formation (150, 151). Moreover, the involvement and activation
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of p38 MAPK has already been widely described in SARS-CoV-

2 (152). In addition, p38 MAPK can facilitate viral entry via

ACE2 (153).

Interestingly, α7nAChR can be activated via choline as well

(154). Choline is a precursor of ACh and phosphocholine (PC).

It can efficiently act and is a relatively selective α7nAChR agonist

(155). In COVID-19 patients, choline has been found to be

downregulated, particularly in severe cases (156). Meanwhile,

the intermediate product phosphatidylcholine has been detected

to be upregulated. The possible underlying mechanism could be

macrophage polarization associated with pathogen presentation

(157). This further results in various cytokine secretion as a

response to a COVID-19 infection. Another study showed that

higher choline levels in pregnant women were associated with

protective action against COVID-19 in fetal brain development

(158). A recent study identified choline’s role in platelet

activation and thrombosis. The genetic loci including Slc44a2

have been already studied in thrombosis (159). Slc44a2 was

demonstrated to mediate choline transport into mitochondria

which results in mitochondrial oxygen consumption and ATP

production (159). Mitochondrial dysfunction induces ATP

decrease which results in decreased ATP release from platelets.

Moreover, decreased ADP causes lower activation of platelets.

Slc44a2 was already associated with venous thromboembolism

(160, 161). In addition, Slc44a2 is well defined as a human

neutrophil antigen (162). Moreover, it was proven to directly

interact with platelet integrin αIIbβ3 and trigger NETosis leading

to thrombosis (163, 164) (Figure 1). PC is nAChR agonist as

well (165). Studies showed its inhibitory potential for IL-1beta

release from monocytes in α7nAChR dependent manner (166).

Furthermore, PC epitopes are exposed on various pathogens and

their interaction with host proteins, such as platelet-activating

factor receptors (167, 168) leads to pathogen adhesion to the

surface of the host cell and cell invasion (169, 170). Nevertheless,

less is known regarding PC function and excretion from platelets

and involvement in SARS-CoV-2 or other viral pathogen-

induced inflammation and/or thrombosis. To date, only one

study defined that platelets could release choline metabolites

under stimulation (171).

Conclusion

Concluding, the prothrombotic state of COVID-19 is

multifactorial, nevertheless, platelets do play an important role

in inducing COVID-19 hypercoagulation and thrombosis. Due

to their different secretory factors which induce coagulation

and inflammation, they participate in thrombosis induction

via different pathways. One of the possible and less studied

is the cholinergic system and platelet α7nAChR which has

been less studied but could be a very significant part

in SARS-CoV-2-induced infection. As previously shown,

nervus vagus stimulation can benefit COVID-19-associated

hyperinflammation, thus, via platelet α7nAChR it might

decrease coagulation and thrombotic process together with

decreased inflammatory factors (which additionally activate

platelets) and benefit COVID-19 patients. Different studies show

that platelets can produce choline products under stimulation,

thus, α7nAChR could be stimulated leading to its beneficial anti-

inflammatory and possible anti-thrombotic effect. However,

more studies are necessary to confirm this hypothesis.
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