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Von Willebrand factor (VWF) is a large multimeric glycoprotein involved

in hemostasis. It is essential for platelet adhesion to the subendothelium

of the damaged endothelial layer at high shear rates. Such shear rates

occur in small-diameter arteries, especially at stenotic sites. Moreover,

VWF carries coagulation factor VIII and protects it from proteolysis in the

bloodstream. Deficiency or dysfunction of VWF predisposes to bleeding. In

contrast, an increase in the concentration of high molecular weight multimers

(HMWM) of VWF is closely associated with arterial thrombotic events. Severe

aortic stenosis (AS) or hypertrophic obstructive cardiomyopathy (HOCM)

can deplete HMWM of VWF and lead to cryptogenic, gastrointestinal,

subcutaneous, and mucosal bleeding. Considering that VWF facilitates

primary hemostasis and a local inflammatory response at high shear rates, its

dysfunction may contribute to the development of coronary artery disease

(CAD) and its complications. However, current diagnostic methods do not

allow for an in-depth analysis of this contribution. The development of novel

diagnostic techniques, primarily microfluidic, is underway. Such methods

can provide physiologically relevant assessments of VWF function at high

shear rates; however, they have not been introduced into clinical practice.

The development and use of agents targeting VWF interaction with the

vessel wall and/or platelets may be reasonable in prevention of CAD and its

complications, given the prominent role of VWF in arterial thrombosis.
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Introduction

Von Willebrand factor (VWF) owes its name to a Finnish
physician Erik von Willebrand, who described an inherited
bleeding disorder in 1924, which was later called Von
Willebrand disease (VWD). In the 1950s it became clear that
the disease was due to a deficiency of some blood protein. This
protein was first purified in the early 1970s and its complete
sequence was described in 1986 (1). Later research showed that
VWF function is shear-rate dependent and is crucial for primary
hemostasis in arteries (2, 3). Recent years have seen a surge
in studies of VWF role in a number of pathologies other than
VWD, as well as introduction of anti-VWF agents.

VWF is a large multimeric glycoprotein that is involved
in hemostasis (4). It is essential for platelet adhesion to the
subendothelium of the damaged endothelial layer at high shear
rates occurring in small-diameter arteries, especially at stenotic
sites. Moreover, VWF carries coagulation factor VIII and
protects it from proteolysis in the bloodstream. Unprotected by
VWF, coagulation factor VIII is unstable and degrades rapidly.

The structure and functions of the
von Willebrand factor

VWF is a large, complex multimeric protein composed of a
varying number of dimers that polymerize into high-molecular-
weight multimers (HMWM). The more dimers a VWF molecule
contains, the more potent it is in causing hemostasis. Smaller
multimers mainly function as carriers of coagulation factor VIII,
whereas HMWM are involved in cell adhesion (5, 6). Monomers
that form dimers consist of functionally different parts, or
domains, of VWF (Figures 1, 2). Each domain contains binding
sites for specific cells and molecules. Thus, the A1 domain
contains a binding site for the glycoprotein complex Ib/IX/V
(GP Ib) of platelets, the only receptor on non-activated platelets
with a high affinity for VWF. Additionally, the A1 domain
contains binding sites for collagen types I, IV, VI, and heparin.
The A2 domain contains binding sites for the ADAMTS-13
(a disintegrin and metalloproteinase with a thrombospondin
type 1 motif 13) metalloprotease and VWF molecules. The A3

Abbreviations: ACS, acute coronary syndrome; ADAMTS-13, a disintegrin
and metalloproteinase with a thrombospondin type 1 motif 13; AS,
aortic stenosis; CAD, coronary artery disease; CI, confidence interval;
DM, diabetes mellitus; DNA, deoxyribonucleic acid; ELISA, enzyme-
linked immunosorbent assay; GP, glycoprotein; HMWM, high molecular
weight multimers; HOCM, hypertrophic obstructive cardiomyopathy;
LVAD, left ventricular assist device; LVOT, left ventricular outflow tract;
MACE, major adverse cardiovascular events; MI, myocardial infarction;
PCI, percutaneous coronary intervention; STEMI, ST-segment elevation
myocardial infarction; TTP, thrombotic thrombocytopenic purpura;
VWD, von Willebrand disease; VWF, von Willebrand factor; VWF:Ag, von
Willebrand factor antigen assay; VWF:CB, von Willebrand factor collagen
binding assay; VWF:RCo, ristocetin cofactor activity assay.

domain contains binding sites for collagen types I and III. The
C4 domain contains a binding site for the platelet integrin
αIIbβ3 (GPIIb/IIIa). C domains facilitate VWF flexibility. The
D′D3 domain contains a binding site for coagulation factor
VIII. The C-terminal cysteine knot (CTCK) is involved in
the dimerization of VWF. All D domains are involved in the
formation of disulfide bonds between dimers (7).

VWF is mainly produced in the endothelial cells and
is densely packed in endothelial Weibel–Palade bodies with
P-selectin. Some VWF is produced by megakaryocytes. When
mature platelets detach from megakaryocytes, VWF remains
inside α-granules (8, 9). VWF is constantly released into
the bloodstream from Weibel-Palade bodies of non-activated
endothelial cells (basal secretion). Activation of the endothelium
upregulates VWF secretion. Further, up to 20% of VWF may
be secreted from α-granules upon platelet activation (10, 11).
However, the role of platelet VWF in hemostasis has not been
fully established, and studies are limited.

VWF exists in two forms in the bloodstream: inactive
globular and active unfolded (Figure 3), which are determined
by the shear rate of the flowing blood. Blood is a heterogeneous
liquid, and as it flows through the vessels, it encounters an
internal friction force, causing different layers to move at
different velocities. The velocity of the flow at the center of the
vessel is higher than that at its walls. The magnitude of the
difference in the velocities of adjacent layers is quantitatively
expressed as the shear rate, measured in reciprocal seconds
(s−1). At low shear rates, which occur in the veins or large
arteries, VWF remains in the globular form. This form conceals
VWF domains and prevents interaction with the circulating
platelets. At high shear rates, which occur in the small arteries
and arterioles, especially at stenotic sites, VWF unfolds and
exposes the domains with binding sites (9, 12).

Unfolded VWF strains can self-associate through the A2
domain and form complex mesh structures that significantly
increase the number of platelet binding sites. The ability of the
unfolded VWF to self-associate at high shear rates was studied
in vitro by Zheng et al. (13). Schneider et al. reported the
formation of mesh structures from VWF strains that unfolded
at high shear rates (2).

Upon unfolding, VWF presents binding sites for ADAMTS-
13 on A2 domains. This interaction results in the proteolytic
cleavage of HMWM of VWF, reducing its hemostatic activity
(14). ADAMTS-13 is synthesized exclusively in stellate cells of
the liver, and its plasma level is negatively associated with that
of VWF (15).

VWF carries coagulation factor VIII in the bloodstream.
This factor is involved in the intrinsic coagulation pathway,
interacting with factor IXa as a cofactor to form intrinsic tenase,
an enzyme complex that converts inactive coagulation factor
X into active Xa. Without VWF, coagulation factor VIII is
susceptible to rapid degradation. A globular conformation of
VWF protects against proteolysis and prolongs the half-life of
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FIGURE 1

A schematic representation of the domains and binding sites of the Von Willebrand factor (VWF) monomer. The A1 domain contains a binding
site for the glycoprotein complex Ib/IX/V (GP Ib) of platelets; collagen types I, IV, VI; and heparin. The A2 domain contains binding sites for the
ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif 13) metalloprotease and VWF molecules. The A3 domain
contains binding sites for collagen types I and III. The C4 domain contains a binding site for the platelet integrin αIIbβ3 (GPIIb/IIIa). C domains
facilitate VWF flexibility. The D’D3 domain contains a binding site for coagulation factor VIII. The C-terminal cysteine knot (CTCK) is involved in
the dimerization of VWF. All D domains are involved in the formation of disulfide bonds between VWF dimers.

coagulation factor VIII, ultimately delivering it to the sites of
vascular damage (16).

Diseases associated with von
Willebrand factor and ADAMTS-13
deficiency or dysfunction

VWF deficiency or dysfunction predisposes to bleeding.
VWD is a congenital disorder caused by quantitative deficiency
and/or qualitative changes in the structure of VWF. VWD
is one of the most common hemostatic disorders, with the
prevalence of severe cases being 1:10,000 in the general
population (17). VWD presents with symptoms similar to those
observed in hemophilia such as nasal and gingival bleeding,
subcutaneous and muscle hematomas, prolonged skin bleeding,
and metrorrhagia. Acquired von Willebrand syndrome is
a rare disease associated with acquired quantitative and/or
qualitative VWF deficiency in lymphoproliferative (chronic
lymphocytic leukemia), myeloproliferative (thrombocythemia),
cardiovascular (AS and HOCM), and immunological
(hypothyroidism) diseases (18).

The increase in the level of HMWM of VWF due to
ADAMTS-13 deficiency causes thrombotic thrombocytopenic
purpura (TTP), characterized by microvascular thrombosis
and platelet pool depletion (19). Quantitative deficiency of
ADAMTS-13 in TTP can develop due to a congenital defect
or production of autoantibodies that enhance ADAMTS-
13 clearance. Functional deficiency can also develop due
to autoantibodies that inhibit ADAMTS-13 activity without

affecting its plasma level (20). Thrombosis in TTP may manifest
as acute kidney injury, neurological and mental disorders, fever,
hemolytic anemia, and thrombocytopenia with purpura.

Diagnostic testing of deficiency
and dysfunction of von Willebrand
factor

The diagnosis of VWD requires various tests (21). The
VWF plasma level, also known as the von Willebrand factor
antigen (VWF:Ag), is measured using an enzyme-linked
immunosorbent assay (ELISA), which involves a highly specific
antigen-antibody reaction. VWF:Ag measures the concentration
of plasma VWF molecules, ranging from dimers to HMWM.
Normal values of VWF:Ag range from 50 to 150 IU/dL, but
levels can vary over a wide range in the same individual on
separate occasions (22). Proteolytic cleavage of HMWM of
VWF into smaller multimers impairs its hemostatic function
without affecting VWF:Ag values. Therefore, VWF:Ag reflects
the total amount of this protein in the blood rather than its
functional state.

VWF level in the blood depends on blood group (23). This
complicates the distinction between healthy individuals with
low VWF levels and those with mild VWD (24). Individuals
with blood group O have lower VWF:Ag levels than that of those
with other blood groups (25, 26). In a study involving 1,117
blood donors, Gill et al. showed that the mean VWF:Ag level
in the donors with blood group O was 74.8 IU/dL. The mean
VWF:Ag level in donors with blood groups A (105.9 IU/dL) and
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FIGURE 2

A schematic representation of the multimeric structure of Von Willebrand factor (VWF). In the bloodstream, VWF is present in a range of
multimers, from dimers (around 500 kDa) to high-molecular weight multimers (10,000 kDa and more). The larger the VWF multimer is, the
more hemostatically active it is. VWF monomers are dimerized in the C-terminal cysteine knot (CTCK) through disulfide bonds. Other disulfide
bonds bind VWF dimers in D domains to form multimers.

B (116.9 IU/dL) was higher. The highest VWF:Ag level was seen
in donors with blood group AB (123.3 IU/dL) (27). The half-life
of VWF may differ depending on the blood group (11).

Ristocetin cofactor activity assay (VWF:RCo) is the gold
standard for assessing VWF activity. In this assay, the antibiotic
ristocetin causes the A1 domains of VWF to bind platelet
GPIb receptors, inducing platelet agglutination. In VWF:RCo,
standardized formalin-fixed or lyophilized platelets are added
to a sample of platelet-poor plasma containing VWF and
ristocetin. This leads to VWF-dependent platelet agglutination,
which is measured using an aggregometer. VWF:RCo induces
VWF activation by a non-physiological chemical agent. This test
is used to diagnose VWD. It is especially sensitive in severe cases,
such as VWD type 3, in which VWF is almost or completely
absent from the blood. Studies revealed that normal values of
VWF:RCo were blood group-dependent. In a study on 167
healthy donors, Moeller et al. showed that VWF:RCo values
were 67.7 ± 19, 81.2 ± 27.7, 95.5 ± 24.5, and 102.3 ± 19.1%
in blood groups O, A, B, and AB, respectively (28). In a study on
200 healthy children, Akin et al. demonstrated that VWF:RCo
values were 89 ± 23 and 103 ± 17% in blood groups O and
non-O, respectively (29).

Structural analysis of VWF multimers using agarose gel
electrophoresis remains the gold standard for assessing HMWM
deficiency (6, 30). This assessment is critical to the identification
of VWD type 2 subtypes. It can also be applied to the
diagnosis of HMWM deficiency due to acquired von Willebrand
syndrome in patients with severe valvular disease. Additionally,

VWF collagen binding assay (VWF:CB) can be used to assess
HMWM deficiency (24).

The platelet function analyzer-100 (PFA-100), a device
that assesses primary hemostasis, has often been used in
VWD screening (31). The analysis is performed in a chamber
consisting of a narrow tube and membrane with a 150 µm
aperture. A whole blood sample is drawn via the tube and
through the aperture into the membrane, and coated with
collagen and platelet activators, such as adenosine diphosphate
(ADP) and epinephrine, or ADP and prostaglandin E1. The
shear rate in the aperture can reach 6,000 s−1, which is sufficient
to unfold and activate VWF. A PFA-100 test measures the time
to occlusion of the aperture by thrombus formation (closure
time). This complex process involves numerous interactions
that lead to platelet adhesion and aggregation. Therefore, PFA-
100 does not allow isolation of the contribution of shear
rate-dependent VWF activation to thrombus formation (31).
Currently, PFA-100 is often employed in research.

Von Willebrand factor and
cardiovascular disease

Aortic stenosis

Aortic stenosis (AS) is a valvular heart disease eventually
resulting in the left ventricular outflow tract (LVOT)
obstruction. The most common cause of AS is chronic
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FIGURE 3

Shear-rate dependent activation of Von Willebrand factor (VWF) at the site of atherosclerotic stenosis. High shear rates occurring in the
bloodstream at sites of significant atherosclerotic narrowing of the arterial lumen trigger unfolding of VWF multimers. Unfolded VWF presents a
range of binding sites for proteins of subendothelial matrix, platelets and leukocytes. It is also subjected to proteolysis by ADAMTS-13 that
cleaves unfolded VWF multimers at the A2 domains and reduces their hemostatic activity.

inflammatory degeneration and calcification of aortic valve
leaflets. Severe AS may result in a number of life-threatening
conditions, including heart failure, myocardial ischemia,
arrhythmias, and cardiac arrest. The treatment of severe AS,
especially after the onset of symptoms, usually involves aortic
valve replacement (32).

Cryptogenic gastrointestinal bleeding in patients with
AS was first described by Heyde in 1958 (33). In 1992,
Warkentin et al. suggested that bleeding from gastrointestinal
angiodysplasia was caused by the loss of HMWM of VWF
due to AS or hypertrophic cardiomyopathy (HCM) (34).
In 2002, Warkentin et al. reported two cases of severe AS
with gastrointestinal bleeding that resolved after aortic
valve replacement (35). Platelet count, activated partial
thromboplastin time, coagulation factor VIII, VWF:Ag level,
and VWF:RCo values were normal preoperatively. However, a
pronounced reduction in HMWM of VWF was present, which
recovered after aortic valve replacement and remained normal
during the 10-year follow-up period (35). The level of HMWM
of VWF can decrease by 50% in severe AS (36). Moreover, low
pulse pressure in AS contributes to a decrease in the endothelial
basal secretion of VWF (37, 38).

The primary reason for the loss of HMWM of VWF
is that AS increases the shear rate at the aortic valve
orifice. As the entire volume of circulating blood passes
through the stenotic orifice, all HMWM of VWF are

subjected to unfolding and proteolysis by ADAMTS-13. This
eventually results in a quantitative deficiency of HMWM
of VWF (acquired von Willebrand syndrome type 2A),
which manifests as bleeding (39). The combination of AS,
acquired von Willebrand syndrome type 2A, and bleeding from
gastrointestinal angiodysplasia is known as Heyde syndrome.
Additionally, patients with severe AS report subcutaneous and
mucosal bleeding. The severity of bleeding increases with AS
progression (39). The HMWM of VWF recovers within several
hours following surgical valve replacement, which normalizes
the shear rate in the valve orifice and pulse pressure (38, 40).
The loss of HMWM of VWF does not occur in severe coronary
or peripheral artery stenosis, because only a small portion of the
blood is subjected to high shear rates.

The loss of HMWM of VWF in severe AS and recovery after
aortic valve replacement has been demonstrated in a number
of studies. Panzer et al. studied 47 patients with severe AS
who underwent aortic valve replacement (41). Initially, the level
of HMWM of VWF decreased in all patients. It recovered
after aortic valve replacement in most patients. The PFA-100
closure time was prolonged preoperatively and normalized
thereafter. The authors showed that the loss of HMWM of VWF
affected platelet adhesion and ADP-induced platelet aggregation
(41). Vincentelli et al. reported subcutaneous and mucosal
hemorrhages in 21% of patients with severe AS (42). The
VWF:Ag level was within normal range in all patients. The
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PFA-100 test demonstrated prolonged closure time. The levels
of HMWM of VWF and VWF:CB were reduced. The closure
time and level of HMWM of VWF normalized 1 day after valve
replacement (42). Patients with severe AS who underwent aortic
valve replacement presented the same pattern in a study by
Frank et al. (36). The PFA-100 closure time was prolonged, and
the level of HMWM of VWF was reduced preoperatively. Both
parameters normalized following successful valve replacement.
The 18-month follow-up showed that the level of HMWM of
VWF did not decrease again after aortic valve replacement.
This observation was supported by several other studies with a
follow-up period of 2 weeks–6 months (36). However, HMWM
of VWF may not be replenished if severe aortic regurgitation
occurs after aortic valve replacement (42). Despite bleeding,
VWF:Ag and VWF:RCo values were within the normal range in
patients with Heyde syndrome (36). Acquired von Willebrand
and Heyde syndromes were reported in patients with aortic and
mitral regurgitation (38, 43–45).

Hypertrophic obstructive
cardiomyopathy

Hypertrophic obstructive cardiomyopathy (HOCM) is
a genetic disorder, most frequently transmitted through
an autosomal dominant pattern. It results in asymmetric
myocardial hypertrophy of the left ventricle that may lead to
LVOT. HOCM is a significant cause of sudden cardiac death,
arrhythmias and heart failure in young people. In severe cases,
septal reduction therapy either with surgical septal myectomy or
alcohol ablation can be used to reduce LVOT (46).

LVOT obstruction exposes HMWM of VWF to proteolysis
by ADAMTS-13, similarly to AS. Blackshear et al. studied
five patients with symptomatic HOCM (47). Spontaneous
gastrointestinal, mucosal, or excessive postoperative bleeding
was observed in all patients. VWF: Ag and VWF: RCo values
were within normal range, whereas electrophoresis showed
the loss of HMWM and an excess of low-molecular weight
multimers of VWF. Bleeding ceased, and HMWM of VWF
recovered following septal myectomy in all patients (47). In
another study of 28 patients with HOCM, the VWF:Ag level
was normal in all patients (48). The PFA-100 closure time was
prolonged in all but one patient. Loss of HMWM of VWF was
detected in all patients. A strong positive correlation was found
between the peak pressure gradient in the LVOT and percentage
loss of HMWM of VWF, relative to all VWF multimers. The
peak pressure gradient 15 mmHg in the LVOT at rest was
sufficient to reduce the HMWM of VWF (48).

Left ventricular assist devices

Left ventricular assist devices (LVAD) are pumping systems
used in patients with the end-stage heart failure refractory to

medical therapy as a bridge-to-transplant or an alternative to
heart transplantation option (49). Gastrointestinal bleeding is
among the most common complications associated with LVAD
use. Pump construction may cause the loss of HMWM of VWF
due to increased shear rates in the LVAD-driven circulation.
LVAD explantation is associated with the recovery of HMWM
of VWF, within a few hours (50).

Coronary artery disease

Coronary artery disease (CAD) is a chronic condition
characterized by atherosclerotic plaque accumulation in the
epicardial arteries. Retention of atherogenic lipoproteins in
arterial intima and low-grade vascular inflammation are
recognized as the main drivers of atherosclerosis development
(51). Oxidation of low-density lipoproteins may link lipoprotein
retention and proinflammatory macrophage activation in the
vessel wall (52). Recently, the role of mitochondrial DNA
mutations was suggested in induction of sterile vascular
inflammation (53). Atherosclerotic plaques in epicardial arteries
can eventually rupture or erode, resulting in acute coronary
syndrome (ACS) in a form of myocardial infarction (MI)
or unstable angina. Plaques can also gradually progress to
significant narrowing of arterial lumen, causing angina pectoris,
heart failure, or remain asymptomatic. CAD usually follows a
pattern of long stable periods intermitted by unstable episodes
due to atherothrombotic events (54).

Impairment of the hemostatic role of VWF may contribute
to the development of CAD and its complications. In addition,
VWF may contribute to inflammation in atherosclerosis. VWF
facilitates leukocyte recruitment and extravasation at high shear
rates (55). VWF may modulate the inflammatory response at the
sites of atherosclerotic lesions through this function.

CAD is less prevalent in patients with VWD than in healthy
individuals. The prevalence of atherosclerotic cardiovascular
disease (CAD, MI, brain ischemia, and peripheral artery disease)
was assessed in 7,556 patients with VWD and 19,918,970
patients without VWD (56). The prevalence of CAD was 15.0%
in patients with VWD vs. 26.0% in patients without VWD. The
risk factor-adjusted odds ratio was 0.86 [95% confidence interval
(CI), 0.80–0.94] for CAD and 0.69 (95% CI, 0.61–0.79) for MI in
patients with VWD (56).

In a study by Xu et al., the VWF:Ag level, which differed
between patients with CAD and healthy individuals, was
141.78 ± 20.53 IU/dL in patients with CAD vs. 111.95 ± 17.15
IU/dL in healthy controls (57). Kaikita et al. reported that the
VWF:Ag level was 2,151 ± 97 mU/mL in patients hospitalized
within 72 h from the onset of MI, 1,445± 93 mU/mL in patients
with exertional angina and 90% narrowing of a major coronary
artery, and 1,425 ± 76 mU/mL in patients with chest pain
without stenotic coronary atherosclerosis on diagnostic cardiac
catheterization (58). In contrast, the ADAMTS-13 level was the
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lowest in patients experiencing acute MI (799 ± 29 mU/mL),
and higher in patients experiencing exertional angina (996± 31
mU/mL) and in those without significant coronary artery
stenosis (967± 31 mU/mL) (58). In another study, the VWF:Ag
level was almost 1.5-fold higher in 1,026 patients with ST-
segment elevation myocardial infarction (STEMI) than in 652
control patients (378.2 ng/mL vs. 264.4 ng/mL, respectively),
whereas ADAMTS-13 activity was lower in patients with STEMI
than in the controls (90 and 97%, respectively) (59). No
association was observed between VWF:Ag and ADAMTS-
13 levels in the SMILE study, which included 560 men who
experienced a MI at least 6 months prior and 646 healthy
men. ADAMTS-13 (101 and 100%, respectively) and VWF:Ag
(138 and 135%, respectively) levels did not differ between the
groups (60).

The time to recovery of the VWF:Ag level after STEMI was
studied in 57 male rats in which the anterior descending artery
was permanently ligated approximately 2 mm from its origin
(61). The rats were divided into four groups. Blood was initially
collected from the coronary sinus and inferior vena cava in all
groups, 1 h after the onset of MI in the first group, 24 h after
the onset of MI in the second group, 7 days after the onset of
MI in the third group. The fourth group was the control sham-
operated group. Compared with the initial values, the VWF:Ag
level in the blood from the coronary sinus increased 1.31-fold
1 h after MI and 0.88-fold 24 h later. The VWF:Ag level in the
blood from the inferior vena cava increased 0.37-fold 1 h after
MI and 0.18-fold 24 h later. The VWF:Ag level normalized 7
days after MI (61).

The association between the VWF:Ag level and CAD risk
was studied in an initially CAD-free population (62). In a
prospective study, 1,411 men without CAD were divided into
tertiles depending on the VWF:Ag level, and followed up for
16 years. After adjusting for cardiovascular risk factors, the odds
ratio was 1.53 (95% CI, 1.10–2.12) for CAD in the upper tertile
when compared with the lower tertile (62). Another prospective
study followed up approximately 10,000 healthy men for 5 years
(63). CAD developed in 296 patients (158 developed MI and 142
developed stable and unstable angina). The baseline VWF:Ag
level was higher in patients who developed MI (129.2 ± 53.1
IU/dL) compared with the control patients (115.9 ± 41.8
IU/dL). The relative risk of MI was 3.04-fold (95% CI, 1.59–5.80)
higher in participants with a VWF:Ag level in the upper quartile
when compared with the lower quartile (63). The prospective
Reykjavik study enrolled 1,925 patients without CAD who
subsequently developed MI or fatal CAD during the 19.4-year
follow-up and 3,616 controls (64). The baseline VWF:Ag level
was higher in patients with major adverse cardiovascular events
(MACE) than it was in the control group. After adjusting
for cardiovascular risk factors, the increase by one standard
deviation above baseline VWF:Ag level corresponded to an
odds ratio of 1.08 (95% CI, 1.02–1.15) for MI or lethal CAD
(64). However, according to the large ARIC study on 14,477

participants initially free from CAD, an elevated VWF:Ag did
not provide added value for cardiovascular risk assessment when
adjusted to traditional cardiovascular risk factors (65). Several
other studies reported that the VWF:Ag level assessment did
not improve predicting MACE when adjusted to traditional
cardiovascular risk factors (66–68). Therefore, the low predictive
value of the VWF:Ag level in cardiovascular risk assessment in
CAD-free individuals can be partially explained by confounding
cardiovascular risk factors (69).

Contrary to studies on the general CAD-free population,
studies on patients with preexisting CAD found a direct
relationship between the VWF:Ag level and MACE rate (70–
72). The prospective ECAT study followed up 3,043 patients
with angina pectoris for 2 years. Those who subsequently
developed MI or sudden cardiac death had higher baseline
VWF:Ag levels. Patients were divided into quintiles depending
on the VWF:Ag level. The relative risk of MACE in the
upper quintile was 1.85-fold higher than it was in the lower
quintile (70). The ENTIRE-TIMI 23 study enrolled 314 patients
with STEMI who had VWF:Ag levels measured before and
48–72 h after fibrinolysis (71). The study showed that the
VWF:Ag level in the upper quartile was associated with a higher
incidence of repeated MI and death in the subsequent 30 days,
than that in the lower quartile (11.2 and 4.1%, respectively)
(71). Another study followed up 123 MI survivors under the
age of 70 years for 4.9 years (72). The VWF:Ag level was
measured 3 months after the onset of MI. A higher VWF:Ag
level was independently associated with recurrent MI and
death (72).

A VWF:Ag level increase can be caused by factors that
contribute to CAD development, such as age (73, 74) and
smoking (73, 75). Patients with diabetes mellitus (DM) had
higher VWF:Ag levels than those without DM in the ASCET
study (74). According to Stehouwer et al., increased VWF:Ag
levels in patients with DM type 2 occurred in response to
microalbuminuria (76). Several studies have addressed the
relationship between arterial hypertension and the VWF:Ag
level. In a study by Lip et al., The VWF:Ag level was higher
in hypertensive patients than in healthy controls (113 and 98
IU/dL, respectively) (77). In a study by Lee et al., 73 patients with
stable CAD and arterial hypertension and 35 healthy controls
underwent 24-h ambulatory blood pressure (BP) monitoring
(78). The patients were divided into four groups: The first
group included patients with high arterial pulse pressure, the
second included those with low arterial pulse pressure, the
third included dippers, and the fourth included non-dippers.
In all groups the VWF:Ag level was higher than the in the
control subjects (197 ± 58 and 120 ± 18 IU/dL, respectively).
Patients with high arterial pulse pressure and non-dippers had
the highest VWF:Ag level (219 ± 58 and 222 ± 55 IU/dL,
respectively) (78).

VWF:Ag levels increase in response to stress. Stress signals
induce the release of vasopressin, which stimulates the release
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of VWF from endothelial Weibel-Palade bodies. Desmopressin,
a vasopressin analog, is used to sustain the VWF plasma
level in VWD treatment (79). A treatment-induced VWF:Ag
level increase can occur due to the use of diuretics, digoxin,
unfractionated heparin, and oral anticoagulants (57). Unlike
unfractionated heparin, enoxaparin reduces VWF release
(71, 80).

CAD can affect the VWF:Ag level. Endothelial dysfunction
is crucial to the pathogenesis of atherosclerosis, increasing the
risk of MACE (81). Considering the predominantly endothelial
source of VWF in the bloodstream, higher VWF:Ag levels
in patients with CAD may be associated with characteristic
endothelial dysfunction and endothelial damage. An increase
in the concentration of circulating VWF can propagate chronic
local inflammation of the arterial wall. An increase in VWF:Ag
levels in response to inflammation was found in patients with
systemic inflammatory diseases. The VWF:Ag level was higher
in patients with rheumatoid arthritis, scleroderma, and systemic
vasculitis than in healthy controls (82). The VWF:Ag level and
VWF:RCo values were higher in patients with systemic lupus
erythematosus (primarily in those with serositis) than those
in healthy controls. However, higher VWF:Ag levels were not
associated with clinical manifestations of the disease, including
thrombotic complications (83). The VWF:Ag level increases
and decreases simultaneously with C-reactive protein in acute
inflammation (84). Various inflammatory agents influence the
endothelial secretion of VWF. Interleukin-6 (IL-6), IL-8, and
tumor necrosis factor-α significantly stimulate the release of
VWF from endothelial Weibel-Palade bodies. IL-6 prevents
proteolytic cleavage of VWF by ADAMTS-13 (85).

Most studies that addressed the role of VWF in the
development of CAD and its complications used ELISA-
based VWF:Ag measurements. This assay cannot provide
information on the functional state of VWF. Some studies
used VWF:RCo, which activated VWF multimers using a
non-physiological chemical agent. These laboratory methods
failed to reproduce physiologically relevant conditions for
platelet adhesion and aggregation. In recent years, microfluidic
systems have been popularized. These devices can model
hemodynamic conditions, such as different shear rates, which
are characteristic of the arterial or venous bed; turbulent
flow; complex vessel anatomy, such as bi- or trifurcations;
and vessel narrowing by a stenotic plaque, etc. Among the
advantages of these devices is that they require small volumes
of blood to obtain reproducible results. Moreover, they can
examine individual links of hemostasis such as platelet adhesion
in isolation from aggregation (86). In future, these devices
may be used to diagnose various hemostatic disorders and
to test the effectiveness and dose adjustment of antiplatelet
drugs. However, such microfluidic systems are not currently
standardized and are uncommon in clinical practice (13, 86–
90).

Advances and prospects for agents
targeting von Willebrand factor
and ADAMTS-13 in cardiovascular
disease

The development and use of agents targeting VWF
interaction with the vessel wall and/or platelets may be
reasonable in prevention of CAD and its complications, given
the prominent role of VWF in arterial thrombosis. Most agents
used in the primary and secondary prevention of CAD do
not affect VWF or ADAMTS-13. Only heparins interfere with
GPIb-mediated platelet adhesion by binding to the A1 domain
of VWF (91).

At the turn of the twenty-first century, AJvW-2 and AJW200
antibodies targeting the GPIb binding sites on the A1 domain of
VWF were developed. A study on dogs with induced occlusive
thrombosis in the left coronary artery compared the efficacy of
AJW200 and the GPIIb/IIIa antagonist abciximab in thrombosis
prevention. AJW200 inhibited thrombus formation without
affecting bleeding time and showed a better safety profile than
abciximab (92). Similar results were obtained with AJvW-2 in
another canine study (93).

Eto et al. studied the effect of AJvW-2 on platelet aggregation
at high shear rates in patients with unstable angina or MI and
control subjects (94). Platelet aggregation was 2- and 1.3-fold
higher in patients with MI and unstable angina, respectively,
than in the controls. AJvW-2 completely inhibited platelet
adhesion in all groups (94).

Aptamers targeting GPIb interaction with the A1 domain
of VWF have been developed. These are small single-stranded
RNA or DNA molecules that are capable of high-affinity binding
to a target molecule. The first-generation aptamer, ARC1779,
produced dose-dependent inhibition of VWF activity in healthy
individuals (95). The antithrombotic effect of ARC1779 was
studied in 36 patients who underwent carotid endarterectomy.
ARC1779 reduced the availability of A1 domains of VWF
and the rate of embolic signals detected using doppler
ultrasonography; however, perioperative bleeding and anemia
were increased (96). Further research on ARC1779 was halted
owing to a lack of funding. A second-generation aptamer,
TAGX-0004, inhibited the binding of GPIb to the A1 domain of
VWF by 10-fold compared to ARC1779. TAGX-0004 inhibited
thrombus formation in a flow chamber by 20-fold compared to
ARC1779 (97). The third-generation aptamer, BT200, reduced
the availability of the A1 domains of VWF in a dose-dependent
manner and prolonged PFA-100 closure time by more than
300 s (98). Additionally, BT200 reduced the availability of the
A1 domains of VWF in a dose-dependent manner in 320
patients with ACS (99). Another aptamer, DTRI-031, produced
a dose-dependent decrease in platelet adhesion (up to complete
inhibition) at high shear rates in a microfluidic system. DTRI-
031 prevented arterial thrombosis and facilitated thrombus
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recanalization in murine and canine models of carotid artery
injury (100).

Anfibatide is a reversible platelet GP Ib receptor antagonist.
In a murine model of focal cerebral ischemia, anfibatide
administration resulted in smaller infarct size, a less severe
neurological deficit, and histopathological brain tissue changes
compared to sham-treated mice (101). Results of anfibatide
administration were comparable to that of the GPIIb/IIIa
inhibitor tirofiban; however, anfibatide caused less intracerebral
hemorrhage and had shorter bleeding time (101). Similar
results have been reported by Chu et al. (102). Anfibatide
suppressed ristocetin-induced platelet aggregation without
affecting bleeding time or coagulation in 94 healthy individuals
(103). Another study comprised 90 patients with non-ST
elevation MI who were divided into groups of 30 depending
on the anfibatide dose and 30 controls (104). Anfibatide
was administered in addition to standard dual antiplatelet
therapy. Ristocetin-induced platelet aggregation decreased by
47, 16, and 21%, in the high-, medium-, and low-dose groups,
respectively, and by 0% in the placebo group. During the 30-
day follow-up, death, MI, and major bleeding were rare and the
outcomes were comparable between the anfibatide and placebo
groups (104).

ALX-0081 (caplacizumab) is the only agent approved for
clinical use that targets the VWF-platelet interaction (105). It is
a humanized bivalent nanoparticle that targets the GPIb binding
sites on the A1 domains of VWF. It was approved for clinical use
in the European Union and United States for the treatment of
adult patients with TTP, following the results of the HERCULES
trial. In this trial, caplacizumab administration resulted in a
lower incidence of the composite endpoint of TTP-related death,
recurrent TTP, and thromboembolism (105).

Few studies have investigated the efficacy and safety
of caplacizumab in patients with CAD. The efficacy of
caplacizumab was studied in 9 patients with CAD who were
scheduled for elective percutaneous coronary intervention
(PCI) and 11 healthy controls (106). Caplacizumab completely
inhibited platelet adhesion to collagen at high shear rates
in patients with CAD and in healthy controls. However,
complete inhibition of adhesion in the patients with CAD
required high doses of caplacizumab. The effectiveness
of caplacizumab was unaffected by antithrombotic drugs,
including acetylsalicylic acid, clopidogrel, and heparin (106).
In a study of 46 patients with stable CAD scheduled for
elective PCI, caplacizumab was safe and resulted in complete
inhibition of platelet aggregation (107). In 2009, caplacizumab
was studied in 380 high-risk patients with ACS scheduled
for elective PCI. Compared to the GPIIb/IIIa inhibitor
abciximab, caplacizumab was not beneficial in reducing
the risk of bleeding and had comparable antithrombotic
effectiveness (108).

Administration of recombinant human ADAMTS-13
reduced endothelial dysfunction and improved cardiac

remodeling in a murine model of left ventricular pressure
overload (109). Another study showed that recombinant human
ADAMTS-13 administration reduced infarct size, neutrophil
infiltration of the ischemic myocardium, and troponin-I release
in a murine model of ischemia/reperfusion injury (110).

A novel agent, Revacept, is a fusion protein of the
extracellular domain of GPVI, a major platelet collagen
receptor, and the human Fc fragment (111). It coats exposed
collagen at the sites of vessel injury and prevents platelet
adhesion and subsequent aggregation. Similarly, Revacept may
interfere with the binding of VWF to collagen (111). In a
murine cerebral ischemia/reperfusion injury model, Revacept
administered immediately before reperfusion reduced cerebral
infarct size, edema, and inflammation, and did not increase
the incidence of intracranial bleeding. However, there were
no differences in the recovery of neurological functions
24 h after the onset of stroke between mice treated with
Revacept and those treated with fibrinolytic rtPA (111). The
ISAR-PLASTER study investigated the safety and efficacy of
Revacept in 334 patients with stable CAD scheduled for
elective PCI (112). Patients received Revacept at a dose of
160 mg, 80 mg, or placebo in addition to standard antiplatelet
therapy. Revacept did not show a benefit over standard therapy
regarding the primary endpoint of death or myocardial injury
and did not affect the incidence of bleeding at 30 days
(112). Currently, a clinical trial on the safety and efficacy of
Revacept in patients with symptomatic carotid atherosclerosis
is underway (113).

Microlyse, a fusion protein consisting of an antibody
fragment targeting the CTCK domain of VWF and the
protease domain of urokinase plasminogen activator, was
described in 2022 (114). This novel agent triggers destruction
of platelet-VWF complexes by plasmin on endothelial cells.
Antithrombotic effect of Microlyse was more potent than
that of caplacizumab in the murine model of TTP. Microlyse
also attenuated thrombocytopenia and tissue damage without
affecting hemostasis in a tail-clip bleeding murine model (114).

Conclusion

Severe AS or HOCM predisposes to a deficiency in
HMWM of VWF and leads to gastrointestinal, subcutaneous,
or mucosal bleeding. Considering that VWF facilitates primary
hemostasis and a local inflammatory response at high shear
rates, dysfunction of this protein may putatively contribute to
the development of CAD and its complications. However, few
methods allow for in-depth analysis of this contribution. The
development and use of agents targeting VWF interaction with
the vessel wall and/or platelets may be reasonable in prevention
of CAD and its complications, given the prominent role of VWF
in arterial thrombosis.
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