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Cardiotoxicity is a serious complication of cancer therapy. It is the second

leading cause of morbidity and mortality in cancer survivors and is associated

with a variety of factors, including oxidative stress, inflammation, apoptosis,

autophagy, endoplasmic reticulum stress, and abnormal myocardial energy

metabolism. A number of studies have shown that traditional Chinese

medicine (TCM) can mitigate chemoradiotherapy-associated cardiotoxicity

via these pathways. Therefore, this study reviews the e�ects and molecular

mechanisms of TCM on chemoradiotherapy-related cardiotoxicity. In this

study, we searched PubMed for basic studies on the anti-cardiotoxicity of TCM

in the past 5 years and summarized their results. Angelica Sinensis, Astragalus

membranaceus Bunge, Danshinone IIA sulfonate sodium (STS), Astragaloside

(AS), Resveratrol, Ginsenoside, Quercetin, Danggui Buxue Decoction (DBD),

Shengxian decoction (SXT), Compound Danshen Dripping Pill (CDDP), Qishen

Huanwu Capsule (QSHWC), Angelica Sinensis and Astragalus membranaceus

Bunge Ultrafiltration Extract (AS-AM),Shenmai injection (SMI), Xinmailong

(XML), and nearly 60 other herbs, herbal monomers, herbal soups and

herbal compound preparations were found to be e�ective as complementary

or alternative treatments. These preparations reduced chemoradiotherapy-

induced cardiotoxicity through various pathways such as anti-oxidative stress,

anti-inflammation, alleviating endoplasmic reticulum stress, regulation of

apoptosis and autophagy, and improvement ofmyocardial energymetabolism.

However, few clinical trials have been conducted on these therapies, and these

trials can provide stronger evidence-based support for TCM.
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Introduction

Chemoradiotherapy has improved survival in patients with

cancer; however, the resulting cardiotoxicity is a major cause of

morbidity and mortality in the oncology population (1–3). In

the United States, women have a significantly increased risk of

death from cardiotoxicity, which exceeds the risk of death from

cancer or recurrence, and it is the leading cause of death in

patients over 50 years old with breast cancer (4). The cumulative

incidence of chronic heart failure (CHF) 10 years after systemic

therapy in Dutch patients with early-stage breast cancer was

4.8% (5). Anthracycline use in first-line lymphoma treatment

is associated with a significantly increased incidence of CHF in

Danish patients with lymphoma (6). The incidence of childhood

cancer cardiotoxicity after anthracycline therapy in a multi-

ethnic Asian population was 7%, of which 37.5% had CHF (7).

Radiotherapy also causes cardiotoxicity, which has a 4–16%

relative risk of heart disease and major cardiac events per Gray

of the average cardiac radiation dose (8). Radiotherapy induces

oxidative stress (OS) and matrix remodeling, which alters

the cardiac microvascular and macrovascular environment

and induces coronary artery disease, myocardial fibrosis,

and cardiomyopathy, valvular disease, pericardial disease, and

arrhythmias (9, 10); chemotherapies can cause cardiotoxicity

through OS, lipid peroxidation, and inhibition of topoisomerase

IIβ (Top2β), leading to cardiomyocytes (CMs) damage (11).

Cardiac oncology clinical practice guidelines define

cardiotoxicity as (1) a relative decrease in overall longitudinal

echocardiographic strain of >15% or a new increase in cardiac

biomarkers in individuals with left ventricular ejection fraction

(LVEF) ≥50%, (2) a decrease in LVEF to 40–49% (accompanied

by a relative decrease in overall longitudinal echocardiographic

strain of >15% or a decrease in LVEF of <10% and a new

increase in new cardiac biomarkers), or (3) a decrease in

LVEF to <40% (12). However, chemoradiotherapy not only

affects resting LVEF but also has a wide range of effects on

the entire cardiovascular system, including direct effects on

cardiac structure (e.g., fibrosis), diastolic function, cardiac

conduction and arrhythmias, systemic and pulmonary vascular

function and hemodynamics, hemostasis and thrombosis, and

cardiac response to injury and stress (13). Statins, angiotensin-

converting enzyme inhibitors, angiotensin receptor blockers,

beta-blockers, and dexrazoxane are currently used clinically

to prevent or reduce radiotherapy-related cardiotoxicity

(14–21). However, these drugs do not significantly reduce

the risk of cardiotoxicity; instead, they interfere with the

antitumor properties and prognostic benefits of anthracyclines,

increasing the incidence of secondary malignancies (11, 14, 18).

Therefore, there is an urgent need to explore safer and more

effective options.

TCM has been used in China for thousands of years to

treat human diseases and has attracted widespread attention

from other countries owing to its unique healing properties

(22). In recent years, TCM has made contributions to global

public health, such as artemisinin for treating malaria (23),

arsenic trioxide for acute promyelocytic leukemia (24, 25), and

played an important role in treating pneumonia associated

with novel coronavirus disease 2019 (COVID-19) (26–30).

In 2019, the World Health Organization included TCM as

an accepted form of treatment in its International Statistical

Classification of Diseases (ICD-11) for the first time in the

72nd World Health Assembly, reflecting the contribution of

TCM to global healthcare (31). Cancer and cardiovascular

diseases are two major maladies that pose a serious threat

to human health, and cardiovascular toxicity caused by these

cancer treatments poses a serious and specific threat to the

health and survival of patients with cancer. Recent studies

have shown that TCM can combat chemoradiotherapy-related

cardiotoxicity without affecting the antitumor activity of the

treatment (32). However, the mechanism of action of TCM

for the treatment of chemoradiotherapy-related cardiotoxicity

is not fully understood. Therefore, we summarize recent studies

on the prevention and treatment of chemoradiotherapy-related

cardiotoxicity by TCM and explain its mechanism to provide a

basis for the prevention and treatment of chemoradiotherapy-

related cardiotoxicity by TCM.

Molecular mechanisms of
chemoradiotherapy-related
cardiotoxicity and the therapeutic
e�ects of traditional Chinese
medicine

The pathogenesis of chemoradiotherapy cardiotoxicity is

associated with multiple molecular pathways, with OS and

inflammation being the most important pathways, along

with apoptosis, autophagy, endoplasmic reticulum stress, and

abnormal myocardial energy metabolism (Table 1, Figure 1).

Oxidative stress

OS refers to the imbalance of pro-oxidants and antioxidants

and the disruption of redox signaling and control (33). The

mitochondrial respiratory chain and nicotinamide adenine

dinucleotide phosphate (NADPH) are the main cellular sources

of reactive oxygen species (ROS) (34). NADPH oxidases (Noxs)

are a group of plasma membrane-associated enzymes that are

among the most important sources of ROS, Nox2 and Nox4

are the major cardiac isoforms (35), overexpression of Nox2

and Nox4 induces the production of ROS (36). Nuclear factor

erythroid 2-related factor 2 (Nrf2) controls gene expression

of endogenous antioxidant synthesis and ROS-eliminating

enzymes in response to various electrophilic compounds,
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TABLE 1 Protective e�ects and mechanisms of traditional Chinese medicine against chemoradiotherapy-related cardiotoxicity.

Function Radiotherapy/

Chemotherapy

Traditional

Chinese medicine

Molecular mechanisms Research type References

Anti-oxidative Stress Radiotherapy STS ROS and MDA reduction, Increase SOD in vitro (48, 49)

AS-AM Inhibition of TGF-β/Smad in vivo, in vitro (51–53)

Chemotherapy

(Anthracyclines)

SAL ROS reduction in vivo, in vitro (57, 58)

ISO ROS reduction in vitro (59)

AS-IV Reduction of Nox2, Nox4 in vivo, in vitro (61)

Tan I activates Nrf2 in vivo, in vitro (65)

DSS regulating Keap1-Nrf2/NQO1 in vivo (66)

CDDP Reduces ROS, MDA, activates Nrf2 in vivo (67)

Dioscin Regulates ROS, activation of Nrf2 in vivo (68)

SOJ Increases SOD, CAT, GSH-Px, decreases

MDA, and inhibits OS

in vivo (70)

XML Increases MDA, SOD in vitro (71)

RES ROS reduction in vitro (72)

Crocin ROS MDA and TOS reduction, increase

TAC

in vitro (73)

PAP-3.2KD Inhibition of TGF-β/Smad in vivo (75)

SLJ Upregulates TIMP-1/2/3 in vivo (76)

Chemotherapy

(non-anthracycline)

QUE Reduces ROS levels in vivo, in vitro (78)

Chrysin Increases SOD, CAT, and GSH,

decreases MDA

in vivo (79)

CMN+BC Decreases MDA, increases CAT and

SOD

in vivo (80)

CMN+piperine Increases SOD and CAT in vivo (81, 82)

ICA Regulates GSH-Px, CAT, SOD, and

MDA

in vivo, in vitro (83)

Rutin Increases MDA blocking and decreases

tGSH levels

in vivo (84)

QUE Regulates Nrf2 in vitro (85)

SalB Regulates Nrf2 in vitro (86, 87)

Lut Regulates Nrf2 in vitro (88)

TMYXP Regulates Nrf2/HO-1, p38 MAPK in vivo, in vitro (89)

Anti-inflammatory Chemotherapy DHT Decreases NF-κB in vivo, in vitro (92)

DXXK Reduces ROS levels; downregulates

NF-κB p65

in vivo, in vitro (93)

SXT Inhibit NF-κB in vitro (94)

CAR Decreased NF-κB in vivo (95)

CMN Decreased NF-κB in vivo (96)

YQFM Decreased NF-κB in vivo (97)

PQS NF-κB inhibition and regulation of

PI3K/Akt

in vivo (98)

CA Inhibit NLRP3 in vivo, in vitro (99)

RES Inhibit NLRP3 in vivo (100)

(Continued)
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TABLE 1 (Continued)

Function Radiotherapy/

Chemotherapy

Traditional

Chinese medicine

Molecular mechanisms Research type References

Reduced apoptosis Radiotherapy STS Downregulates P38,caspase-3,

upregulates P ERK1/2 and Bax

in vitro (49)

DBD Reduces Fasl/TNF-α in vivo (105)

Chemotherapy

(anthracyclines)

Ginsenoside Rg1 Increases in Akt, Erk, Bcl-2/Bax.

Decreases Cyt-c

in vivo (106)

Ginsenoside Rb1 Decreases caspase-3 and caspase-8 in vitro (107)

SMAE Modulated ERK/p53/Bcl-xL/caspase-3 in vitro (108)

SalB Promoted Bcl-2 in vivo (109)

QYDP Upregulates Bax, downregulates Bcl-2 in vivo (110)

AS-AM Downregulates Bax, Caspase-3,

Caspase-12, and upregulates Bcl-2

in vitro (111–113)

Paeonol Upregulated Bcl-2 and mitochondrial

Cyt c, downregulated Bax, caspase-3,

and cytoplasmic-Cytc

in vivo (114)

Panax ginseng

glycoproteins

Regulates MAPK in vitro (116)

DB JNK1/2 in vitro (117)

SYKT Inhibits p53, MAPK in vitro (118, 119)

SMI Decreases Bax/Bcl-2 and Caspase-3

levels; increases PI3K, p-Akt, p-GSK-3β,

AMPK

in vivo, in vitro (120, 123)

Cts Regulation Akt-GSK-3β-mPTP in vitro (121)

RES Regulates AMPK in vitro (124)

Matrine Regulates AMPK in vivo, in vitro (125)

Higenamine ROS reduction, AMPK inhibition in vivo, in vitro (126)

Chemotherapy

(non-anthracycline)

OIE ROS inhibition in vivo (127)

Maltol ROS reduction in vitro (128)

Regulation of autophagy Chemotherapy

(anthracyclines)

DBD Activates PI3K in vivo (134)

QSHWC Regulates PI3K/Akt, MAPK, MAPK8,

FOXO, LC3

in vivo, in vitro (135, 136)

QL Regulates PI3K/AKT/mTOR in vivo (137)

RES Regulates AMPK/mTOR/Ulk1 in vitro (138)

SMI Regulates miR-30a/Beclin1, JNK in vivo, in vitro (142, 143)

Ginsenoside Rg1 Downregulates LC3, Atg5, JNK 1, Beclin

1

in vivo (144)

CA Atg7 in vivo (145)

XML Downregulates Beclin 1, Atg7, P38,

Erk1/2; upregulates PKB/Akt, PI3K,

Bcl-2

in vivo (146)

Inhibition of endoplasmic

reticulum stress

Chemotherapy

(anthracyclines)

BYD Reduces GRP78, PERK, eIF2α, CHOP in vivo (149)

(Continued)
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TABLE 1 (Continued)

Function Radiotherapy/

chemotherapy

Traditional

Chinese medicine

Molecular mechanisms Research type References

Improves myocardial energy

metabolism

Chemotherapy

(Anthracyclines)

QUE

Astragalus

membranaceus Bunge

Regulates AMPK, PPARα

PPARγ

in vivo, in vitro

in vitro

(152)

(153)

Taraxacum mongolicum

Hand.-Mazz. aqueous

extract

Activates P-gp in vivo, in vitro (154)

STS, Tanshinone IIa sodium sulfonate; AS-AM, Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract; SAL, Salidroside; ISO, Isoorientin; AS-IV, Astragaloside IV;

Tan I, Tanshinone I; DSS, Danshensu; CDDP, Compound Danshen Dripping Pill; SOJ, Steroidal saponins extract from Ophiopogon japonicus (Thunb.) Ker Gawl root; XML, Xinmailong

injection; RES, Resveratrol; PAP-3.2KD, Pilose antler Peptide-3.2KD; SLJ, Shenlijia; QUE, Quercetin; CMN, Curcumin; BC, β-carotene; ICA, Icariin; SalB, Salvianolic acid B; Lut, Luteolin;

TMYXP, Tongmai Yangxin Pills; DHT, Dihydrotanshinone I; DXXK, Di’ao Xinxuekang capsule; SXT, Shengxian decoction; CAR, Cardamom; YQFM, Yiqi Fumai lyophilized injection;

PQS, Panax quinquefolius; CA, Calycosin; DBD, Danggui Buxue decoction; SMAE, Salvia miltiorrhiza aqueous extract; QYDP, Qishen Yiqi Dropping Pills; DB, Diethyl blechnic; SYKT,

Sanyang Xuedai; SMI, Shenmai Injection; Cts, Cryptotanshinone; OIE, Oroxylum; QSHWC, Qishen Huanwu Capsule; QL, Qiliqiangxin; BYD, Baoyuan decoction; ROS, Reactive oxygen

species; MDA, Malondialdehyde; SOD, Superoxide dismutase; TGF-β, Transforming growth factor-β; Smad, Small Mothers Against Decapentaplegic; Noxs, NADPH oxidases; Nrf2,

Nuclear factor erythroid 2-related factor 2; Keap-1, Recombinant Kelch Like ECH Associated Protein 1; HO-1, Heme Oxygenase 1; CAT, Catalase; GSH-PX, Glutathione peroxidase;

OS, Oxidative stress; TOS, Total oxidant status; TAC, Total antioxidant capacity; TIMP, Matrix-metalloproteinase inhibitor; MAPK, Mitogen-activated protein kinase; NF-κB, Nuclear

factor kappa-B; PI3K/AKT, phosphatidylinositol 3-kinase/serine-threonine protein kinase; NLRP3, Sirtuin1 (Sirt1)-nod-like receptor protein 3; Caspases, Cysteine aspartate proteases;

ERK1/2, Extracellular signal-regulated kinases1/2; Bax, Bcl-2 associated X; Bcl-2, B-cell lymphoma-2; Fasl/TNF-α, Fas ligand/tumor necrosis factor-α; Cyt-c, Cytochrome C; JNKs, C-Jun-

terminal kinases; GSK-3β, Glycogen synthase kinase 3 beta; AMPK, Adenosine monophosphate-activated protein kinase; FOXO, Forkhead Box O; LC3, Light chain-3; mTOR, Mechanistic

Target Of Rapamycin; ULK1, Unc-51-like autophagy activated kinase 1; Atg, Autophagy-related genes; miR, microRNAs; GRP78, Glucose regulated protein78; PERK, The stress protein

kinase R-like endoplasmic reticulum kinase; eIF2α, Eukaryotic translation initiation factor 2-alpha; CHOP, C/EBP homologous protein; PPAR, Peroxisome proliferator-activated receptors;

P-gp, P-glycoprotein.

inactivates the negative regulator Kelch-like ECH-associated

protein 1 (Keap1), and activates Nrf2 by overexpression of

mitochondrial ROS (mtROS) and Nox2 and Nox4 (37). The

role of antioxidant enzyme systems [superoxide dismutases

(SODs), catalases (CAT), glutathione peroxidases (GPxs), and

paraoxonases (PONs)] is to scavenge ROS (38), and oxidative

damage occurs when ROS production exceeds the buffering

capacity of ROS scavengers or when the antioxidant defense

system is defective (39). Increased ROS also caused the

development of myocardial fibrosis (MF) (40). Transforming

growth factor-β (TGF-β) is a key factor in MF, and ROS is an

immediate activator of TGF-β1.

Radiotherapy-induced oxidative stress

Oxidative stress and ROS may be the main cause of

ionizing radiation (IR)-induced cardiotoxicity (41). IR leads to

mitochondrial electron transport chain (ETC) dysfunction and

ROS overproduction, causing DNA damage and protein and

lipid peroxidation, the latter of which leads to the production

of malondialdehyde (MDA) (39, 41–43); IR activates Noxs and

inhibits SOD expression for ROS production and accumulation

(44). Tissues and cells, which are 80% water, rapidly undergo

OS responses after being targeted by ionizing radiation (45),

forming water radiolysis products rich in ROS and releasing

ROS (46). The late effects of radiotherapy are due to IR

and IR-induced production of chronic free radicals from

water molecules in the surrounding environment (47). STS

significantly inhibits the increase of ROS and MDA content in

H9C2 cells and cardiac fibroblasts (CFS) under X-ray radiation

and increased the level of SOD (48, 49).

Myocardial fibrosis is a late manifestation of radiation-

induced heart disease (RIHD) (50). The current studies showed

that AS-AM, a DBD-derivative, downregulated TGF-β/Smad

and COL-I expression in an X-ray-induced rat CFs fibrotic

injury model (51–53) (Figure 2).

Oxidative stress induced by
anthracycline-based chemotherapeutic agents

Doxorubicin (DOX)-induced OS is thought to be a major

cause of cardiotoxicity (54, 55). DOX alters myocardial ETC

gene expression and translation in vivo, reducing the redox cycle

of the ETC complex I, and generates large amounts of ROS (56).

Disrupting this process, the salidroside (SAL) attenuates DOX-

induced cardiac insufficiency by reducing ROS production and

improving mitochondrial function (57, 58). Another TCM,

isoorientin (3
′

,4
′

,5,7-tetrahydroxy-6-C-glucopyranosyl flavone)

is a natural C-glycosyl flavonoid with strong free radical

scavenging activity that reduces ROS, maintains mitochondrial

function, and attenuates DOX-inducedH9C2 CMs damage (59).

DOX induces Noxs activation, which leads to increased

ROS production (60). The compound AS-IV attenuates

DOX-induced Nox2 and Nox4 expression, OS, and

cardiomyopathy in CMs (61). Nrf2 deficiency exacerbates

DOX-induced cardiotoxicity and cardiac insufficiency

(62–64). Playing a role in these pathways, Tanshinone I

(Tan I) upregulated key proteins in the Nrf2 pathway to
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FIGURE 1

Role and molecular mechanism of traditional Chinese medicine in preventing cardiotoxicity associated with chemoradiotherapy (traditional

Chinese medicine alleviates chemoradiotherapy-related cardiotoxicity by inhibiting oxidative stress, anti-inflammatory, regulating apoptosis and

autophagy, inhibition of endoplasmic reticulum stress, and improves myocardial energy metabolism. OS, Oxidative stress; Noxs, NADPH

oxidases; SOD, Superoxide dismutase; CAT, Catalase; GSH-PX, Glutathione; ROS, Reactive oxygen species; MDA, Malondialdehyde; TGF-β,

Transforming growth factor-β; Smad, Small Mothers Against Decapentaplegic; Nrf2, Nuclear factor erythroid 2-related factor 2; STS, Tanshinone

IIa sodium sulfonate; AS-AM, Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract; SAL, Salidroside; ISO, Isoorientin;

AS-IV, Astragaloside IV; SOJ, Steroidal saponins extract from Ophiopogon japonicus (SOJ) root; XML, Xinmailong injection; RES, Resveratrol;

QUE, Quercetin; ICA, Icariin; CMN, Curcumin; BC, β-carotene; Tan I, Tanshinone I; DSS, Danshensu; CDDP, Compound Danshen Dripping Pill;

PAP-3.2KD, Pilose antler Peptide-3.2KD; SLJ, Shenlijia; SalB, Salvianolic acid B; Lut, Luteolin; TMYXP, Tongmai Yangxin Pills; NF-κB, Nuclear

factor kappa-B; NLRP3, Sirtuin1 (Sirt1)-nod-like receptor protein 3; DHT, Dihydrotanshinone I; DXXK, Di’ao Xinxuekang capsule; SXT, Shengxian

decoction; CAR, Cardamom; YQFM, Yiqi Fumai lyophilized injection; PQS, Panax quinquefolius; CA, Calycosin; RES, Resveratrol; MAPK,

Mitogen-activated protein kinase; ERK, Extracellular signal-regulated kinases; JNK, C-Jun-terminal kinases; Bax, Bcl-2 associated X; Bcl-2,

B-cell lymphoma-2; Fasl/TNF-α, Fas ligand/tumor necrosis factor-α; Caspases, Cysteine aspartate proteases; PI3K/AKT, phosphatidylinositol

3-kinase/serine-threonine protein kinase; AMPK, adenosine monophosphate-activated protein kinase; DBD, Danggui Buxue decoction; Rg1,

ginsenoside Rg1; Rb1, ginsenoside Rb1; SMAE, Salvia miltiorrhiza aqueous extract; QYDP, Qishen Yiqi Dropping Pills; DB, Diethyl blechnic; SYKT,

Sanyang Xuedai; SMI, Shenmai Injection; Cts, Cryptotanshinone; HG, Higenamine; OIE, Oroxylum; mTOR, Mechanistic Target Of Rapamycin;

LC3, Light chain-3; Atg, Autophagy-related genes; QSHWC, Qishen Huanwu Capsule; QL, Qiliqiangxin; PERK, The stress protein kinase R-like

endoplasmic reticulum kinase; ATF6, Activating transcription factor 6; CHOP:C/EBP homologous protein; BYD, Baoyuan decoction; PPAR,

peroxisome proliferator-activated receptors).

improve cardiac function and protect against both in vivo

and in vitro DOX-induced myocardial structural damage

in mice (65). Danshensu (DSS) effectively exerted anti-

oxidative stress, anti-inflammatory, and anti-apoptotic

therapeutic effects against DOX-induced cardiotoxicity by

regulating the expression of Keap1-Nrf2/NQO1 (66). The

CDDP activates Nrf2 expression to reduce the levels of

ROS, MDA, and cardiac damage in mice (67). Dioscin,

an extract from the rhizome of Dioscorea punctata, also

inhibits myocardial oxidative damage by activating the

Nrf2 pathway, lowers Keap1 expression, and attenuates

cardiotoxicity (68).
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FIGURE 2

Traditional Chinese medicine alleviates cardiotoxicity associated with chemoradiotherapy by inhibiting oxidative stress (Noxs, NADPH oxidases;

SOD, Superoxide dismutase; CAT, Catalase; GSH-PX, Glutathione peroxidase; ROS, Reactive oxygen species; MDA, Malondialdehyde; TGF-β,

Transforming growth factor-β; Smad, Small Mothers Against Decapentaplegic; Nrf2, Nuclear factor erythroid 2-related factor 2; STS, Tanshinone

IIa sodium sulfonate; AS-AM, Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract; SAL, Salidroside; ISO, Isoorientin;

AS-IV, Astragaloside IV; SOJ, Steroidal saponins extract from Ophiopogon japonicus (SOJ) root; XML, Xinmailong injection; RES, Resveratrol;

QUE, Quercetin; ICA, Icariin; CMN, Curcumin; BC, β-carotene; Tan I, Tanshinone I; DSS, Danshensu; CDDP, Compound Danshen Dripping Pill;

PAP-3.2KD, Pilose antler Peptide-3.2KD; SLJ, Shenlijia; SalB, Salvianolic acid B; Lut, Luteolin; TMYXP, Tongmai Yangxin Pills).

DOX significantly reduces antioxidant enzyme levels,

leading to redox imbalances and increased OS, but these effects

can be treated with TCMs (69). Steroidal saponins extract from

Ophiopogon japonicus (Thunb.) Ker Gawl root (SOJ) increased

SOD, CAT, and GSH-Px activities and decreased MDA in rat

myocardial tissue by inhibiting OS (70). In H9C2 cells, XML

decrease DOX-induced MDA content, enhance SOD activity,

increase ROS scavenging, and attenuate cardiotoxicity (71); RES

reduced DOX-induced ROS content and improved cell survival,

the effect of RES against DOX cardiotoxicity was comparable

to that of dexrazoxane and carvedilol (72); additionally, crocin

can reduce ROS, MDA and total oxidant status (TOS) levels,

increase total antioxidant capacity (TAC), mitigation of DNA

damage (73).

DOX both activated the TGF-β and P-Smad3

signaling pathways and enhanced collagen deposition

in CMs (74), inducing MF development. Pilose antler

peptide-3.2KD (PAP-3.2KD) has multiple biological activities

in cardiomyopathy and reverses histological changes in cardiac

tissue by decreasing TGF-β1, Smad2/3/4, and P-Smad2/3

levels, elevating Smad7 protein levels, thereby regulating

pathological changes in the TGF-β/Smad signaling pathway,

such as myofascial disorders, MF, and diffuse CMs edema (75).

Shenlijia (SLJ) can improve cardiac function and inhibit MF

progression. It improves cardiac function and ultrastructure,

and inhibits MF development in DOX-induced CHF rats by

upregulating extracellular matrix-metalloproteinase inhibitor

(TIMP) expression (76) (Figure 2).

Oxidative stress induced by non-anthracycline
chemotherapeutic agents

Aside from DOX, non-anthracycline chemotherapeutic

agents, such as cyclophosphamide (CyC) and cisplatin (CP),
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cause cardiotoxicity by inducing mitochondrial dysfunction,

leading to ETC damage, oxidative phosphorylation, decreased

antioxidant enzyme levels and antioxidant capacity, increased

ROS, activate Nrf2 and induce apoptosis (77).

CyC, an alkylating agent, combined with DOX is the

most commonly used regimen for triple-negative breast

cancer chemotherapy. CyC cardiotoxicity is caused by

OS. Quercetin (QUE) has strong antioxidant activity

and attenuates CyC-induced cardiotoxicity by inhibiting

ROS accumulation in CMs; interestingly, it also enhances

the antitumor activity of CyC (78). Another TCM that

combats CyC-effects, chrysin increases enzyme levels that

combat ROS and decreases levels of lipid peroxidation

products in CyC-injured hearts, all of which protect against

cardiotoxicity (79).

CP is another alkylating agent. Curcumin (CMN) has

strong antioxidant effects, and when combined with β-

carotene (BC), reduces lipid peroxidase product and

increases anti-OS enzyme activities in CP-treated rat heart

tissue (80). An additional CMN combination with piperine

significantly increases anti-OS enzyme levels in the cardiac

tissue of CP-treated rats (81, 82). Icariin (ICA) and rutin,

attenuated CP-induced myocardial injury by increasing

anti-OS enzyme and decreasing lipid peroxidase product

levels (83, 84). QUE, salvianolic acid B (SalB), and luteolin

(Lut) significantly reduced CP-induced OS by regulating

Nrft2 signaling pathways (85–88). The 11-herbs combination

treatment, Tongmai Yangxin Pills (TMYXP), nourish Qi and

Yin, promoting blood circulation, relieving pain, and can

improve the anti-OS ability of CP chemotherapy CMs by

regulating Nrf2/HO-1 pathway and p38 MAPK pathway (89)

(Figure 2).

OS is an important cause of disease, and this is no

exception in cardiotoxicity due to chemoradiotherapy.

Radiotherapy leads to increased ROS and MDA levels,

decreased SOD levels, and upregulated TGF-β1 expression

leading to MF, and STS and AS-AM can reverse these damages;

chemotherapy leads to increased endogenous ROS production

and decreased antioxidant enzyme expression, and the above-

mentioned chemotherapy drugs counteract DOX-induced

cardiotoxicity by reducing ROS production, inhibiting Nox2

and Nox4 overexpression, regulating Nrf2 function, and

the above TCM counteracted DOX-induced cardiotoxicity

by reducing ROS production, inhibiting Nox2 and Nox4

overexpression, regulating Nrf2 function, and increasing

antioxidant enzyme content. However, there are few studies

on the mechanism of radiotherapy-related cardiotoxicity in

TCM, and there is a lack of studies on important factors

and pathways such as Noxs and Nrf2. In the studies on

chemotherapy-related cardiotoxicity, there are no studies on

Top2β, which is a key factor leading to cardiotoxicity. In

the future, more and more in-depth studies on key targets

are needed.

Inflammation

Inflammation is another important factor in chemotherapy

drug-related cardiotoxicity and is related to OS. Nuclear

factor kappa-B (NF-κB) is a key transcription factor in

the inflammatory response, sirtuin1 (Sirt1)-nod-like receptor

protein 3 (NLRP3) inflammatory vesicles are protein complexes

that activate the secretion of the pro-inflammatory cytokine

interleukin (IL)-1β in a cysteine aspartate proteases (caspases)-

1-dependent manner and are involved in inflammatory

regulation. DOX activates NF-κB and NLRP3 inflammatory

vesicles, causing cardiotoxicity (90, 91).

Dihydrotanshinone I (DHT) upregulates transcription

factor EB (TFEB) nuclear expression and decreases p-IKKα/β

and p-NF-κB expression, and is used for anti-inflammatory

management of DOX induced cardiotoxicity via themammalian

target of rapamycin (mTOR)-TFEB-NF-κB signaling pathway

(92). The main component of Di’ao Xinxuekang capsule

(DXXK) is diosgenin, protects against cardiotoxicity by reducing

ROS and downregulating NF-κB p65 (93). Shengxian decoction

(SXT) inhibits NF-κB activity, thus preventing cardiotoxicity

from DOX treatment (94). Cardamom (CAR) decreased cardiac

NF-κB levels ameliorating DOX-induced cardiotoxicity in rats

(95). In DOX-induced cardiotoxicity in rats, CMN showed anti-

inflammatory potential by reducing IFN-γ levels and immune

expression of iNOS, NF-κB, and tumor necrosis factor-α(TNF-

α) (96). Yiqi Fumai lyophilized injection (YQFM) pretreatment

of DOX-intoxicated rats significantly inhibited the expression

of NF-κB, TNF-α, and cyclooxygenase-2 (97). Saponins from

the leaves of Panax quinquefolius (PQS) inhibit NF-κB activity

and disrupt the phosphatidylinositol 3 kinase (PI3K) /protein

kinaseB(AKT) (PI3K/Akt)apoptotic pathway, thus preventing

cardiotoxicity from CP treatment (98).

In DOX-treated cells and mouse hearts, levels of NLRP3 and

related proteins were elevated, and calycosin (CA) ameliorated

cardiotoxicity via the NLRP3 pathway (99). Resveratrol

(RES) inhibition of NLRP3 inflammatory vesicle activation

significantly reduced systemic inflammation and contributed

to the improvement of DOX-induced myocardial injury and

late-onset hypertension-induced cardiomyopathy in youngmice

(100) (Figure 3).

Among the inflammatory mechanisms, TCM for

cardiotoxicity involves only two pathways, NF-κB and NLRP3,

but other inflammatory pathways such as STAT1 and STAT3

also play important roles in the development of cardiotoxicity

and should be of interest to investigators.

Apoptosis

Radiotherapy-induced apoptosis

The mitogen-activated protein kinase (MAPK) pathway

is a common signaling pathway that transmits extracellular
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FIGURE 3

Traditional Chinese medicine alleviates cardiotoxicity associated with chemoradiotherapy by anti-inflammatory (NF-κB, Nuclear factor kappa-B;

NLRP3, Sirtuin1 (Sirt1)-nod-like receptor protein 3; DHT, Dihydrotanshinone I; DXXK, Di’ao Xinxuekang capsule; SXT, Shengxian decoction; CAR,

Cardamom; CMN, Curcumin; YQFM, Yiqi Fumai lyophilized injection; PQS, Panax quinquefolius; CA, Calycosin; RES, Resveratrol).

signals to downstream effector molecules and is involved in

physiological processes such as cell proliferation, differentiation,

and apoptosis (101), which consists of three branches:

MAPK, extracellular signal-regulated kinases (ERKs) and c-

Jun-terminal kinases (JNKs) (102). The p53 pathway is

another critical pro-apoptotic pathway. P53 upregulates the

pro-apoptosis B-cell lymphoma-2(Bcl-2) associated X(Bax)

protein, downregulates the anti-apoptosis protein Bcl-2, and

activates the transcription of Fas and other death receptor

genes (103). Additionally, IR-induced DNA damage initiates

apoptosis through a p53-dependent mechanism that activates

downstream caspases (104). STS can disrupt the p53 pathway

in CFs by decreasing the phosphorylation levels of p38,

caspases 3 expression, and increasing the levels of Bax and

phosphorylated ERK1/2 (49). DBD can reduce Fas ligand (Fasl)

and TNF-α expression, block apoptotic signaling pathways,

and attenuate radiological myocardial injury in CMs (105)

(Figure 4).

Anthracycline-based chemotherapy-induced
apoptosis

DOX activates endogenous pathways and exogenous

pathways of apoptosis (60). DOX downregulates the Akt

pathway, induces caspases activity, and upregulates cell death

receptors, all leading to CMs apoptosis (74). Blocking that

impact, ginsenoside Rg1 increased Akt and ERK pathway

phosphorylation, the ratio of Bcl-2 and Bax, and reduced

Cytochrome C (Cyt-c) release from the mitochondria, thus

disrupting DOX-induced CMs apoptosis (106). Additionally,

ginsenoside Rb1 decreased caspase-3 and caspase-8 activity

and blocked apoptosis in H9C2 cells (107). Salvia miltiorrhiza

aqueous extract (SMAE) modulated ERK/p53/Bcl-xL/caspase-3

signaling pathway and improved mitochondrial dysfunction,

significantly alleviating DOX-induced cardiomyopathy and

apoptosis, and simultaneous administration of DOX and

SMAE significantly inhibited the growth of breast cancer

cells (108). SalB promoted Bcl-2 expression and attenuated

DOX-induced apoptotic damage in cardiac tissue (109). Qishen

Yiqi Dropping Pills (QYDP) increased vascular endothelial

growth factor levels, myocardial microvascular density, and

Bax expression, while it downregulated Bcl-2 and caspase

3 and attenuated MF in DOX-treated mice (110). AS-AM

downregulated Bax, caspase 3, and caspase 12 and upregulated

Bcl-2 expression. It also decreased apoptosis by inhibiting the

intrinsic apoptotic pathway (111–113). Paeonol increased the

viability and mitochondrial membrane potential (MMP) of

DOX-induced CMs, upregulated the expression of Bcl-2 and

mitochondrial Cyt c, downregulated the expression of Bax,

caspase-3, and cytoplasmic-Cytc, and reduced apoptosis and

ROS (114).

Members of the MAPK superfamily and PI3K are

specifically involved in the induction of apoptosis and

impairment of contractile function (102, 115). Panax ginseng

glycoprotein protected against myocardial injury by inhibiting

CMs apoptosis by upregulating the MAPK pathway (116).

Diethyl blechnic (DB) activated the JNK1/2 pathway to

protect CMs from cytotoxicity (117). Sanyang Xuedai (SYKT)

has antioxidant properties and attenuates cardiotoxicity by

inhibiting p53 and MAPK-induced apoptosis (118, 119).

In a network pharmacology study, SMI increased PI3KCA

and AKT1 expression, thus preventing CMs apoptosis (120).

SMI reduced DOX-induced Bax/Bcl-2 and Caspase-3 levels

and increased PI3K, p-Akt, and phosphorylated glycogen

synthase kinase 3 beta (p-GSK-3β) levels in C57BL/6 mice.

Similarly, cryptotanshinone (Cts) attenuated apoptosis via the

Akt-GSK-3β-mPTP pathway (121).

AMP-activated protein kinase (AMPK) is at the center

of DOX-induced cardiotoxicity. DOX has an inhibitory effect

on cardiac AMPK, which increases cardiotoxicity (122). SMI

increased AMPK phosphorylation levels, preventing DOX-

induced excessive mitochondrial ROS generation, decreasing

mitochondrial membrane potential, and reducing DOX-injured

H9C2 cells from apoptosis (123). RES and matrine attenuated

CMs apoptosis via the AMPK pathway (124, 125). Higenamine,

the main active component of the TCMWu-Tou, also attenuates

DOX-induced cardiac remodeling and myocyte apoptosis by

suppressing AMPK activation (126) (Figure 4).
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FIGURE 4

Traditional Chinese medicine alleviates cardiotoxicity associated with chemoradiotherapy by reducing apoptosis (MAPK, Mitogen-activated

protein kinase; ERK1/2, Extracellular signal-regulated kinases1/2; JNKs, C-Jun-terminal kinases; Bax, Bcl-2 associated X; Bcl-2, B-cell

lymphoma-2; Fasl/TNF-α, FasLigand/tumor necrosis factor-α; Caspases, Cysteine aspartate proteases; PI3K/AKT, Phosphatidylinositol

3-kinase/serine-threonine protein kinase; AMPK, Adenosine monophosphate-activated protein kinase; STS, Tanshinone IIa sodium sulfonate;

DBD, Danggui Buxue decoction; Rg1, ginsenoside Rg1; Rb1, ginsenoside Rb1; SMAE, Salvia miltiorrhiza aqueous extract; SalB, Salvianolic acid B;

QYDP, Qishen Yiqi Dropping Pills; AS-AM, Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract; DB, Diethyl blechnic;

SYKT, Sanyang Xuedai; SMI, Shenmai Injection; Cts, Cryptotanshinone; RES, Resveratrol; HG, Higenamine; OIE, Oroxylum).

Non-anthracycline-based
chemotherapy-induced apoptosis

Oroxylum indicum extract (OIE) significantly reduces

caspase-3 and protease activity in the hearts of DOX- and

CP-treated C57BL/6 J mice (127). Maltol (produced by heating

Panax ginseng) enhanced PI3K/Akt expression levels and

reduced CP-induced apoptosis in H9C2 cardiomyocytes during

cisplatin treatment (128) (Figure 4).

Radiotherapy induced the activation of MAPK and P53-

dependent apoptotic pathways, and STS and DBD inhibited

apoptosis through P53 and Fas/TNF-α pathways; studies on the

inhibition of chemotherapy-induced cardiomyocyte apoptosis

by TCM mainly focused on apoptosis-related genes such as

Bax, Bcl-2, and MAPK and AMPK pathways. Other apoptotic

pathways, such as the mitochondrial apoptosis pathway, have

not been as thoroughly investigated, which may suggest a

direction for future research.

Autophagy

Autophagy is a major regulator of homeostasis and heart

function (129, 130). DOX regulates upstream regulatory

processes of autophagy, such as mTOR and AMPK, and PI3K

is also hyperactivated in a rat model of DOX cardiotoxicity

(131). PI3K CI activates AKT, and activated AKT1 further

activates mTORCl; mTORC2 is a bidirectional regulator of

autophagy. mTORC2 indirectly inhibits autophagy through

the AKT1/FOXO3a axis, and activated AKT1 leads to

translocation of FOXO3 from the nucleus, thereby inhibiting

autophagy-associated genes microtubule-associated protein

light chain-3 (LC3) transcription (132). Activated AMPK

directly promotes autophagy by phosphorylating mTORC1,

ULK1, and autophagy-associated proteins in the PIK3C3/VPS34

complex (133).

TCMs can disrupt the ability of DOX to induce autophagy.

DBD activated the PI3K pathway to inhibit CM autophagy

in mice (134). QSHWC consists of 19 TCMs. Network

pharmacological studies revealed that QSHWC contains 35

major active ingredients that can reduce the cardiotoxicity of

anthracyclines by regulating PI3K/Akt, MAPK, FOXO, and

other signaling pathways to regulate cellular autophagy

and reduce the cardiotoxicity of anthracyclines (135),

QSHWC downregulated pirarubicin-induced LC3, and

played a cardioprotective role by inducing PI3K, AKT,

and mTOR phosphorylation and pathway activation (136).

Frontiers inCardiovascularMedicine 10 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1047700
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Lv et al. 10.3389/fcvm.2022.1047700

Qiliqiangxin (QL), a compound used in TCM, protected

against cardiotoxicity by deactivating the PI3K/AKT/mTOR

pathway to inhibit autophagy (137). The protective effect of RES

against DOX cardiotoxicity is largely dependent on its ability to

regulate autophagy through the AMPK/mTOR/Ulk1 signaling

pathway (138).

Beclin 1 was identified as a Bcl-2-interacting protein that

is essential for autophagy (139). DOX-induced mitochondrial

autophagy was evidenced by increased Beclin 1, LC3, decreased

p62, and co-localization of LC3 in mitochondria (140). LC3 is

associated with the development and maturation of autophagic

vesicles (141). SMI inhibited excessive myocardial autophagy

by downregulating Beclin1 expression and attenuated DOX-

induced myocardial injury (142), in an in vitro model of

DOX-induced cardiotoxicity and also attenuated myocardial

cell damage by deactivating the JNK signaling pathway and

blocking autophagy formation (143). Ginsenoside Rg1 reduced

DOX-induced LC3, autophagy-related genes (Atg) 5, and Beclin

1 expression and improved cardiac insufficiency (144). CA

exerted cardioprotective effects through Atg7 by promoting

autophagic vesicle formation in a DOX-induced zebrafish

embryonic heart injury model (145). XML reduced Beclin 1 and

Atg7 accumulation, upregulated protein kinase B (PKB)/Akt,

PI3K, and Bcl-2 levels, and inhibited autophagy to alleviate

cardiomyopathy (146) (Figure 5).

DOX induces autophagy through activation of

PI3K/AKT/mTOR, and AMPK/mTOR key pathways as

well as autophagy-related genes such as Beclin 1, LC3, and Atg.

TCM regulates autophagy through these pathways and alleviates

DOX-induced cardiotoxicity. In addition to these mechanisms,

whether non-coding RNAs regulate autophagy, epigenetics

of autophagy, protein modification and autophagy activation,

and other important transcription factors such as FOXO, E2F,

and TFEB, which are involved in the regulation of autophagy,

can become new targets of anti-DOX cardiotoxicity in TCM,

needs to be confirmed by a large number of studies, which also

provides us with a direction for future research.

Endoplasmic reticulum stress

DOX can cause marked endoplasmic reticulum (ER)

expansion in the human heart (147), upregulating the

stress protein kinase R-like endoplasmic reticulum kinase

(PERK), C/EBP homologous protein (CHOP), and activating

transcription factor 6 (ATF6) in cardiac tissue (148). Baoyuan

decoction reduced glucose regulated protein78 (GRP78), PERK,

eukaryotic translation initiation factor 2-alpha (eIF2α), and

CHOP protein and mRNA expression and ameliorated DOX-

induced myocardial injury by inhibiting CMs apoptosis

by downregulating the endoplasmic reticulum stress (ERS)

apoptotic pathway (149) (Figure 6).

Studies on the mitigation of cardiotoxicity by TCM through

ERS are limited and restricted to three pathways of ERS

itself. In fact, many cellular processes including inflammation,

apoptosis, and autophagy are regulated by the ERS pathway,

and the importance of ER and its signaling pathways in

inflammation, apoptosis, and autophagy in DOX-induced

cardiotoxicity suggests that it may be a key factor in reducing

DOX-induced cardiotoxicity (148).

Myocardial energy metabolism

DOX impairs most of the processes of myocardial

energy metabolism through oxidative phosphorylation, the

mitochondrial respiratory chain, and the AMPK signaling

pathway, leading to significant downregulation of AMPKα2,

peroxisome proliferator-activated receptors α (PPARα), and

the peroxisome proliferator-activated receptor γ-coactivator

1α (PGC-1α) expression and affecting cardiac function

(150, 151). QUE regulates the AMPK signaling pathway by

promoting AMPKα2, PPARα, and PGC-1α expression to

improve myocardial energy metabolism and prevent DOX-

induced cardiac damage in rats (152). Astragalus membranaceus

Bunge promotes fatty acid metabolism and activates PPARγ

in DOX-induced heart failure in mice to maintain fatty acid

homeostasis in H9C2 cells, thereby alleviating myocardial

injury (153). Taraxacum mongolicum Hand.-Mazz. aqueous

extract can activate P-glycoprotein in the cardiac tissue of triple-

negative breast cancer patients and ameliorate DOX-induced

cardiotoxicity (154) (Figure 7).

Although the oxidation of mitochondrial fatty acids and

carbohydrates is the main source of ATP production in

the heart, the oxidation of other energy substrates, such as

ketones and branched-chain amino acids, also contributes to

energy production (155), and the use of TCM to improve

myocardial energy metabolism to alleviate cardiotoxicity may be

a promising research direction.

Discussion

The field of oncological cardiology formed due to the

realization that cancer treatment-related cardiovascular disease

is a major challenge for both cardiologists and oncologists

(156). Aging populations and advances in diagnosis and

treatment have improved survival rates for patients with

cancer (157) but have also increased the incidence of cancer

treatment-related cardiotoxicity (158). Cardiotoxicity is the

result of a combination of mechanisms, and there are no

effective western drugs that can reverse this damage. TCMs

are unique in the treatment of chemoradiotherapy-related

cardiotoxicity because of their single-target superposition,

multi-target synergy, toxicity dispersion effects in many potent

forms, and their ability to weaken their own toxicity (159). This

paper summarizes six important mechanisms of TCM in the

treatment of chemoradiotherapy-related cardiotoxicity: anti-OS
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FIGURE 5

Traditional Chinese medicine alleviates cardiotoxicity associated with chemoradiotherapy by regulating autophagy (PI3K/AKT/mTOR,

phosphatidylinositol 3-kinase/serine-threonine protein kinasem/Mechanistic Target Of Rapamycin; AMPK/mTOR/Ulk1, Adenosine

monophosphate-activated protein kinase/Mechanistic Target Of Rapamycin /Unc-51-like autophagy activated kinase; LC3, Light chain-3; Atg,

Autophagy-related genes; DBD, Danggui Buxue decoction; QSHWC, Qishen Huanwu Capsule; QL, Qiliqiangxin; RES, Resveratrol; SMI, Shenmai

Injection; Rg1, Ginsenoside Rg1; CA, Calycosin; XML, Xinmailong injection).

FIGURE 6

Traditional Chinese medicine alleviates cardiotoxicity associated with chemoradiotherapy by inhibiting endoplasmic reticulum stress (ERS,

Endoplasmic reticulum stress; PERK, The stress protein kinase R-like endoplasmic reticulum kinase; ATF6, Activating transcription factor 6;

CHOP:C/EBP homologous protein; BYD, Baoyuan decoction).

FIGURE 7

Traditional Chinese medicine alleviates cardiotoxicity associated with chemoradiotherapy by regulating myocardial energy metabolism (AMPK,

adenosine monophosphate-activated protein kinase; PPAR, peroxisome proliferator-activated receptors; QUE, Quercetin).

and inflammation, regulation of apoptosis and autophagy,

alleviation of ERS, and improvement of myocardial energy

metabolism. Themolecules and pathways involved include ROS,

Noxs, Nrf2, TGF-β/Smad, NF-κB, NLRP3, P53, PI3K/AKT,

MAPK, AMPK, PI3K/AKT/mTOR, AMPK/mTOR/Ulk1,

Beclin1, LC3, Atg, ERS Pathway, ATP, ADP and PPAR, showing

that the broad role and good effect of TCM in the treatment of

chemoradiotherapy-related cardiotoxicity.

Among the many anti-cardiotoxic TCMs summarized in

this paper, some drugs have attracted our attention, including

various extracts and active ingredients of Salvia miltiorrhiza:

STS, Tan I, DSS, SalB, DHT, danshensu, Cts, DB, CDDP;

Astragalus membranaceus Bunge and its extracts AS-IV and

CA; active ingredients of Panax ginseng: Ginsenoside Rg1,

Ginsenoside Rb1, Panax ginseng glycoproteins, and Maltol.

Soup containing Angelica sinensis DBD and AS-AM. Salvia

miltiorrhiza is a well-known herb with a wide range of

cardiovascular protective effects. Previous studies have shown

that the lipophilic components (tanshinone I, tanshinone

IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone,

etc.) and the hydrophilic components (danshensu, salvianolic

acid A and B, protocatechuic aldehyde, etc.) are involved

in the cardioprotective effects of Salvia miltiorrhiza (160).

Tanshinone IIA (Tan IIa) is a lipid-soluble compound

isolated from the traditional Chinese medicine Salvia

miltiorrhiza (161), and STS is a water-soluble derivative of
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Tan IIa (162), which can effectively inhibit the interaction

between DNA and intracellular lipid peroxidation products

(163) and can alleviate cardiotoxicity by anti-OS and

reducing apoptosis. Astragalus membranaceus Bunge is

the holy medicine of supplement Qi, which has the effect

of supplement Qi, raising Yang, nourishing the Wei Qi,

and fixing the surface. Eight key components in Astragalus

membranaceus Bunge, including hederagenin, quercetin,

calycosin, formononetin, jaranol, isorhamnetin, astragaloside

III, and 9,10-dimethoxypterocarpan-3-O-β-D-glucoside,

are involved in lipid metabolism, programmed cell death,

fatty acid metabolism, which produce the ability to regulate

the body’s immune function, strengthen the heart, protect

CM, improve substance metabolism (164), AS-IV is a cyclic

aromatic triterpene glycoside compound, which is one of the

main active components of Astragalus membranaceus Bunge

and has good antioxidant activity (165), and can alleviate

cardiotoxicity by anti-OS and improving myocardial energy

metabolism. Panax ginseng is a widely used herb in the

world, containing more polysaccharides and amino acids,

with better protective effects against cardiovascular diseases,

neurological diseases, cancer, and diabetes (166). Ginsenosides

are the main active components of ginseng, which can reduce

cardiotoxicity through anti-OS, reduce apoptosis and regulate

autophagy. Angelica sinensis is one of the most popular

traditional TCM, which has long been used as a blood tonic

and blood activator, pain reliever, laxative, and treatment

of female menstrual disorders and amenorrhea. It contains

polysaccharides, ligustrolactone, ferulic acid, and other bioactive

components, with antioxidant, anti-inflammatory, anti-fibrotic,

and cardiocerebrovascular protective effects (167). DBD is

a classical formula in TCM to supplement Qi and replenish

blood. It is composed of Astragalus membranaceus Bunge

and Angelica sinensis in a 5:1 ratio, and DBD and its extract

AS-AM alleviate cardiotoxicity through various pathways such

as anti-OS, inhibition of apoptosis and TGF-β overexpression,

and reduction of autophagy. In conclusion, Salvia miltiorrhiza,

Astragalus membranaceus Bunge, Panax ginseng, and Angelica

sinensis are important TCMs against cardiotoxicity and should

be given more attention.

Although significant progress has been made in exploring

the molecular mechanisms of TCM against chemoradiotherapy-

related cardiotoxicity, research on TCM against cardiotoxicity

is still facing some problems and shortcomings. (1) The

studies on the anti- chemoradiotherapy-related cardiotoxicity

of TCM are limited to OS, inflammation, apoptosis,

autophagy, ERS, and myocardial energy metabolism, but

other important mechanisms such as Top2β have not been

addressed, and many investigations into TCM have only

studied one of these mechanisms, which is not conducive

to our comprehensive understanding of the mechanisms of

anti-cardiotoxicity of TCM. (2) Most of the studies were

focus on chemotherapy-induced cardiotoxicity (particularly

anthracyclines), and fewer studies were done on radiotherapy

and non-anthracyclines. Among the six mechanisms

summarized in this paper, only two mechanisms of OS

and apoptosis were involved in radiotherapy, and even fewer

in non-anthracyclines. However, the cardiotoxicity caused

by radiotherapy and non-anthracycline drugs is worthy of

attention, such as myocarditis caused by immune checkpoint

inhibitors and the decrease of LVEF caused by arsenic trioxide,

which may be alleviated by TCM, and this also broadens the

idea of research on the effects of TCM on anti-radiotherapy

cardiotoxicity. (3) Most of the studies on anti-cardiotoxicity

of TCM are limited to the cellular level and animal trials,

and till date, only a few clinical control studies have been

conducted, with small sample size and irregular design, and the

reproducibility of many therapies and prescriptions is poor.

(4) The specific medicinal components and active parts of

some herbal monomers, extracts, and compounds are not clear,

and their targets are unknown, so high-performance liquid

chromatography and mass spectrometry may be needed to

identify the drug components and lay a clearer material basis for

pharmacological research. (5) There is a lack of knowledge about

the safety of TCM and their interactions with western drugs,

which also limits the applications of TCM. (6) TCM emphasizes

both a holistic view of the body and evidence-based treatment;

patients with similar symptoms may be treated with different

drugs because they suffer from different conditions, which

requires the establishment of a systematic set of diagnostic and

therapeutic criteria for better clinical treatment and research.

(7) This paper only includes the studies on the cardiotoxicity

caused by radiotherapy, anthracycline chemotherapy and two

non-anthracycline chemotherapy drugs, CP and cyc, but not

the studies on the cardiotoxicity caused by other drugs, such

as immune checkpoint inhibitors (ICIs), arsenic trioxide and

targeted chemotherapy drugs, which may make this study

less comprehensive.

In addition to cardiotoxicity caused by radiotherapy and

classical chemotherapeutic agents, ICIs, arsenic trioxide,

and other antineoplastic agents may cause cardiotoxicity.

ICIs, a unique antibody-based therapeutic strategy that

has revolutionized the treatment landscape for solid and

hematologic cancers, has been shown in a growing number

of preclinical studies to trigger myocardial inflammation,

and the incidence of cardiotoxicity in ICIs therapy may

be underestimated (168). Cardiac immune-associated

adverse events are rare but potentially fatal complications

of immunotherapy with various potential risk factors, such

as combinations of different ICIs (169). No studies related to

the cardiotoxicity of TCM on ICIs have been retrieved, but

this may be a neglected area of study. For TCM treatment

of arsenic trioxide-induced cardiotoxicity, relatively few

studies were found. One such studies indicated that crocin

ameliorates arsenic trioxide-induced cardiotoxicity by reducing

OS, inflammation, and apoptosis (170, 171), magnesium
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isoglycyrrhizinate attenuates via Nrf2 and TLR4/NF-κB

signaling pathways arsenic trioxide-induced cardiotoxicity

(172). In addition, microRNAs and non-coding RNAs are

also involved in the pathogenesis of radiotherapy-associated

cardiotoxicity (173–175), mitochondrial fusion (176), and

cellular scorching (177). It is also a hot topic of current

research that TCM can exert anti-cardiotoxic effects through

these pathways, and we look forward to seeing more of

these findings.

Conclusion

Cardiotoxicity development is the result of a combination

of mechanisms. In recent years, the benefits of TCM in

chemoradiotherapy-related cardiotoxicity have become evident.

Herbal monomers, such as AS-IV and STS, herbal decoction,

such as DBD and SXT, or compound preparations, such as

SMI and QSHWC, can protect CMs through antioxidation,

anti-inflammation, regulating autophagy and apoptosis,

inhibiting ERS, and improving myocardial energy metabolism,

and play a role in reducing anti-radiotherapy-related

cardiotoxicity. Moreover, TCM is a promising drug for treating

chemoradiotherapy-related cardiotoxicity, both guided by

TCM theory and supported by modern research. However, our

conclusions are based on numerous basic, smaller experiments

and lack the results of large-scale clinical trials. We look forward

to more relevant randomized controlled trials to show the

benefits of TCM on chemoradiotherapy-related cardiotoxicity.
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